Epigenetic and epitranscriptomic regulation of cardiac metabolism in aging and disease

Junxi Liu , Mocun Yang , Boda Zhou

The Journal of Cardiovascular Aging ›› 2025, Vol. 5 ›› Issue (3) : 15

PDF
The Journal of Cardiovascular Aging ›› 2025, Vol. 5 ›› Issue (3) :15 DOI: 10.20517/jca.2025.06
Review

Epigenetic and epitranscriptomic regulation of cardiac metabolism in aging and disease

Author information +
History +
PDF

Abstract

The heart’s metabolic plasticity, crucial for adapting to energy demands, is governed by epigenetic and epitranscriptomic mechanisms. Aging and cardiovascular diseases disrupt this equilibrium, leading to metabolic inflexibility, mitochondrial dysfunction, and pathological remodeling. This review explores how DNA methylation, histone modifications, and RNA methylation (e.g., m6A, m5C) dynamically regulate cardiac metabolism. Key findings reveal that age-related declines in SIRT1/NAD+ activity and FTO-mediated RNA demethylation impair fatty acid oxidation, while METTL3-driven m6A hypermethylation promotes glycolytic dependency. Dysregulation of TET enzymes and α-ketoglutarate (α-KG) further disrupts DNA hydroxymethylation and RNA modification, exacerbating oxidative stress and mitochondrial inefficiency. These alterations create self-reinforcing cycles of metabolic rigidity, contributing to heart failure, arrhythmias, and ischemia-reperfusion injury. Emerging therapeutic strategies, including BET inhibitors and NAD+ repletion, show promise in restoring metabolic flexibility by targeting epigenetic and epitranscriptomic pathways. Integrating multi-omics approaches and spatial epitranscriptomics offers novel insights into cell-specific regulatory networks, paving the way for precision interventions to counteract cardiac aging and disease.

Keywords

Cardiac metabolism / epigenetics / epitranscriptomics / aging / metabolic inflexibility / mitochondrial dysfunction

Cite this article

Download citation ▾
Junxi Liu, Mocun Yang, Boda Zhou. Epigenetic and epitranscriptomic regulation of cardiac metabolism in aging and disease. The Journal of Cardiovascular Aging, 2025, 5(3): 15 DOI:10.20517/jca.2025.06

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yazdanyar A.The burden of cardiovascular disease in the elderly: morbidity, mortality, and costs.Clin Geriatr Med2009;25:563-77 PMCID:PMC2797320

[2]

Rodgers JL,Bolleddu SI.Cardiovascular risks associated with gender and aging.J Cardiovasc Dev Dis2019;6:19 PMCID:PMC6616540

[3]

Qu C,Zhang J.Burden of cardiovascular disease among elderly: based on the Global Burden of Disease Study 2019.Eur Heart J Qual Care Clin Outcomes2024;10:143-53 PMCID:PMC10904724

[4]

Gadó K,Markovics D.Most common cardiovascular diseases of the elderly - A review article.Dev Health Sci2022;4:27-32

[5]

Wu D,Peng Q.Prohibitin 2 deficiency impairs cardiac fatty acid oxidation and causes heart failure.Cell Death Dis2020;11:181 PMCID:PMC7067801

[6]

Slawik M.Lipotoxicity, overnutrition and energy metabolism in aging.Ageing Res Rev2006;5:144-64

[7]

White PJ,Grimsrud PA.The BCKDH kinase and phosphatase integrate BCAA and lipid metabolism via regulation of ATP-citrate lyase.Cell Metab2018;27:1281-93.e7 PMCID:PMC5990471

[8]

Chen X,Kroemer G.Organelle-specific regulation of ferroptosis.Cell Death Differ2021;28:2843-56 PMCID:PMC8481335

[9]

Katsnelson A.Epigenome effort makes its mark.Nature2010;467:646

[10]

Sun Z,Ordog T.Aberrant signature methylome by DNMT1 hot spot mutation in hereditary sensory and autonomic neuropathy 1E.Epigenetics2014;9:1184-93 PMCID:PMC4164503

[11]

Wu Y,Sun Y.PGN and LTA from staphylococcus aureus induced inflammation and decreased lactation through regulating DNA methylation and histone H3 acetylation in bovine mammary epithelial cells.Toxins2020;12:238 PMCID:PMC7232188

