Metabolic alterations in human hypertrophic cardiomyopathy

Edgar E. Nollet , Vasco Sequeira , Christoph Maack , Julien Ochala , Jolanda van der Velden

The Journal of Cardiovascular Aging ›› 2025, Vol. 5 ›› Issue (2) : 11

PDF
The Journal of Cardiovascular Aging ›› 2025, Vol. 5 ›› Issue (2) :11 DOI: 10.20517/jca.2025.04
Review

Metabolic alterations in human hypertrophic cardiomyopathy

Author information +
History +
PDF

Abstract

Hypertrophic cardiomyopathy (HCM) is a highly common cardiomyopathy and is characterized by left ventricular hypertrophy and diastolic dysfunction. In half of the cases, HCM is associated with mutations in genes encoding sarcomere proteins, while the remaining cases occur without identifiable genetic mutations. Disrupted bioenergetic homeostasis has increasingly been recognized as a key feature of HCM pathophysiology. In this review, we summarize and critically evaluate studies addressing cardiometabolic alterations in HCM, with a particular focus on human-based research. These include non-invasive imaging studies, blood-based analyses, and molecular and functional assays of myocardial tissue. We also explore the therapeutic potential of targeting metabolic pathways in HCM and highlight promising directions for future studies.

Keywords

Hypertrophic cardiomyopathy / cardiac metabolism / mitochondrial function / metabolic therapy

Cite this article

Download citation ▾
Edgar E. Nollet, Vasco Sequeira, Christoph Maack, Julien Ochala, Jolanda van der Velden. Metabolic alterations in human hypertrophic cardiomyopathy. The Journal of Cardiovascular Aging, 2025, 5(2): 11 DOI:10.20517/jca.2025.04

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Semsarian C,Maron MS.New perspectives on the prevalence of hypertrophic cardiomyopathy.J Am Coll Cardiol2015;65:1249-54

[2]

Ommen SR,Burke MA.2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines.J Am Coll Cardiol2020;76:e159-240

[3]

Maron BJ.Clinical course and management of hypertrophic cardiomyopathy.N Engl J Med2018;379:655-68

[4]

Guigui SA,Escolar E.Systolic anterior motion of the mitral valve in hypertrophic cardiomyopathy: a narrative review.J Thorac Dis2022;14:2309-25 PMCID:PMC9264047

[5]

Veselka J,Charron P.Hypertrophic obstructive cardiomyopathy.Lancet2017;389:1253-67

[6]

Ho CY,Richard P,Van Spaendonck-Zwarts KY.Genetic advances in sarcomeric cardiomyopathies: state of the art.Cardiovasc Res2015;105:397-408 PMCID:PMC4349164

[7]

Watkins H,Redwood C.Inherited cardiomyopathies.N Engl J Med2011;364:1643-56

[8]

Ingles J,Barratt A.Application of genetic testing in hypertrophic cardiomyopathy for preclinical disease detection.Circ Cardiovasc Genet2015;8:852-9

[9]

Maron BJ.Hypertrophic cardiomyopathy.Lancet2013;381:242-55

[10]

Neubauer S,Ho CY.HCMR InvestigatorsDistinct subgroups in hypertrophic cardiomyopathy in the NHLBI HCM registry.J Am Coll Cardiol2019;74:2333-45

[11]

Watkins H.Time to think differently about sarcomere-negative hypertrophic cardiomyopathy.Circulation2021;143:2415-7

[12]

Chung H,Min P.Different contribution of sarcomere and mitochondria related gene mutations to hypertrophic cardiomyopathy.J Am Coll Cardiol2018;71:A901

[13]

Wijnker PJM,Kuster DWD.Hypertrophic cardiomyopathy: a vicious cycle triggered by sarcomere mutations and secondary disease hits.Antioxid Redox Signal2019;31:318-58 PMCID:PMC6602117

[14]

Sequeira V,Maack C.Energetic drain driving hypertrophic cardiomyopathy.FEBS Lett2019;593:1616-26

[15]

Morimoto S,Minakami R.Ca2+-sensitizing effects of the mutations at Ile-79 and Arg-92 of troponin T in hypertrophic cardiomyopathy.Am J Physiol1998;275:C200-7

[16]

van Dijk SJ,Najafi A.Contractile dysfunction irrespective of the mutant protein in human hypertrophic cardiomyopathy with normal systolic function.Circ Heart Fail2012;5:36-46

[17]

Fraysse B,Bardswell SC.Increased myofilament Ca2+ sensitivity and diastolic dysfunction as early consequences of Mybpc3 mutation in heterozygous knock-in mice.J Mol Cell Cardiol2012;52:1299-307 PMCID:PMC3370652

