Aging-driven organelle miscommunication in the failing heart

Angelica Ortega-Muñoz , Elsa Bascuñan-Ortiz , Mayarling F. Troncoso , Claudia Muñoz-Rodriguez , Laura Navarrete-Gallegos , Rut Yero-Haber , Brenda Becerra , Aracely Mora , Erik Lopez-Gallardo , Mario Chiong , Roberto Bravo-Sagua , Sergio Lavandero

The Journal of Cardiovascular Aging ›› 2025, Vol. 5 ›› Issue (4) : 18

PDF
The Journal of Cardiovascular Aging ›› 2025, Vol. 5 ›› Issue (4) :18 DOI: 10.20517/jca.2025.08
Review

Aging-driven organelle miscommunication in the failing heart

Author information +
History +
PDF

Abstract

Cardiovascular diseases are the leading cause of death in older adults worldwide, with heart failure (HF) representing one of their most serious end stages. Aging is a non-modifiable risk factor that drives a series of structural and functional changes in the heart, both at the macro and subcellular levels. This review article analyzes how intracellular organelle dysfunction and the loss of coordination between them, a process termed “interorganelle miscommunication,” contribute to the progression of HF in the context of aging. We review experimental and clinical studies on the function of mitochondria, sarcoplasmic reticulum, lysosomes, lipid droplets, and the nucleus in aging cardiomyocytes. Particular emphasis is placed on how altered interactions between these organelles affect key processes such as ATP production, calcium handling, autophagy, epigenetic regulation, and oxidative stress control. We also discuss the impact of chronic low-grade inflammation (“inflammaging”) and cellular senescence as aggravating factors in cardiac functional decline. Collectively, the evidence indicates that dysregulation of interorganelle communication not only accelerates cardiac aging but also represents a central pathogenetic mechanism in HF. In this context, the concept of a “dysfunctional interorganellar network” may serve as a new hallmark of subcellular aging and an emerging therapeutic target for preventing or delaying age-related HF.

Keywords

Heart failure / aging / organelles / organelle communication

Cite this article

Download citation ▾
Angelica Ortega-Muñoz, Elsa Bascuñan-Ortiz, Mayarling F. Troncoso, Claudia Muñoz-Rodriguez, Laura Navarrete-Gallegos, Rut Yero-Haber, Brenda Becerra, Aracely Mora, Erik Lopez-Gallardo, Mario Chiong, Roberto Bravo-Sagua, Sergio Lavandero. Aging-driven organelle miscommunication in the failing heart. The Journal of Cardiovascular Aging, 2025, 5(4): 18 DOI:10.20517/jca.2025.08

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Di Cesare M,Taylor S.The heart of the world.Glob Heart2024;19:11 PMCID:PMC10809869

[2]

Gómez LA.[Cardiovascular diseases: a public health problem and a global challenge].Biomedica2011;31:469-73

[3]

Yazdanyar A.The burden of cardiovascular disease in the elderly: morbidity, mortality, and costs.Clin Geriatr Med2009;25:563-77, vii PMCID:PMC2797320

[4]

Niklasson A,Patil R.Living with heart failure: patient experiences and implications for physical activity and daily living.ESC Heart Fail2022;9:1206-15 PMCID:PMC8934912

[5]

Mulugeta H,Wilson A.The experience of people living with heart failure in Ethiopia: a qualitative descriptive study.PLoS One2024;19:e0310600 PMCID:PMC11500853

[6]

Kreatsoulas C.The impact of social determinants on cardiovascular disease.Can J Cardiol2010;26 Suppl C:8C-13C PMCID:PMC2949987

[7]

Lopez AD,Ezzati M,Murray CJ.Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data.Lancet2006;367:1747-57

[8]

Alizadeh G,Azami-Aghdash S.Social, economic, technological, and environmental factors affecting cardiovascular diseases: a systematic review and thematic analysis.Int J Prev Med2022;13:78

[9]

Ziaeian B.The prevention of hospital readmissions in heart failure.Prog Cardiovasc Dis2016;58:379-85 PMCID:PMC4783289

[10]

Cohn JN,Sharpe N.Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling.J Am Coll Cardiol2000;35:569-82

[11]

Hill JA.Cardiac plasticity.N Engl J Med2008;358:1370-80

[12]

Lakatta EG.Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a "set up" for vascular disease.Circulation2003;107:139-46

[13]

McDonagh TA,Adamo M.2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC.Eur Heart J2021;42:3599-726

[14]

Del Campo A,Castro PF,Verdejo HE.Mitochondrial function, dynamics and quality control in the pathophysiology of HFpEF.Biochim Biophys Acta Mol Basis Dis2021;1867:166208

[15]

Paraskevaidis I,Farmakis D.Mitochondrial dysfunction in cardiac disease: the fort fell.Biomolecules2024;14:1534 PMCID:PMC11673776

[16]

Schwartz B,Gopal DM.Inefficient batteries in heart failure: metabolic bottlenecks disrupting the mitochondrial ecosystem.JACC Basic Transl Sci2022;7:1161-79 PMCID:PMC9849281

[17]

Calle X,Lopez-Gallardo E.Mitochondrial E3 ubiquitin ligase 1 (MUL1) as a novel therapeutic target for diseases associated with mitochondrial dysfunction.IUBMB Life2022;74:850-65