[12]

Fang WF,Lin CY.Histone deacetylase 2 (HDAC2) attenuates lipopolysaccharide (LPS)-induced inflammation by regulating PAI-1 expression.J Inflamm2018;15:3 PMCID:PMC5763578

[13]

Tang BL.Sirt1 and the mitochondria.Mol Cells2016;39:87-95 PMCID:PMC4757807

[14]

Ghazi T,Chuturgoon AA.Fusaric acid decreases p53 expression by altering promoter methylation and m6A RNA methylation in human hepatocellular carcinoma (HepG2) cells.Epigenetics2021;16:79-91 PMCID:PMC7889137

[15]

Yang X,Ji Z.Dual functional molecular imprinted polymer-modified organometal lead halide perovskite: synthesis and application for photoelectrochemical sensing of salicylic acid.Anal Chem2019;91:9356-60

[16]

Yang H,Li Q,Dai Y.Diverse epigenetic regulations of macrophages in atherosclerosis.Front Cardiovasc Med2022;9:868788 PMCID:PMC9001883

[17]

Namba-Fukuyo H,Matsusaka K.TET2 functions as a resistance factor against DNA methylation acquisition during Epstein-Barr virus infection.Oncotarget2016;7:81512-26 PMCID:PMC5348409

[18]

Choi J,Faliti CE.Bcl-6 is the nexus transcription factor of T follicular helper cells via repressor-of-repressor circuits.Nat Immunol2020;21:777-89 PMCID:PMC7449381

[19]

Paramasivam A.m6A RNA methylation in heart development, regeneration and disease.Hypertens Res2021;44:1236-7

[20]

Piersanti RL,Sheldon IM.Lipopolysaccharide and tumor necrosis factor-alpha alter gene expression of oocytes and cumulus cells during bovine in vitro maturation.Mol Reprod Dev2019;86:1909-20 PMCID:PMC6910933

[21]

Zeybel M,Wong YK.Multigenerational epigenetic adaptation of the hepatic wound-healing response.Nat Med2012;18:1369-77 PMCID:PMC3489975

[22]

Li R,Zhao J.Mitochondrial STAT3 exacerbates LPS-induced sepsis by driving CPT1a-mediated fatty acid oxidation.Theranostics2022;12:976-98 PMCID:PMC8692896

[23]

Wang H,Zhang C.The whole-transcriptome landscape of muscle and adipose tissues reveals the ceRNA regulation network related to intramuscular fat deposition in yak.BMC Genomics2020;21:347 PMCID:PMC7203869

[24]

Liao CG,Ke Y.Active demethylation upregulates CD147 expression promoting non-small cell lung cancer invasion and metastasis.Oncogene2022;41:1780-94 PMCID:PMC8933279

[25]

Leung YT,Maurer K.Interferon regulatory factor 1 and histone H4 acetylation in systemic lupus erythematosus.Epigenetics2015;10:191-9 PMCID:PMC4622916

[26]

Wang Z,Zhu S.A small molecular compound CC1007 induces cross-lineage differentiation by inhibiting HDAC7 expression and HDAC7/MEF2C interaction in BCR-ABL1(-) pre-B-ALL.Cell Death Dis2020;11:738 PMCID:PMC7483467

[27]

Liu B,Fang L,Xiong Y.Myocyte enhancer factor 2A plays a central role in the regulatory networks of cellular physiopathology.Aging Dis2023;14:331-49

[28]

Tobin SW,Dadson K.Heart failure and MEF2 Transcriptome dynamics in response to β-blockers.Sci Rep2017;7:4476 PMCID:PMC5493616

[29]

Yu X,Wen G.Upregulated sirtuin 1 by miRNA-34a is required for smooth muscle cell differentiation from pluripotent stem cells.Cell Death Differ2015;22:1170-80 PMCID:PMC4572864

[30]

Wu S,Fukumoto T.SWI/SNF catalytic subunits' switch drives resistance to EZH2 inhibitors in ARID1A-mutated cells.Nat Commun2018;9:4116 PMCID:PMC6175882

[31]