[18]

Sequeira V,Nijenkamp LL.Perturbed length-dependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations.Circ Res2013;112:1491-505

[19]

Schuldt M,He H.Mutation location of HCM-causing troponin T mutations defines the degree of myofilament dysfunction in human cardiomyocytes.J Mol Cell Cardiol2021;150:77-90 PMCID:PMC10616699

[20]

Koda M,Okada H.Nuclear hypertrophy reflects increased biosynthetic activities in myocytes of human hypertrophic hearts.Circ J2006;70:710-8

[21]

Nollet EE,Sequeira V.Integrating clinical phenotype with multiomics analyses of human cardiac tissue unveils divergent metabolic remodeling in genotype-positive and genotype-negative patients with hypertrophic cardiomyopathy.Circ Genom Precis Med2024;17:e004369 PMCID:PMC11188634

[22]

Szyguła-Jurkiewicz B,Osadnik T.Oxidative stress markers in hypertrophic cardiomyopathy.Medicina (Kaunas)2021;58:31 PMCID:PMC8781272

[23]

Stathopoulou K,Heidler J.S-glutathiolation impairs phosphoregulation and function of cardiac myosin-binding protein C in human heart failure.FASEB J2016;30:1849-64

[24]

Wilder T,Wieczorek DF,Solaro RJ.N-acetylcysteine reverses diastolic dysfunction and hypertrophy in familial hypertrophic cardiomyopathy.Am J Physiol Heart Circ Physiol2015;309:H1720-30 PMCID:PMC4666985

[25]

Crilley JG,Blair E.Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy.J Am Coll Cardiol2003;41:1776-82

[26]

Sequeira V,McConnell M.Synergistic role of ADP and Ca2+ in diastolic myocardial stiffness.J Physiol2015;593:3899-916

[27]

McNamara JW,Lal S.MYBPC3 mutations are associated with a reduced super-relaxed state in patients with hypertrophic cardiomyopathy.PLoS One2017;12:e0180064 PMCID:PMC5489194

[28]

Toepfer CN,Venturini G.Myosin sequestration regulates sarcomere function, cardiomyocyte energetics, and metabolism, informing the pathogenesis of hypertrophic cardiomyopathy.Circulation2020;141:828-42

[29]

McNamara JW,Dos Remedios CG.The role of super-relaxed myosin in skeletal and cardiac muscle.Biophys Rev2015;7:5-14 PMCID:PMC5425749

[30]

Vander Roest AS,Morck MM.Hypertrophic cardiomyopathy β-cardiac myosin mutation (P710R) leads to hypercontractility by disrupting super relaxed state.Proc Natl Acad Sci U S A2021;118:e2025030118

[31]

Anderson RL,Sarkar SS.Deciphering the super relaxed state of human β-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers.Proc Natl Acad Sci U S A2018;115:E8143-52 PMCID:PMC6126717

[32]

Stewart MA,Chen S.Myosin ATP turnover rate is a mechanism involved in thermogenesis in resting skeletal muscle fibers.Proc Natl Acad Sci U S A2010;107:430-5 PMCID:PMC2806748

[33]

Landim-Vieira M,Song T.Cardiac troponin T N-domain variant destabilizes the actin interface resulting in disturbed myofilament function.Proc Natl Acad Sci U S A2023;120:e2221244120 PMCID:PMC10265946

[34]

Sequeira V,Reil GH.Exploring the connection between relaxed myosin states and the anrep effect.Circ Res2024;134:117-34

[35]

Witjas-Paalberends ER,Germans T.Gene-specific increase in the energetic cost of contraction in hypertrophic cardiomyopathy caused by thick filament mutations.Cardiovasc Res2014;103:248-57

[36]

Witjas-Paalberends ER,Stam K.Mutations in MYH7 reduce the force generating capacity of sarcomeres in human familial hypertrophic cardiomyopathy.Cardiovasc Res2013;99:432-41

[37]

Piroddi N,Ferrara C.The homozygous K280N troponin T mutation alters cross-bridge kinetics and energetics in human HCM.J Gen Physiol2019;151:18-29 PMCID:PMC6314385

[38]

Güçlü A,Harms HJ.Disease stage-dependent changes in cardiac contractile performance and oxygen utilization underlie reduced myocardial efficiency in human inherited hypertrophic cardiomyopathy.Circ Cardiovasc Imaging2017;10:e005604

[39]

Parbhudayal RY,Michels M,Germans T.Increased myocardial oxygen consumption precedes contractile dysfunction in hypertrophic cardiomyopathy caused by pathogenic TNNT2 gene variants.J Am Heart Assoc2020;9:e015316 PMCID:PMC7428531