[18]

Liu H,Ouyang X,Li L.Intercellular mitochondrial transfer: the novel therapeutic mechanism for diseases.Traffic2024;25:e12951

[19]

Ávila PM,Quirós-Meza G,Castillo-Rivas J.Prevalencia y factores de riesgo de enfermedad ateroesclerótica sistémica.Acta Méd Costarricense2014;56:6-11

[20]

Frąk W,Lisińska W,Franczyk B.Pathophysiology of cardiovascular diseases: new insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease.Biomedicines2022;10:1938 PMCID:PMC9405799

[21]

Papazoglou AS,Barmpagiannos K.Atherosclerotic risk factor prevalence in adults with congenital heart disease: a meta-analysis.JACC Adv2024;3:101359 PMCID:PMC11533079

[22]

Kim S,Li L.ER-to-golgi transport and SEC23-dependent COPII vesicles regulate T cell alloimmunity.J Clin Invest2021;131:136574

[23]

Lodhi IJ.Peroxisomes: a nexus for lipid metabolism and cellular signaling.Cell Metab2014;19:380-92 PMCID:PMC3951609

[24]

Nikolich-Žugich J.The twilight of immunity: emerging concepts in aging of the immune system.Nat Immunol2018;19:10-9

[25]

Paillusson S,Gomez-Suaga P.There's something wrong with my MAM; the ER-mitochondria axis and neurodegenerative diseases.Trends Neurosci2016;39:146-57 PMCID:PMC4780428

[26]

Quirós PM,Auwerx J.Mitonuclear communication in homeostasis and stress.Nat Rev Mol Cell Biol2016;17:213-26

[27]

Franceschi C,Parini P,Santoro A.Inflammaging: a new immune-metabolic viewpoint for age-related diseases.Nat Rev Endocrinol2018;14:576-90

[28]

Chung JY,Song Y,Kim YH.Targeted delivery of CRISPR interference system against Fabp4 to white adipocytes ameliorates obesity, inflammation, hepatic steatosis, and insulin resistance.Genome Res2019;29:1442-52 PMCID:PMC6724665

[29]

Mone P,Morciano G.Dysfunctional mitochondria elicit bioenergetic decline in the aged heart.J Cardiovasc Aging2024;4:13 PMCID:PMC11250775

[30]

Murphy E,Balaban RS.Mitochondrial function, biology, and role in disease: a scientific statement from the american heart association.Circ Res2016;118:1960-91

[31]

Nguyen BY,Bui T,Wang X.Mitochondrial function in the heart: the insight into mechanisms and therapeutic potentials.Br J Pharmacol2019;176:4302-18 PMCID:PMC6887906

[32]

Martín-Fernández B.Mitochondria and oxidative stress in heart aging.Age2016;38:225-38 PMCID:PMC5061683

[33]

Muthu S,Thilagavathi J.Aging triggers mitochondrial, endoplasmic reticulum, and metabolic stress responses in the heart.J Cardiovasc Aging2025;5:4 PMCID:PMC11928159

[34]

Rosca MG.Mitochondria in heart failure.Cardiovasc Res2010;88:40-50 PMCID:PMC3025720

[35]

Liu SZ.Skeletal muscle bioenergetics in aging and heart failure.Heart Fail Rev2017;22:167-78 PMCID:PMC5352460

[36]

Lesnefsky EJ,Hoppel CL.Mitochondrial metabolism in aging heart.Circ Res2016;118:1593-611 PMCID:PMC5009371

[37]

Tatarková Z,Račay P.Effects of aging on activities of mitochondrial electron transport chain complexes and oxidative damage in rat heart.Physiol Res2011;60:281-9

[38]

Tocchi A,Basisty N,Rabinovitch PS.Mitochondrial dysfunction in cardiac aging.Biochim Biophys Acta2015;1847:1424-33 PMCID:PMC4575872

[39]

Sithara T.Metabolic complications in cardiac aging.Front Physiol2021;12:669497 PMCID:PMC8116539

[40]

Chen Y,Dorn GW 2nd.Mitochondrial fusion is essential for organelle function and cardiac homeostasis.Circ Res2011;109:1327-31

[41]

Scheffer DDL,Lee L,Ferreira JCB.Mitochondrial fusion, fission, and mitophagy in cardiac diseases: challenges and therapeutic opportunities.Antioxid Redox Signal2022;36:844-63 PMCID:PMC9125524

[42]

Zerihun M,Qvit N.The Drp1-mediated mitochondrial fission protein interactome as an emerging core player in mitochondrial dynamics and cardiovascular disease therapy.Int J Mol Sci2023;24:5785 PMCID:PMC10057413

[43]

Łysek-Gładysińska M,Jóźwik A.Aging-related changes in the ultrastructure of hepatocytes and cardiomyocytes of elderly mice are enhanced in ApoE-deficient animals.Cells2021;10:502 PMCID:PMC7996907

[44]

Fernández-Ortiz M,Fernández-Martínez J.Melatonin/Nrf2/NLRP3 connection in mouse heart mitochondria during aging.Antioxidants2020;9:1187 PMCID:PMC7760557

[45]

Vue Z,Vang L.Three-dimensional mitochondria reconstructions of murine cardiac muscle changes in size across aging.Am J Physiol Heart Circ Physiol2023;325:H965-82