Ronnebaum SM.The FoxO family in cardiac function and dysfunction.Annu Rev Physiol2010;72:81-94 PMCID:PMC2908381

[32]

Koczor CA,Fields E.Mitochondrial polymerase gamma dysfunction and aging cause cardiac nuclear DNA methylation changes.Physiol Genomics2016;48:274-80 PMCID:PMC4824151

[33]

Hoernle K,Fischer KM.Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua.Nature2008;451:1094-7

[34]

Tarragó MG,Kanamori KS.A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD+ decline.Cell Metab2018;27:1081-95.e10 PMCID:PMC5935140

[35]

Paneni F,Libby P,Camici GG.The aging cardiovascular system: understanding it at the cellular and clinical levels.J Am Coll Cardiol2017;69:1952-67

[36]

Wei Z,Li J.SIRT1 promotes glucolipid metabolic conversion to facilitate tumor development in colorectal carcinoma.Int J Biol Sci2023;19:1925-40 PMCID:PMC10092765

[37]

Lopaschuk GD,Tian R,Abel ED.Cardiac energy metabolism in heart failure.Circ Res2021;128:1487-513 PMCID:PMC8136750

[38]

Chun SK,Flores-Toro J.Loss of sirtuin 1 and mitofusin 2 contributes to enhanced ischemia/reperfusion injury in aged livers.Aging Cell2018;17:e12761 PMCID:PMC6052398

[39]

Li X,Zhan X.R13 preserves motor performance in SOD1(G93A) mice by improving mitochondrial function.Theranostics2021;11:7294-307 PMCID:PMC8210609

[40]

Chang Y,Kokura K.MPP8 mediates the interactions between DNA methyltransferase Dnmt3a and H3K9 methyltransferase GLP/G9a.Nat Commun2011;2:533 PMCID:PMC3286832

[41]

Mohni KN,Zhao R.HMCES maintains genome integrity by shielding Abasic sites in single-strand DNA.Cell2019;176:144-53.e13 PMCID:PMC6329640

[42]

Lesker TR,Gálvez EJC.An integrated metagenome catalog reveals new insights into the murine gut microbiome.Cell Rep2020;30:2909-22.e6 PMCID:PMC7059117

[43]

Delahaye F,Heo HJ.Sexual dimorphism in epigenomic responses of stem cells to extreme fetal growth.Nat Commun2014;5:5187 PMCID:PMC4197137

[44]

Ghoneim HE,Moustaki A.De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation.Cell2017;170:142-57.e19 PMCID:PMC5568784

[45]

Zhang Q,Sun S.ACOX2 is a prognostic marker and impedes the progression of hepatocellular carcinoma via PPARα pathway.Cell Death Dis2021;12:15 PMCID:PMC7791021

[46]

Pararasa C,Shigdar S.Age-associated changes in long-chain fatty acid profile during healthy aging promote pro-inflammatory monocyte polarization via PPARγ.Aging Cell2016;15:128-39 PMCID:PMC4717269

[47]

Lim JH,Lee BY.Epigenome-wide base-resolution profiling of DNA methylation in chorionic villi of fetuses with Down syndrome by methyl-capture sequencing.Clin Epigenetics2019;11:180 PMCID:PMC6894197

[48]

Mehta AP,Reed SA,Javahishvili T.Replacement of 2'-Deoxycytidine by 2'-Deoxycytidine analogues IN THe E. coli genome.J Am Chem Soc2016;138:14230-3 PMCID:PMC5134732

[49]

Hou X,Zhang W.LDHA induces EMT gene transcription and regulates autophagy to promote the metastasis and tumorigenesis of papillary thyroid carcinoma.Cell Death Dis2021;12:347 PMCID:PMC8017009

[50]

Flores A,Takahashi R.Increased lactate dehydrogenase activity is dispensable in squamous carcinoma cells of origin.Nat Commun2019;10:91 PMCID:PMC6327029

[51]

Tan X,Liu W.Acrylamide aggravates cognitive deficits at night period via the gut-brain axis by reprogramming the brain circadian clock.Arch Toxicol2019;93:467-86

[52]

Hudec M,Solc R,Cerna M.Epigenetic regulation of circadian rhythm and its possible role in diabetes mellitus.Int J Mol Sci2020;21:3005 PMCID:PMC7215839