[40]

Timmer SA,Brouwer WP.Carriers of the hypertrophic cardiomyopathy MYBPC3 mutation are characterized by reduced myocardial efficiency in the absence of hypertrophy and microvascular dysfunction.Eur J Heart Fail2011;13:1283-9

[41]

Schulz H.Regulation of fatty acid oxidation in heart.J Nutr1994;124:165-71

[42]

Stanley WC,Lopaschuk GD.Myocardial substrate metabolism in the normal and failing heart.Physiol Rev2005;85:1093-129

[43]

Hue L.The Randle cycle revisited: a new head for an old hat.Am J Physiol Endocrinol Metab2009;297:E578-91 PMCID:PMC2739696

[44]

Allard MF,Henning SL,Lopaschuk GD.Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts.Am J Physiol1994;267:H742-50

[45]

Gnaiger E.Mitochondrial pathways and respiratory control: an introduction to OXPHOS analysis. 5th ed. Bioenergetics communications; 2020.2.

[46]

Weiss RG,Bottomley PA.ATP flux through creatine kinase in the normal, stressed, and failing human heart.Proc Natl Acad Sci U S A2005;102:808-13 PMCID:PMC545546

[47]

Cortassa S,Marbán E,O’Rourke B.An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics.Biophys J2003;84:2734-55 PMCID:PMC1201507

[48]

Bertero E.Calcium signaling and reactive oxygen species in mitochondria.Circ Res2018;122:1460-78

[49]

Griffiths EJ.Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells.Biochim Biophys Acta2009;1787:1324-33

[50]

Grover-McKay M,Krivokapich J,Phelps ME.Regional myocardial blood flow and metabolism at rest in mildly symptomatic patients with hypertrophic cardiomyopathy.J Am Coll Cardiol1989;13:317-24

[51]

Shimonagata T,Uehara T.Discrepancies between myocardial perfusion and free fatty acid metabolism in patients with hypertrophic cardiomyopathy.Nucl Med Commun1993;14:1005-13

[52]

Chen SL,Morozumi T,Kusuoka H.Myocardial metabolism of 123I-BMIPP in patients with hypertrophic cardiomyopathy: assessment by radial long-axis SPET.Nucl Med Commun1995;16:336-43

[53]

Nishimura T,Uehara T.Prognosis of hypertrophic cardiomyopathy: assessment by 123I-BMIPP (beta-methyl-p-(123I)iodophenyl pentadecanoic acid) myocardial single photon emission computed tomography.Ann Nucl Med1996;10:71-8

[54]

Matsuo S,Takahashi M,Kinoshita M.Myocardial metabolic abnormalities in hypertrophic cardiomyopathy assessed by iodine-123-labeled beta-methyl-branched fatty acid myocardial scintigraphy and its relation to exercise-induced ischemia.Jpn Circ J1998;62:167-72

[55]

Tadamura E,Hattori N.Impairment of BMIPP uptake precedes abnormalities in oxygen and glucose metabolism in hypertrophic cardiomyopathy.J Nucl Med1998;39:390-6Available from: https://jnm.snmjournals.org/content/jnumed/39/3/390.full.pdf [accessed 10 June 2025]

[56]

Ohtsuki K,Kuribayashi T.Impairment of BMIPP accumulation at junction of ventricular septum and left and right ventricular free walls in hypertrophic cardiomyopathy.J Nucl Med1999;40:2007-13Available from: https://jnm.snmjournals.org/content/jnumed/40/12/2007.full.pdf [accessed 10 June 2025]

[57]

Shimizu M,Okeie K.Cardiac dysfunction and long-term prognosis in patients with nonobstructive hypertrophic cardiomyopathy and abnormal 123I-15- (p-Iodophenyl)-3(R,S)-methylpentadecanoic acid myocardial scintigraphy.Cardiology2000;93:43-9

[58]

Ishida Y,Uehara T.Clinical analysis of myocardial perfusion and metabolism in patients with hypertrophic cardiomyopathy by single photon emission tomography and positron emission tomography.J Cardiol2001;37 Suppl 1:121-8

[59]

Takeda T,Fumikura Y.Enhanced washout of 99mTc-tetrofosmin in hypertrophic cardiomyopathy: quantitative comparisons with regional 123I-BMIPP uptake and wall thickness determined by MRI.Eur J Nucl Med Mol Imaging2003;30:966-73

[60]

Zhao C,Okizaki A.Comparison of myocardial fatty acid metabolism with left ventricular function and perfusion in cardiomyopathies: by 123I-BMIPP SPECT and 99mTc-tetrofosmin electrocardiographically gated SPECT.Ann Nucl Med2003;17:541-8