[46]

Chaanine AH,Liang L.JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure.Cell Death Dis2012;3:265 PMCID:PMC3288347

[47]

Liu T,Kim E,Phinney BS.Mitochondrial proteome remodeling in ischemic heart failure.Life Sci2014;101:27-36 PMCID:PMC4075482

[48]

Wai T,Baker MJ.Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice.Science2015;350:aad0116

[49]

Ikeda Y,Maejima Y.Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress.Circ Res2015;116:264-78

[50]

Song M,Fleischer JA,Dorn GW 2nd.Abrogating mitochondrial dynamics in mouse hearts accelerates mitochondrial senescence.Cell Metab2017;26:872-83.e5 PMCID:PMC5718956

[51]

Zhao L,Feng Z.Evidence for association of mitochondrial metabolism alteration with lipid accumulation in aging rats.Exp Gerontol2014;56:3-12

[52]

Wang Y,He C,Song M.Mitochondrial regulation of cardiac aging.Biochim Biophys Acta Mol Basis Dis2019;1865:1853-64

[53]

Gao B,Lv P,Sun S.Parkin overexpression alleviates cardiac aging through facilitating K63-polyubiquitination of TBK1 to facilitate mitophagy.Biochim Biophys Acta Mol Basis Dis2021;1867:165997

[54]

Hafner AV,Gomes AP.Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy.Aging2010;2:914-23 PMCID:PMC3034180

[55]

Paradies G,Ruggiero FM.Changes in the mitochondrial permeability transition pore in aging and age-associated diseases.Mech Ageing Dev2013;134:1-9

[56]

Kwong JQ.Physiological and pathological roles of the mitochondrial permeability transition pore in the heart.Cell Metab2015;21:206-14 PMCID:PMC4616258

[57]

Strutynska NA,Budko AY,Sagach VF.Mitochondrial dysfunction in the aging heart is accompanied by constitutive no-synthases uncoupling on the background of oxidative and nitrosative stress.Fiziol Zh (1994)2016;62:3-11

[58]

Phaneuf S.Cytochrome c release from mitochondria in the aging heart: a possible mechanism for apoptosis with age.Am J Physiol Regul Integr Comp Physiol2002;282:R423-30

[59]

Hofer T,Seo AY.Bioenergetics and permeability transition pore opening in heart subsarcolemmal and interfibrillar mitochondria: effects of aging and lifelong calorie restriction.Mech Ageing Dev2009;130:297-307 PMCID:PMC2680750

[60]

Chen Q,Hu Y.High-dose metformin treatment to inhibit complex I during early reperfusion protects the aged mouse heart via decreased mitochondrial permeability transition pore opening.J Pharmacol Exp Ther2024;392:100529

[61]

Zhang J,Gong N.Endoplasmic reticulum stress signaling modulates ischemia/reperfusion injury in the aged heart by regulating mitochondrial maintenance.Mol Med2024;30:107 PMCID:PMC11265325

[62]

Lam A,Shah K.Drosophila voltage-gated calcium channel α1-subunits regulate cardiac function in the aging heart.Sci Rep2018;8:6910 PMCID:PMC5932002

[63]

Bers DM.Cardiac excitation-contraction coupling.Nature2002;415:198-205

[64]

Eisner DA,Kistamás K.Calcium and excitation-contraction coupling in the heart.Circ Res2017;121:181-95 PMCID:PMC5497788

[65]

Mehdizadeh M,Thorin E,Nattel S.The role of cellular senescence in cardiac disease: basic biology and clinical relevance.Nat Rev Cardiol2022;19:250-64

[66]

Györke S.Dysregulated sarcoplasmic reticulum calcium release: potential pharmacological target in cardiac disease.Pharmacol Ther2008;119:340-54 PMCID:PMC2798594

[67]

Brette F,Orchard CH.Differential modulation of L-type Ca2+ current by SR Ca2+ release at the T-tubules and surface membrane of rat ventricular myocytes.Circ Res2004;95:e1-7

[68]

Guo A,Wei S,Song LS.Emerging mechanisms of T-tubule remodelling in heart failure.Cardiovasc Res2013;98:204-15 PMCID:PMC3697065

[69]

Gil-Hernández A.Relevance of endoplasmic reticulum and mitochondria interactions in age-associated diseases.Ageing Res Rev2020;64:101193

[70]

Wisneski JA,Neese RA.Effects of acute hyperglycemia on myocardial glycolytic activity in humans.J Clin Invest1990;85:1648-56 PMCID:PMC296617

[71]

Koss KL.Phospholamban: a prominent regulator of myocardial contractility.Circ Res1996;79:1059-63

[72]

Hetz C,Kaufman RJ.Mechanisms, regulation and functions of the unfolded protein response.Nat Rev Mol Cell Biol2020;21:421-38 PMCID:PMC8867924

[73]

Bravo R,Gatica D.Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration.Int Rev Cell Mol Biol2013;301:215-90

[74]

Hotamisligil GS.Endoplasmic reticulum stress and the inflammatory basis of metabolic disease.Cell2010;140:900-17 PMCID:PMC2887297

[75]

Wang X,Gillette TG,Wang ZV.The unfolded protein response in ischemic heart disease.J Mol Cell Cardiol2018;117:19-25 PMCID:PMC7043020