[53]

Tatton-Brown K,Ruark E.Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability.Nat Genet2014;46:385-8 PMCID:PMC3981653

[54]

Bellet MM.Mammalian circadian clock and metabolism - the epigenetic link.J Cell Sci2010;123:3837-48 PMCID:PMC2972271

[55]

Kwapis JL,Kramár EA.Epigenetic regulation of the circadian gene Per1 contributes to age-related changes in hippocampal memory.Nat Commun2018;9:3323 PMCID:PMC6102273

[56]

Lamming DW,Katajisto P.Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity.Science2012;335:1638-43 PMCID:PMC3324089

[57]

Hardy T.Epigenetics in liver disease: from biology to therapeutics.Gut2016;65:1895-905 PMCID:PMC5099193

[58]

Hattori M,Hattori T.Global DNA hypomethylation and hypoxia-induced expression of the ten eleven translocation (TET) family, TET1, in scleroderma fibroblasts.Exp Dermatol2015;24:841-6

[59]

Koh JH,Terada S,Holloszy JO.PPARβ is essential for maintaining normal levels of PGC-1α and mitochondria and for the increase in muscle mitochondria induced by exercise.Cell Metab2017;25:1176-85.e5 PMCID:PMC5894349

[60]

Deng W,Xie Z.Inhibition of PLK3 attenuates tubular epithelial cell apoptosis after renal ischemia-reperfusion injury by blocking the ATM/P53-mediated DNA damage response.Oxid Med Cell Longev2022;2022:4201287 PMCID:PMC9249506

[61]

Gao Q,Pan J.Integrative analyses identify HIF-1α as a potential protective role with immune cell infiltration in adamantinomatous craniopharyngioma.Front Immunol2022;13:949509 PMCID:PMC9450013

[62]

Byrne NJ,Takahara S.Chronically elevating circulating ketones can reduce cardiac inflammation and blunt the development of heart failure.Circ Heart Fail2020;13:e006573

[63]

Taylor MD,Kottangada P.Nuclear role of WASp in the pathogenesis of dysregulated TH1 immunity in human Wiskott-Aldrich syndrome.Sci Transl Med2010;2:37ra44 PMCID:PMC2943146

[64]

Yang J,Li N,Zhou W.Salvia miltiorrhiza and carthamus tinctorius extract prevents cardiac fibrosis and dysfunction after myocardial infarction by epigenetically inhibiting Smad3 expression.Evid Based Complement Alternat Med2019;2019:6479136 PMCID:PMC6582873

[65]

Eichner LJ,Brun SN.HDAC3 is critical in tumor development and therapeutic resistance in Kras-mutant non-small cell lung cancer.Sci Adv2023;9:eadd3243

[66]

Sullivan JM,Schaefer U.Autism-like syndrome is induced by pharmacological suppression of BET proteins in young mice.J Exp Med2015;212:1771-81 PMCID:PMC4612093

[67]

Stomper J,Belizaire R,Bandaru TS.Sex differences in DNMT3A-mutant clonal hematopoiesis and the effects of estrogen.Cell Rep2025;44:115494

[68]

Sano S,Wang Y.Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome.J Am Coll Cardiol2018;71:875-86 PMCID:PMC5828038

[69]

Wang S,Luo X.Prevalence and prognostic significance of DNMT3A- and TET2- clonal haematopoiesis-driver mutations in patients presenting with ST-segment elevation myocardial infarction.EBioMedicine2022;78:103964 PMCID:PMC8960977

[70]

Li X,Zhang M.Base-resolution mapping reveals distinct m1A methylome in nuclear- and mitochondrial-encoded transcripts.Mol Cell2017;68:993-1005.e9 PMCID:PMC5722686

[71]

Gokhale NS,McFadden MJ.N6-methyladenosine in flaviviridae viral RNA genomes regulates infection.Cell Host Microbe2016;20:654-65 PMCID:PMC5123813

[72]

Zhao Z,Su R.Epitranscriptomics in liver disease: basic concepts and therapeutic potential.J Hepatol2020;73:664-79

[73]