[61]

Narita M.Is I-123-beta-methyl-p-iodophenyl-methylpentadecanoic acid imaging useful to evaluate asymptomatic patients with hypertrophic cardiomyopathy?.Int J Cardiovasc Imaging2003;19:499-510

[62]

Goodman MM,Knapp FF Jr.Synthesis and evaluation of radioiodinated terminal p-iodophenyl-substituted alpha- and beta-methyl-branched fatty acids.J Med Chem1984;27:390-7

[63]

Knapp FF Jr,Goodman MM.New radioiodinated methyl-branched fatty acids for cardiac studies.Eur J Nucl Med1986;12 Suppl:S39-44

[64]

Sai E,Yokoyama T.Myocardial triglyceride content in patients with left ventricular hypertrophy: comparison between hypertensive heart disease and hypertrophic cardiomyopathy.Heart Vessels2017;32:166-74

[65]

Nollet EE,Rozenbaum A.Mitochondrial dysfunction in human hypertrophic cardiomyopathy is linked to cardiomyocyte architecture disruption and corrected by improving NADH-driven mitochondrial respiration.Eur Heart J2023;44:1170-85 PMCID:PMC10067466

[66]

Tuunanen H,Toikka J.Myocardial perfusion, oxidative metabolism, and free fatty acid uptake in patients with hypertrophic cardiomyopathy attributable to the Asp175Asn mutation in the alpha-tropomyosin gene: a positron emission tomography study.J Nucl Cardiol2007;14:354-65

[67]

Bertero E.Metabolic remodelling in heart failure.Nat Rev Cardiol2018;15:457-70

[68]

Coats CJ,Virasami A.Proteomic analysis of the myocardium in hypertrophic obstructive cardiomyopathy.Circ Genom Precis Med2018;11:e001974

[69]

Schuldt M,Harakalova M.Proteomic and functional studies reveal detyrosinated tubulin as treatment target in sarcomere mutation-induced hypertrophic cardiomyopathy.Circ Heart Fail2021;14:e007022 PMCID:PMC7819533

[70]

Previs MJ,Morley MP.Defects in the proteome and metabolome in human hypertrophic cardiomyopathy.Circ Heart Fail2022;15:e009521 PMCID:PMC9708114

[71]

Wang W,Yao K.Metabolic characterization of hypertrophic cardiomyopathy in human heart.Nat Cardiovasc Res2022;1:445-61

[72]

Ranjbarvaziri S,Ellenberger M.Altered cardiac energetics and mitochondrial dysfunction in hypertrophic cardiomyopathy.Circulation2021;144:1714-31

[73]

Luiken JJ,Nabben M,Glatz JF.Post-translational modifications of CD36 (SR-B2): Implications for regulation of myocellular fatty acid uptake.Biochim Biophys Acta2016;1862:2253-8

[74]

Nienaber CA,Mody FV.Regional myocardial blood flow and glucose utilization in symptomatic patients with hypertrophic cardiomyopathy.Circulation1993;87:1580-90

[75]

Perrone-Filardi P,Dilsizian V,Maurea S.Regional systolic function, myocardial blood flow and glucose uptake at rest in hypertrophic cardiomyopathy.Am J Cardiol1993;72:199-204

[76]

Tadamura E,Matsumori A. Myocardial metabolic changes in hypertrophic cardiomyopathy. J Nucl Med 1996;37:572-7. Available from https://www.proquest.com/openview/ecb3bf2940477270f6d138ccae7f5b0a/1?pq-origsite=gscholar&cbl=40808 [accessed 10 June 2025].

[77]

Ishiwata S,Senda M,Nishiyama S.Myocardial blood flow and metabolism in patients with hypertrophic cardiomyopathy--a study with carbon-11 acetate and positron emission tomography.Jpn Circ J1997;61:201-10

[78]

Uehara T,Hayashida K.Myocardial glucose metabolism in patients with hypertrophic cardiomyopathy: assessment by F-18-FDG PET study.Ann Nucl Med1998;12:95-103

[79]

Aoyama R,Kobayashi Y.Evaluation of myocardial glucose metabolism in hypertrophic cardiomyopathy using 18F-fluorodeoxyglucose positron emission tomography.PLoS One2017;12:e0188479 PMCID:PMC5703458

[80]

Ritterhoff J,Villet O.Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis.Circ Res2020;126:182-96 PMCID:PMC8448129

[81]

Ritterhoff J.Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges.Nat Rev Cardiol2023;20:812-29

[82]