[76]

Liberale L,Montecucco F,Libby P.Inflammation, aging, and cardiovascular disease: JACC review topic of the week.J Am Coll Cardiol2022;79:837-47 PMCID:PMC8881676

[77]

Weber C,von Hundelshausen P.Novel mechanisms and therapeutic targets in atherosclerosis: inflammation and beyond.Eur Heart J2023;44:2672-81

[78]

Franceschi C,Vitale G,Salvioli S.Inflammaging and 'garb-aging'.Trends Endocrinol Metab2017;28:199-212

[79]

Ferrucci L,Lauretani F.The origins of age-related proinflammatory state.Blood2005;105:2294-9 PMCID:PMC9828256

[80]

Youm YH,McCabe LR.Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging.Cell Metab2013;18:519-32 PMCID:PMC4017327

[81]

Luo W,Wang Y.Critical role of the cGAS-STING pathway in doxorubicin-induced cardiotoxicity.Circ Res2023;132:e223-42

[82]

Seals DR,Donato AJ.Aging and vascular endothelial function in humans.Clin Sci2011;120:357-75 PMCID:PMC3482987

[83]

Gilsbach R,Preissl S.Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo.Nat Commun2018;9:391

[84]

Bannister AJ.Regulation of chromatin by histone modifications.Cell Res2011;21:381-95 PMCID:PMC3193420

[85]

Lans H,Vermeulen W.ATP-dependent chromatin remodeling in the DNA-damage response.Epigenetics Chromatin2012;5:4 PMCID:PMC3275488

[86]

Emerson FJ.Chromatin: the old and young of it.Front Mol Biosci2023;10:1270285 PMCID:PMC10591336

[87]

Liu B,Zhou Z.Chromatin remodeling, DNA damage repair and aging.Curr Genomics2012;13:533-47 PMCID:PMC3468886

[88]

Muñoz-Lorente MA,Blasco MA.Mice with hyper-long telomeres show less metabolic aging and longer lifespans.Nat Commun2019;10:4723 PMCID:PMC6797762

[89]

Paneni F,Libby P,Camici GG.The aging cardiovascular system: understanding it at the cellular and clinical levels.J Am Coll Cardiol2017;69:1952-67

[90]

McKinsey TA,Wang Y.Epigenomic regulation of heart failure: integrating histone marks, long noncoding RNAs, and chromatin architecture.F1000Res2018;7:1713 PMCID:PMC6206605

[91]

Han P,Yang J.Chromatin remodeling in cardiovascular development and physiology.Circ Res2011;108:378-96

[92]

Mahmoud SA.Epigenetics and chromatin remodeling in adult cardiomyopathy.J Pathol2013;231:147-57 PMCID:PMC4285861

[93]

Mathiyalagan P,Du XJ.Chromatin modifications remodel cardiac gene expression.Cardiovasc Res2014;103:7-16

[94]

Alcendor RR,Zhai P.Sirt1 regulates aging and resistance to oxidative stress in the heart.Circ Res2007;100:1512-21

[95]

Matsushima S.The role of sirtuins in cardiac disease.Am J Physiol Heart Circ Physiol2015;309:H1375-89 PMCID:PMC4666968

[96]

Ministrini S,Beer G,Montecucco F.Sirtuin 1 in endothelial dysfunction and cardiovascular aging.Front Physiol2021;12:733696 PMCID:PMC8527036

[97]

Rodriguez F.Editorial: the role of sirtuin-1 in cardiovascular and renal pathophysiology.Front Physiol2021;12:770386 PMCID:PMC8570137

[98]

Sciarretta S,Zablocki D.The role of autophagy in the heart.Annu Rev Physiol2018;80:1-26

[99]

Liu Y,Sumpter RM Jr.Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia.Proc Natl Acad Sci USA2013;110:20364-71 PMCID:PMC3870705

[100]

Li F,Zhang H,Wang Y.Role of TFEB mediated autophagy, oxidative stress, inflammation, and cell death in endotoxin induced myocardial toxicity of young and aged mice.Oxid Med Cell Longev2016;2016:5380319 PMCID:PMC4856916

[101]

Okura Y,Itabe H,Kalangos A.Oxidized low-density lipoprotein is associated with apoptosis of vascular smooth muscle cells in human atherosclerotic plaques.Circulation2000;102:2680-6

[102]

Zhang AY,Zhang G,Li PL.Lipid raft clustering and redox signaling platform formation in coronary arterial endothelial cells.Hypertension2006;47:74-80

[103]

Tanaka Y,Suter A.Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice.Nature2000;406:902-6

[104]

Wang J,Xiang MX.IgE stimulates human and mouse arterial cell apoptosis and cytokine expression and promotes atherogenesis in Apoe-/- mice.J Clin Invest2011;121:3564-77

[105]

Terman A,Gustafsson B.The involvement of lysosomes in myocardial aging and disease.Curr Cardiol Rev2008;4:107-15 PMCID:PMC2779350

[106]

Bhat OM.Lysosome function in cardiovascular diseases.Cell Physiol Biochem2021;55:277-300 PMCID:PMC8743031

[107]

Wilfling F,Walther TC.Lipid droplet biogenesis.Curr Opin Cell Biol2014;29:39-45 PMCID:PMC4526149