Wu C,He J.Interplay of m6A and H3K27 trimethylation restrains inflammation during bacterial infection.Sci Adv2020;6:eaba0647 PMCID:PMC7438091

[74]

Berulava T,Elerdashvili V.Changes in m6A RNA methylation contribute to heart failure progression by modulating translation.Eur J Heart Fail2020;22:54-66

[75]

Weems JC,Olson AL.Class II histone deacetylases downregulate GLUT4 transcription in response to increased cAMP signaling in cultured adipocytes and fasting mice.Diabetes2012;61:1404-14 PMCID:PMC3357296

[76]

Chen YG,Ahmad S.N6-Methyladenosine Modification Controls Circular RNA Immunity.Mol Cell2019;76:96-109.e9 PMCID:PMC6778039

[77]

Van Haute L,McCann BJ.NSUN2 introduces 5-methylcytosines in mammalian mitochondrial tRNAs.Nucleic Acids Res2019;47:8720-33 PMCID:PMC6822013

[78]

Cui L,Cai J.RNA modifications: importance in immune cell biology and related diseases.Signal Transduct Target Ther2022;7:334 PMCID:PMC9499983

[79]

Chen H,Zhu X.m5C modification of mRNA serves a DNA damage code to promote homologous recombination.Nat Commun2020;11:2834 PMCID:PMC7275041

[80]

Antonicka H,Lin ZY,Kleinman CL.A pseudouridine synthase module is essential for mitochondrial protein synthesis and cell viability.EMBO Rep2017;18:28-38 PMCID:PMC5210091

[81]

Hermon SJ,Becker S.Quantitative detection of pseudouridine in RNA by mass spectrometry.Sci Rep2024;14:27564 PMCID:PMC11555313

[82]

Goh YT,Sim DY,Goh WSS.METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-mRNA splicing.Nucleic Acids Res2020;48:9250-61 PMCID:PMC7498333

[83]

Liu D,He Y.The roles of CircRNAs in mitochondria.J Cancer2024;15:2759-69 PMCID:PMC10988319

[84]

Zheng L,He X.METTL4-mediated mitochondrial DNA N6-methyldeoxyadenosine promoting macrophage inflammation and atherosclerosis.Circulation2025;151:946-65

[85]

Li Y,Chen Z.Protopanaxadiol ameliorates NAFLD by regulating hepatocyte lipid metabolism through AMPK/SIRT1 signaling pathway.Biomed Pharmacother2023;160:114319

[86]

Ohshiro T,Asai A.Single-molecule RNA sequencing for simultaneous detection of m6A and 5mC.Sci Rep2021;11:19304 PMCID:PMC8481274

[87]

Shah P,Niemczyk M,Plotkin JB.Rate-limiting steps in yeast protein translation.Cell2013;153:1589-601 PMCID:PMC3694300

[88]

Gan XT,Huang CX,Purdham DM.Identification of fat mass and obesity associated (FTO) protein expression in cardiomyocytes: regulation by leptin and its contribution to leptin-induced hypertrophy.PLoS One2013;8:e74235 PMCID:PMC3760875

[89]

Su R,Li C.R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling.Cell2018;172:90-105.e23 PMCID:PMC5766423

[90]

Burghardt KJ,Dolinoy DC.DNA methylation, insulin resistance and second-generation antipsychotics in bipolar disorder.Epigenomics2015;7:343-52 PMCID:PMC4501018

[91]

Pitt B,Ponikowski P.Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial.Eur Heart J2013;34:2453-63 PMCID:PMC3743070

[92]

Saucedo R,Gutierrez C.Gene variants in the FTO gene are associated with adiponectin and TNF-alpha levels in gestational diabetes mellitus.Diabetol Metab Syndr2017;9:32 PMCID:PMC5427601

[93]

Gu C,Zhou N.Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N6-methyladenosine of Notch1.Mol Cancer2019;18:168 PMCID:PMC6876123

[94]

Fang L,Li G.CIGAR-seq, a CRISPR/Cas-based method for unbiased screening of novel mRNA modification regulators.Mol Syst Biol2020;16:e10025

[95]

Xu Z,Qin Y.Emerging roles and mechanism of m6A methylation in cardiometabolic diseases.Cells2022;11:1101 PMCID:PMC8997388

[96]

Liu C,Liu Y.The role of metabolic reprogramming in pancreatic cancer chemoresistance.Front Pharmacol2022;13:1108776 PMCID:PMC9868425

[97]

Deng LJ,Fan SR.m6A modification: recent advances, anticancer targeted drug discovery and beyond.Mol Cancer2022;21:52 PMCID:PMC8842557

[98]

Schwartz S,Mumbach MR.Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA.Cell2014;159:148-62 PMCID:PMC4180118

[99]

Azubel M,Malola S.Nanoparticle imaging. Electron microscopy of gold nanoparticles at atomic resolution.Science2014;345:909-12 PMCID:PMC4315941

[100]

Glazer AM,Shaffer CM.Arrhythmia variant associations and reclassifications in the eMERGE-III sequencing study.Circulation2022;145:877-91 PMCID:PMC8940719

[101]

Jiang L,Zhan X.Advance in circular RNA modulation effects of heart failure.Gene2020;763:100036 PMCID:PMC7412861

[102]

Chen LY,Ren YX.The circular RNA circ-ERBIN promotes growth and metastasis of colorectal cancer by miR-125a-5p and miR-138-5p/4EBP-1 mediated cap-independent HIF-1α translation.Mol Cancer2020;19:164 PMCID:PMC7682012

[103]

Mills RE,Stewart C.Mapping copy number variation by population-scale genome sequencing.Nature2011;470:59-65

[104]

Chen X,Wang X.m6A binding protein YTHDF2 in cancer.Exp Hematol Oncol2022;11:21 PMCID:PMC8981655

[105]

Guermah M,Tackett AJ,Roeder RG.Synergistic functions of SII and p300 in productive activator-dependent transcription of chromatin templates.Cell2006;125:275-86

[106]

Shi H,He C.Where, When, and How: context-dependent functions of RNA methylation writers, readers, and erasers.Mol Cell2019;74:640-50 PMCID:PMC6527355

[107]

Zawistowski JS,Goulet DR.Enhancer remodeling during adaptive bypass to MEK inhibition is attenuated by pharmacologic targeting of the P-TEFb complex.Cancer Discov2017;7:302-21

[108]

Fang F,Jing M.C646 modulates inflammatory response and antibacterial activity of macrophage.Int Immunopharmacol2019;74:105736

[109]

Ma F,Ding MG,Xie YC.LncRNA NEAT1 interacted with DNMT1 to regulate malignant phenotype of cancer cell and cytotoxic T cell infiltration via epigenetic inhibition of p53, cGAS, and STING in lung cancer.Front Genet2020;11:250 PMCID:PMC7136539

[110]

Fierro C,La Banca V.The long non-coding RNA NEAT1 is a ΔNp63 target gene modulating epidermal differentiation.Nat Commun2023;14:3795 PMCID:PMC10293300

[111]

Hirose T,Nakagawa S.Molecular anatomy of the architectural NEAT1 noncoding RNA: the domains, interactors, and biogenesis pathway required to build phase-separated nuclear paraspeckles.Wiley Interdiscip Rev RNA2019;10:e1545

[112]

Dukatz M,Stahl E.DNA methyltransferase DNMT3A forms interaction networks with the CpG site and flanking sequence elements for efficient methylation.J Biol Chem2022;298:102462 PMCID:PMC9530848

[113]

Skeparnias I.Structural basis of NEAT1 lncRNA maturation and menRNA instability.Nat Struct Mol Biol2024;31:1650-4

[114]

Jacq A,Guillen S.Direct RNA-RNA interaction between Neat1 and RNA targets, as a mechanism for RNAs paraspeckle retention.RNA Biol2021;18:2016-27 PMCID:PMC8583173

[115]

Yamazaki T,Chujo T.Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation.Mol Cell2018;70:1038-53.e7

[116]

Chen ZX,Hsieh CL,Chédin F.Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family.J Cell Biochem2005;95:902-17

[117]

Naveed A,Li R.NEAT1 polyA-modulating antisense oligonucleotides reveal opposing functions for both long non-coding RNA isoforms in neuroblastoma.Cell Mol Life Sci2021;78:2213-30 PMCID:PMC11073103

[118]