[108]

Dalhaimer P.Lipid droplets in disease.Cells2019;8:974 PMCID:PMC6770496

[109]

Bresgen N,Lahnsteiner A,Rinnerthaler M.The Janus-faced role of lipid droplets in aging: insights from the cellular perspective.Biomolecules2023;13:912 PMCID:PMC10301655

[110]

Perrotta I.Interaction between lipid droplets and endoplasmic reticulum in human atherosclerotic plaques.Ultrastruct Pathol2017;41:1-9

[111]

Moldavski O,Levin-Zaidman S.Lipid droplets are essential for efficient clearance of cytosolic inclusion bodies.Dev Cell2015;33:603-10

[112]

Hammoudeh N,Murphy DJ.Involvement of hepatic lipid droplets and their associated proteins in the detoxification of aflatoxin B1 in aflatoxin-resistance BALB/C mouse.Toxicol Rep2020;7:795-804 PMCID:PMC7334552

[113]

Bosch M,Fajardo A.Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense.Science2020;370:eaay8085

[114]

Choudhary V,Joshi AS.Architecture of lipid droplets in endoplasmic reticulum is determined by phospholipid intrinsic curvature.Curr Biol2018;28:915-26.e9 PMCID:PMC5889118

[115]

Lopaschuk GD,Folmes CD,Stanley WC.Myocardial fatty acid metabolism in health and disease.Physiol Rev2010;90:207-58

[116]

Osumi T.Heart lipid droplets and lipid droplet-binding proteins: biochemistry, physiology, and pathology.Exp Cell Res2016;340:198-204

[117]

Goldberg IJ,Abumrad NA.Deciphering the role of lipid droplets in cardiovascular disease: a report from the 2017 national heart, lung, and blood institute workshop.Circulation2018;138:305-15

[118]

Chen Y,Wang K.Relationship between fatty acid intake and aging: a Mendelian randomization study.Aging2024;16:5711-39 PMCID:PMC11006485

[119]

Valencak TG.Feeding into old age: long-term effects of dietary fatty acid supplementation on tissue composition and life span in mice.J Comp Physiol B2011;181:289-98 PMCID:PMC3022160

[120]

Papsdorf K,Hosseini A.Lipid droplets and peroxisomes are co-regulated to drive lifespan extension in response to mono-unsaturated fatty acids.Nat Cell Biol2023;25:672-84 PMCID:PMC10185472

[121]

Guo D,Qi B.Lipid overload-induced RTN3 activation leads to cardiac dysfunction by promoting lipid droplet biogenesis.Cell Death Differ2024;31:292-308 PMCID:PMC10923887

[122]

Jebessa ZH,Dewenter M.The lipid droplet-associated protein ABHD5 protects the heart through proteolysis of HDAC4.Nat Metab2019;1:1157-67 PMCID:PMC6861130

[123]

Han L,Wu S.Lipid droplet-associated lncRNA LIPTER preserves cardiac lipid metabolism.Nat Cell Biol2023;25:1033-46 PMCID:PMC10344779

[124]

Kuramoto K,Yoshinori N.Deficiency of a lipid droplet protein, perilipin 5, suppresses myocardial lipid accumulation, thereby preventing type 1 diabetes-induced heart malfunction.Mol Cell Biol2014;34:2721-31

[125]

Poston CN,Bazemore-Walker CR.In-depth proteomic analysis of mammalian mitochondria-associated membranes (MAM).J Proteomics2013;79:219-30

[126]

Li J,Brundel BJJM.Imbalance of ER and mitochondria interactions: prelude to cardiac ageing and disease?.Cells2019;8:1617 PMCID:PMC6952992

[127]

Lopez-Crisosto C,Vasquez-Trincado C.Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology.Nat Rev Cardiol2017;14:342-60

[128]

Carpio MA,Brill AL,Ehrlich BE.BOK controls apoptosis by Ca2+ transfer through ER-mitochondrial contact sites.Cell Rep2021;34:108827 PMCID:PMC7995216

[129]

Rasola A.Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis.Cell Calcium2011;50:222-33

[130]

Hu Y,Zhang L.The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses.Autophagy2021;17:1142-56 PMCID:PMC8143230

[131]

Shoshan-Barmatz V,Meir A.The mitochondrial voltage-dependent anion channel 1, Ca2+ transport, apoptosis, and their regulation.Front Oncol2017;7:60 PMCID:PMC5385329

[132]

Loncke J,Kale J.CISD2 counteracts the inhibition of ER-mitochondrial calcium transfer by anti-apoptotic BCL-2.Biochim Biophys Acta Mol Cell Res2025;1872:119857

[133]

Wang CH,Wu CY.Cisd2 modulates the differentiation and functioning of adipocytes by regulating intracellular Ca2+ homeostasis.Hum Mol Genet2014;23:4770-85

[134]

Yeh CH,Kao CH.Mitochondria and calcium homeostasis: Cisd2 as a big player in cardiac ageing.Int J Mol Sci2020;21:9238 PMCID:PMC7731030

[135]

Chen YF,Chen YT.Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice.Genes Dev2009;23:1183-94 PMCID:PMC2685531

[136]