Gu T,Cullen SM.DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells.Genome Biol2018;19:88 PMCID:PMC6042404

[119]

Dong P,Yue J.Long non-coding RNA NEAT1: a novel target for diagnosis and therapy in human tumors.Front Genet2018;9:471 PMCID:PMC6196292

[120]

Jiang L,Wu QJ.NEAT1 scaffolds RNA-binding proteins and the Microprocessor to globally enhance pri-miRNA processing.Nat Struct Mol Biol2017;24:816-24

[121]

Kotini AG,Agalioti T.Dnmt3a1 upregulates transcription of distinct genes and targets chromosomal gene clusters for epigenetic silencing in mouse embryonic stem cells.Mol Cell Biol2011;31:1577-92 PMCID:PMC3135298

[122]

Wang Z,Zhao Y.NEAT1 modulates herpes simplex virus-1 replication by regulating viral gene transcription.Cell Mol Life Sci2017;74:1117-31 PMCID:PMC5309293

[123]

Smith AM,Shinawi M.Functional and epigenetic phenotypes of humans and mice with DNMT3A overgrowth syndrome.Nat Commun2021;12:4549 PMCID:PMC8316576

[124]

Bosselut R.Control of intra-thymic αβ T cell selection and maturation by H3K27 methylation and demethylation.Front Immunol2019;10:688 PMCID:PMC6456692

[125]

Bayliak M,Lushchak V.Growth on alpha-ketoglutarate increases oxidative stress resistance in the yeast saccharomyces cerevisiae.Int J Microbiol2017;2017:5792192 PMCID:PMC5244014

[126]

Lin AP,Kim SW.D2HGDH regulates alpha-ketoglutarate levels and dioxygenase function by modulating IDH2.Nat Commun2015;6:7768 PMCID:PMC4515030

[127]

Xu C,Fozouni P.SIRT1 is downregulated by autophagy in senescence and ageing.Nat Cell Biol2020;22:1170-9 PMCID:PMC7805578

[128]

Wangpaichitr M,Li YY.Exploiting ROS and metabolic differences to kill cisplatin resistant lung cancer.Oncotarget2017;8:49275-92 PMCID:PMC5564767

[129]

Afanas'ev I.New nucleophilic mechanisms of ros-dependent epigenetic modifications: comparison of aging and cancer.Aging Dis2014;5:52-62 PMCID:PMC3901614

[130]

Chatterjee S,Chakraborty P.CD38-NAD+Axis regulates immunotherapeutic anti-tumor T cell response.Cell Metab2018;27:85-100.e8 PMCID:PMC5837048

[131]

Jiménez-Loygorri JI,Viedma-Poyatos Á.Mitophagy curtails cytosolic mtDNA-dependent activation of cGAS/STING inflammation during aging.Nat Commun2024;15:830

[132]

Liu J,Hu W.Parkinson's disease-associated protein Parkin: an unusual player in cancer.Cancer Commun2018;38:40 PMCID:PMC6020249

[133]

Jiang X,Nie Z.The role of m6A modification in the biological functions and diseases.Signal Transduct Target Ther2021;6:74 PMCID:PMC7897327

[134]

Harbauer AB,Wanderoy S.Neuronal mitochondria transport Pink1 mRNA via synaptojanin 2 to support local mitophagy.Neuron2022;110:1516-31.e9 PMCID:PMC9081165

[135]

Agirre X,Vázquez I.Abnormal methylation of the common PARK2 and PACRG promoter is associated with downregulation of gene expression in acute lymphoblastic leukemia and chronic myeloid leukemia.Int J Cancer2006;118:1945-53

[136]

Kietzmann T,Shvetsova A,Görlach A.The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system.Br J Pharmacol2017;174:1533-54

[137]

Lee Y,Park OH.Molecular mechanisms driving mRNA degradation by m6A modification.Trends Genet2020;36:177-88

[138]

Sun Y,Hu S.METTL3 promotes chemoresistance in small cell lung cancer by inducing mitophagy.J Exp Clin Cancer Res2023;42:65 PMCID:PMC10022264

[139]

Wang X,Gomez A.N6-methyladenosine-dependent regulation of messenger RNA stability.Nature2014;505:117-20 PMCID:PMC3877715

[140]

Dorn LE,Chen J.The N6-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy.Circulation2019;139:533-45

[141]

Kmietczyk V,Kalinski L.m6A-mRNA methylation regulates cardiac gene expression and cellular growth.Life Sci Alliance2019;2:e201800233 PMCID:PMC6458851

[142]

Mathiyalagan P,Mayourian J.FTO-dependent N6-methyladenosine regulates cardiac function during remodeling and repair.Circulation2019;139:518-32

[143]

Donato E,Sabò A.Compensatory RNA polymerase 2 loading determines the efficacy and transcriptional selectivity of JQ1 in Myc-driven tumors.Leukemia2017;31:479-90 PMCID:PMC5310924

[144]

Mu J,Tian Y,Zou MH.BRD4 inhibition by JQ1 prevents high-fat diet-induced diabetic cardiomyopathy by activating PINK1/Parkin-mediated mitophagy in vivo.J Mol Cell Cardiol2020;149:1-14 PMCID:PMC7736123

[145]

Wang JY,Qiang P.The potential role of N6-methyladenosine (m6A) demethylase fat mass and obesity-associated gene (FTO) in human cancers.Onco Targets Ther2020;13:12845-56

[146]

Elkashef SM,Myers J.IDH mutation, competitive inhibition of FTO, and RNA methylation.Cancer Cell2017;31:619-20 PMCID:PMC5506849

[147]

Shaaban Z,Amiri-Yekta A,Tamadon A.Pathophysiologic mechanisms of obesity- and chronic inflammation-related genes in etiology of polycystic ovary syndrome.Iran J Basic Med Sci2019;22:1378-86 PMCID:PMC7043875

[148]

Kanemaru K,Muraro D.Spatially resolved multiomics of human cardiac niches.Nature2023;619:801-10 PMCID:PMC10371870

[149]

Riahi R,Long M.Mapping photothermally induced gene expression in living cells and tissues by nanorod-locked nucleic acid complexes.ACS Nano2014;8:3597-605 PMCID:PMC4004321

[150]

Kuppe C,Li Z.Spatial multi-omic map of human myocardial infarction.Nature2022;608:766-77

[151]

Yamada S,Hatsuse S.Spatiotemporal transcriptome analysis reveals critical roles for mechano-sensing genes at the border zone in remodeling after myocardial infarction.Nat Cardiovasc Res2022;1:1072-83 PMCID:PMC11358009

[152]

Longenecker JZ,Golubeva VA,Accornero F.Epitranscriptomics in the heart: a focus on m6A.Curr Heart Fail Rep2020;17:205-12 PMCID:PMC7486268

[153]

Lee AC,Choi A.Spatial epitranscriptomics reveals A-to-I editome specific to cancer stem cell microniches.Nat Commun2022;13:2540 PMCID:PMC9085828

[154]

Palmer JA,Teichmann SA.Revisiting cardiac biology in the era of single cell and spatial omics.Circ Res2024;134:1681-702 PMCID:PMC11149945

[155]

Duan Q,Anand P.BET bromodomain inhibition suppresses innate inflammatory and profibrotic transcriptional networks in heart failure.Sci Transl Med2017;9:eaah5084

[156]

Mills RJ,Fortuna PRJ.BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection.Cell2021;184:2167-82.e22

[157]

Abdellatif M,Kroemer G.NAD+ metabolism in cardiac health, aging, and disease.Circulation2021;144:1795-817

[158]

Lauritzen KH,Ahmed MS.Instability in NAD+ metabolism leads to impaired cardiac mitochondrial function and communication.Elife2021;10:e59828

[159]

Lu TM,Chen YC.Downregulation of Sirt1 as aging change in advanced heart failure.J Biomed Sci2014;21:57 PMCID:PMC4113120

[160]

Costantino S,Velagapudi S.Treatment with recombinant Sirt1 rewires the cardiac lipidome and rescues diabetes-related metabolic cardiomyopathy.Cardiovasc Diabetol2023;22:312 PMCID:PMC10644415

[161]

Amorim S,Gleeson M.Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma: a dose-escalation, open-label, pharmacokinetic, phase 1 study.Lancet Haematol2016;3:e196-204

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/