Janikiewicz J,Malinska D.Mitochondria-associated membranes in aging and senescence: structure, function, and dynamics.Cell Death Dis2018;9:332 PMCID:PMC5832430

[137]

Wang C,Wu S.FUNDC1-dependent mitochondria-associated endoplasmic reticulum membranes are involved in angiogenesis and neoangiogenesis.Nat Commun2024;15:4572 PMCID:PMC8110587

[138]

Wu S,Wang Q.Binding of FUN14 domain containing 1 with inositol 1,4,5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo.Circulation2017;136:2248-66

[139]

Lagendijk AK,Merks RM.Hyaluronan: a critical regulator of endothelial-to-mesenchymal transition during cardiac valve formation.Trends Cardiovasc Med2013;23:135-42

[140]

Morgado-Cáceres P,Calle X.The aging of ER-mitochondria communication: a journey from undifferentiated to aged cells.Front Cell Dev Biol2022;10:946678 PMCID:PMC9437272

[141]

Jentsch TJ,Weinreich F.Molecular structure and physiological function of chloride channels.Physiol Rev2002;82:503-68

[142]

Li D,Ding H,Xie Y.Cellular senescence in cardiovascular diseases: from pathogenesis to therapeutic challenges.J Cardiovasc Dev Dis2023;10:439 PMCID:PMC10607269

[143]

Setterberg IE,Frisk M,Li J.The physiology and pathophysiology of T-tubules in the heart.Front Physiol2021;12:790227

[144]

Kostin S,Shimada T.The internal and external protein scaffold of the T-tubular system in cardiomyocytes.Cell Tissue Res1998;294:449-60

[145]

Louch WE,Sexton J.T-tubule disorganization and reduced synchrony of Ca2+ release in murine cardiomyocytes following myocardial infarction.J Physiol2006;574:519-33 PMCID:PMC1817777

[146]

Retzius G.Zur Kenntnis der quergestreiften Muskelfaser.Biol Untersuch1881;1-11Available from: https://www.zobodat.at/pdf/Biolog-Untersuchungen_1_0001-0026.pdf [Last accessed on 10 Oct 2025]

[147]

Heinzel FR,Biesmans L.Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium.Circ Res2008;102:338-46

[148]

Louch WE,Heinzel FR.Reduced synchrony of Ca2+ release with loss of T-tubules-a comparison to Ca2+ release in human failing cardiomyocytes.Cardiovasc Res2004;62:63-73

[149]

Zhang HB,Xu M.Ultrastructural uncoupling between T-tubules and sarcoplasmic reticulum in human heart failure.Cardiovasc Res2013;98:269-76

[150]

Zorn-Pauly K,Pelzmann B.Oxidized LDL induces ventricular myocyte damage and abnormal electrical activity-role of lipid hydroperoxides.Cardiovasc Res2005;66:74-83

[151]

Bertic M,Foroutan F.Predictors of survival and favorable neurologic outcome in patients treated with eCPR: a systematic review and meta-analysis.J Cardiovasc Transl Res2022;15:279-90

[152]

Kho C,Hajjar RJ.Altered sarcoplasmic reticulum calcium cycling-targets for heart failure therapy.Nat Rev Cardiol2012;9:717-33 PMCID:PMC3651893

[153]

Rog-Zielinska EA,Peyronnet R.Beat-by-beat cardiomyocyte T-tubule deformation drives tubular content exchange.Circ Res2021;128:203-15

[154]

Anderson R.PGC-1alpha in aging and anti-aging interventions.Biochim Biophys Acta2009;1790:1059-66 PMCID:PMC2743759

[155]

Gao F,Lu YW.Reduced mitochondrial protein translation promotes cardiomyocyte proliferation and heart regeneration.Circulation2023;148:1887-906

[156]

Gao F,Lu YW.A defect in mitochondrial protein translation influences mitonuclear communication in the heart.Nat Commun2023;14:1595 PMCID:PMC10033703

[157]

Anderson R,Maggiorani D.Length-independent telomere damage drives post-mitotic cardiomyocyte senescence.EMBO J2019;38:e100492

[158]

Lai L,Zechner C.Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart.Genes Dev2008;22:1948-61 PMCID:PMC2492740

[159]

Sahin E,Liesa M.Telomere dysfunction induces metabolic and mitochondrial compromise.Nature2011;470:359-65 PMCID:PMC3741661

[160]

Dai DF,Ungvari Z.Mitochondria and cardiovascular aging.Circ Res2012;110:1109-24 PMCID:PMC3867977

[161]

Gomes AP,Ling AJ.Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging.Cell2013;155:1624-38 PMCID:PMC4076149

[162]

Zhu D,Tian Y.Mitochondrial-to-nuclear communication in aging: an epigenetic perspective.Trends Biochem Sci2022;47:645-59

[163]

Yu W,Xu H,Ren J.TBC1D15/RAB7-regulated mitochondria-lysosome interaction confers cardioprotection against acute myocardial infarction-induced cardiac injury.Theranostics2020;10:11244-63 PMCID:PMC7532681

[164]

Sun S,Xu H.TBC1D15-Drp1 interaction-mediated mitochondrial homeostasis confers cardioprotection against myocardial ischemia/reperfusion injury.Metabolism2022;134:155239

[165]

Liao PC,Borgman T.Touch and Go: membrane contact sites between lipid droplets and other organelles.Front Cell Dev Biol2022;10:852021 PMCID:PMC8908909

[166]

Kim J.Peroxisomal stress response and inter-organelle communication in cellular homeostasis and aging.Antioxidants2022;11:192 PMCID:PMC8868334

[167]

López-Otín C,Partridge L,Kroemer G.Hallmarks of aging: an expanding universe.Cell2023;186:243-78

[168]

Abdellatif M,Sedej S.Hallmarks of cardiovascular ageing.Nat Rev Cardiol2023;20:754-77

[169]

Chen F,Sharma K.Broad distribution of hepatocyte proliferation in liver homeostasis and regeneration.Cell Stem Cell2020;26:27-33.e4 PMCID:PMC8009755

[170]

Burté F,Chinnery PF.Disturbed mitochondrial dynamics and neurodegenerative disorders.Nat Rev Neurol2015;11:11-24

[171]

Plotegher N.Mitochondrial dysfunction and neurodegeneration in lysosomal storage disorders.Trends Mol Med2017;23:116-34

[172]

Wong YC,Peng W.Regulation and function of mitochondria-lysosome membrane contact sites in cellular homeostasis.Trends Cell Biol2019;29:500-13 PMCID:PMC8475646

[173]

Deus CM,Oliveira PJ.Mitochondria-lysosome crosstalk: from physiology to neurodegeneration.Trends Mol Med2020;26:71-88

[174]

Ballabio A.Lysosomes as dynamic regulators of cell and organismal homeostasis.Nat Rev Mol Cell Biol2020;21:101-18

[175]

Cartes-Saavedra B,Hajnóczky G.The roles of mitochondria in global and local intracellular calcium signalling.Nat Rev Mol Cell Biol2025;26:456-75

[176]

Sugiura A,Fon EA.A new pathway for mitochondrial quality control: mitochondrial-derived vesicles.EMBO J2014;33:2142-56 PMCID:PMC4282503

[177]

Hamacher-Brady A,Krijnse-Locker J.Intramitochondrial recruitment of endolysosomes mediates Smac degradation and constitutes a novel intrinsic apoptosis antagonizing function of XIAP E3 ligase.Cell Death Differ2014;21:1862-76 PMCID:PMC4227142

[178]

Wong YC.Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation.Proc Natl Acad Sci USA2014;111:E4439-48 PMCID:PMC4210283

[179]

Lazarou M,Kane LA.The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy.Nature2015;524:309-14 PMCID:PMC5018156

[180]

McLelland GL,Chen CX,Fon EA.Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control.EMBO J2014;33:282-95 PMCID:PMC3989637

[181]

Wong YC,Krainc D.Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis.Nature2018;554:382-6 PMCID:PMC6209448

[182]

Zhang XM,Mitchell CA.TBC domain family, member 15 is a novel mammalian Rab GTPase-activating protein with substrate preference for Rab7.Biochem Biophys Res Commun2005;335:154-61

[183]

Peralta ER,Edinger AL.Differential effects of TBC1D15 and mammalian Vps39 on Rab7 activation state, lysosomal morphology, and growth factor dependence.J Biol Chem2010;285:16814-21 PMCID:PMC2878074

[184]

Onoue K,Ban-Ishihara R.Fis1 acts as a mitochondrial recruitment factor for TBC1D15 that is involved in regulation of mitochondrial morphology.J Cell Sci2013;126:176-85

[185]

Meggouh F,Weterman MA,Baas F.Charcot-marie-tooth disease due to a de novo mutation of the RAB7 gene.Neurology2006;67:1476-8

[186]

Itoh K,Yamada T.A brain-enriched Drp1 isoform associates with lysosomes, late endosomes, and the plasma membrane.J Biol Chem2018;293:11809-22

[187]

Rossor AM,Reilly MM.Recent advances in the genetic neuropathies.Curr Opin Neurol2016;29:537-48 PMCID:PMC5130159

[188]

Burbulla LF,Mazzulli JR.Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease.Science2017;357:1255-61 PMCID:PMC6021018

[189]

Plotegher N.Crosstalk between lysosomes and mitochondria in parkinson's disease.Front Cell Dev Biol2017;5:110 PMCID:PMC5732996

[190]

Cisneros J,Shum GC,Wong YC.Mitochondria-lysosome contact site dynamics and misregulation in neurodegenerative diseases.Trends Neurosci2022;45:312-22 PMCID:PMC8930467

[191]

Verhoeven K,Coen K.Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy.Am J Hum Genet2003;72:722-7 PMCID:PMC1180247

[192]

Cleeter MW,Gluck C.Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage.Neurochem Int2013;62:1-7 PMCID:PMC3550523

[193]

Osellame LD,Hargreaves IP.Mitochondria and quality control defects in a mouse model of Gaucher disease-links to Parkinson's disease.Cell Metab2013;17:941-53 PMCID:PMC3678026

[194]

Li H,Ma TC.Mitochondrial dysfunction and mitophagy defect triggered by heterozygous GBA mutations.Autophagy2019;15:113-30 PMCID:PMC6287702

[195]

Yang J,Feng X,Zhou Y.Mitochondrial dysfunction in cardiovascular diseases: potential targets for treatment.Front Cell Dev Biol2022;10:841523 PMCID:PMC9140220

[196]

Arruda AP,Parlakgül G,Inouye K.Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity.Nat Med2014;20:1427-35 PMCID:PMC4412031

[197]

Madreiter-Sokolowski CT,Bourguignon MP.Enhanced inter-compartmental Ca2+ flux modulates mitochondrial metabolism and apoptotic threshold during aging.Redox Biol2019;20:458-66 PMCID:PMC6243020

[198]

Ziegler DV,Bernard D.Cellular senescence links mitochondria-ER contacts and aging.Commun Biol2021;4:1323 PMCID:PMC8613202

[199]

Ziegler DV,Goehrig D.Calcium channel ITPR2 and mitochondria-ER contacts promote cellular senescence and aging.Nat Commun2021;12:720 PMCID:PMC7851384

[200]

Di Micco R,Baker D.Cellular senescence in ageing: from mechanisms to therapeutic opportunities.Nat Rev Mol Cell Biol2021;22:75-95 PMCID:PMC8344376

[201]

Chou SM,Yuan F,Chong CM.Neuronal senescence in the aged brain.Aging Dis2023;14:1618-32

[202]

Englund DA,Aversa Z.Skeletal muscle aging, cellular senescence, and senotherapeutics: current knowledge and future directions.Mech Ageing Dev2021;200:111595 PMCID:PMC8627455

[203]

Sun M,Mu N,Yu L.Mitochondrial transplantation as a novel therapeutic strategy for cardiovascular diseases.J Transl Med2023;21:347 PMCID:PMC10210445

[204]

Yamada Y,Kita T,Kitajiri SI.The use of a MITO-Porter to deliver exogenous therapeutic RNA to a mitochondrial disease's cell with a A1555G mutation in the mitochondrial 12S rRNA gene results in an increase in mitochondrial respiratory activity.Mitochondrion2020;55:134-44

[205]

Renteln M.A synthetic mitochondrial-based vector for therapeutic purposes.Med Hypotheses2018;117:28-30

[206]

Magalhães Rebelo AP,Knedlik T.Chemical modulation of mitochondria-endoplasmic reticulum contact sites.Cells2020;9:1637 PMCID:PMC7408517

[207]

Dentoni G,Naia L.The potential of small molecules to modulate the mitochondria-endoplasmic reticulum interplay in Alzheimer's disease.Front Cell Dev Biol2022;10:920228 PMCID:PMC9459385

[208]

Dietel E,Delventhal L,Gattenlöhner S.Crosstalks of the PTPIP51 interactome revealed in Her2 amplified breast cancer cells by the novel small molecule LDC3/Dynarrestin.PLoS One2019;14:e0216642 PMCID:PMC6510450

[209]

Franco A,Fleischer JA.Correcting mitochondrial fusion by manipulating mitofusin conformations.Nature2016;540:74-9 PMCID:PMC5315023

[210]

Naia L,Mota SI.The Sigma-1 receptor mediates pridopidine rescue of mitochondrial function in huntington disease models.Neurotherapeutics2021;18:1017-38 PMCID:PMC8423985

[211]

Salvatore T,Caturano A.Effects of metformin in heart failure: from pathophysiological rationale to clinical evidence.Biomolecules2021;11:1834 PMCID:PMC8698925

[212]

Gao J,He H.Therapeutic effects of breviscapine in cardiovascular diseases: a review.Front Pharmacol2017;8:289 PMCID:PMC5441392

[213]

Zhang QY,Wang R.Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats.J Nutr Biochem2014;25:420-8

[214]

Wang AL,Wang G.New generations of dihydropyridines for treatment of hypertension.J Geriatr Cardiol2017;14:67-72 PMCID:PMC5329735

[215]

Kobayashi S,Suetomi T.Dantrolene, a therapeutic agent for malignant hyperthermia, markedly improves the function of failing cardiomyocytes by stabilizing interdomain interactions within the ryanodine receptor.J Am Coll Cardiol2009;53:1993-2005 PMCID:PMC2764410

[216]

Wüst RCI,Held NM.The antibiotic doxycycline impairs cardiac mitochondrial and contractile function.Int J Mol Sci2021;22:4100 PMCID:PMC8071362

[217]

Houtkooper RH,Ryu D.Mitonuclear protein imbalance as a conserved longevity mechanism.Nature2013;497:451-7 PMCID:PMC3663447

[218]

Chiao YA,Basisty N.Rapamycin transiently induces mitochondrial remodeling to reprogram energy metabolism in old hearts.Aging2016;8:314-27 PMCID:PMC4789585

[219]

Lee DJW,Maier AB.Targeting ageing with rapamycin and its derivatives in humans: a systematic review.Lancet Healthy Longev2024;5:e152-62

[220]

Andreux PA,Ryu D.The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans.Nat Metab2019;1:595-603

[221]

Liu S,Tissot C.Urolithin A provides cardioprotection and mitochondrial quality enhancement preclinically and improves human cardiovascular health biomarkers.iScience2025;28:111814 PMCID:PMC11875685

[222]

Gao X,Zhao Y.Atorvastatin reduces lipid accumulation in the liver by activating protein kinase A-mediated phosphorylation of perilipin 5.Biochim Biophys Acta Mol Cell Biol Lipids2017;1862:1512-9

AI Summary AI Mindmap
PDF

203

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/