Murashige D,Neinast M.Comprehensive quantification of fuel use by the failing and nonfailing human heart.Science2020;370:364-8 PMCID:PMC7871704

[83]

Wilmshurst PT,Juul SM,Webb-Peploe MM.Effects of verapamil on haemodynamic function and myocardial metabolism in patients with hypertrophic cardiomyopathy.Br Heart J1986;56:544-53 PMCID:PMC1216402

[84]

Cannon RO III,Maron BJ.Differences in coronary flow and myocardial metabolism at rest and during pacing between patients with obstructive and patients with nonobstructive hypertrophic cardiomyopathy.J Am Coll Cardiol1987;10:53-62

[85]

Thompson DS,Juul SM.Effects of propranolol on myocardial oxygen consumption, substrate extraction, and haemodynamics in hypertrophic obstructive cardiomyopathy.Br Heart J1980;44:488-98

[86]

Cannon RO III,Schenke WH,Bonow RO.Effect of surgical reduction of left ventricular outflow obstruction on hemodynamics, coronary flow, and myocardial metabolism in hypertrophic cardiomyopathy.Circulation1989;79:766-75

[87]

Unno K,Izawa H.Relation of functional and morphological changes in mitochondria to myocardial contractile and relaxation reserves in asymptomatic to mildly symptomatic patients with hypertrophic cardiomyopathy.Eur Heart J2009;30:1853-62

[88]

Arad M,Perez-Atayde AR.Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy.J Clin Invest2002;109:357-62

[89]

Paternostro G,Gnecchi-Ruscone T,Camici PG.Insulin resistance in patients with cardiac hypertrophy.Cardiovasc Res1999;42:246-53

[90]

Algül S,Manders E.EGFR/IGF1R signaling modulates relaxation in hypertrophic cardiomyopathy.Circ Res2023;133:387-99

[91]

Karwi QG,Ho KL.Loss of metabolic flexibility in the failing heart.Front Cardiovasc Med2018;5:68 PMCID:PMC5997788

[92]

Jørgenrud B,Heliö T.The metabolome in finnish carriers of the MYBPC3-Q1061X mutation for hypertrophic cardiomyopathy.PLoS One2015;10:e0134184 PMCID:PMC4534205

[93]

Schuldt M,Algül S.Distinct metabolomic signatures in preclinical and obstructive hypertrophic cardiomyopathy.Cells2021;10:2950 PMCID:PMC8616419

[94]

Jansen M,van Driel BO.Untargeted metabolomics identifies potential hypertrophic cardiomyopathy biomarkers in carriers of MYBPC3 founder variants.Int J Mol Sci2023;24:4031 PMCID:PMC9961357

[95]

Jansen M,Jans JJM.Circulating acylcarnitines associated with hypertrophic cardiomyopathy severity: an exploratory cross-sectional study in MYBPC3 founder variant carriers.J Cardiovasc Transl Res2023;16:1267-75

[96]

Deidda M,Pasqualucci D.The Echocardiographic parameters of systolic function are associated with specific metabolomic fingerprints in obstructive and non-obstructive hypertrophic cardiomyopathy.Metabolites2021;11:787 PMCID:PMC8620364

[97]

Wolter NL,Chin MT.Plasma metabolomic profiling of hypertrophic cardiomyopathy patients before and after surgical myectomy suggests postoperative improvement in metabolic function.BMC Cardiovasc Disord2021;21:617 PMCID:PMC8714427

[98]

Zhang K,Wang S,Cui H.The abnormalities of free fatty acid metabolism in patients with hypertrophic cardiomyopathy, a single-center retrospective observational study.BMC Cardiovasc Disord2024;24:312 PMCID:PMC11188237

[99]

Bae H,Jang C.Metabolic flux between organs measured by arteriovenous metabolite gradients.Exp Mol Med2022;54:1354-66 PMCID:PMC9534916

[100]

Voros G,Garweg C.Increased cardiac uptake of ketone bodies and free fatty acids in human heart failure and hypertrophic left ventricular remodeling.Circ Heart Fail2018;11:e004953

[101]

Pal N,Ament Z.Metabolic profiling of aortic stenosis and hypertrophic cardiomyopathy identifies mechanistic contrasts in substrate utilization.FASEB J2024;38:e23505

[102]

Bedi KC Jr,Brandimarto J.Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure.Circulation2016;133:706-16 PMCID:PMC4779339

[103]

Aubert G,Horton JL.The failing heart relies on ketone bodies as a fuel.Circulation2016;133:698-705 PMCID:PMC4766035

[104]

Roos A,Luyten PR,van der Wall EE.Cardiac metabolism in patients with dilated and hypertrophic cardiomyopathy: assessment with proton-decoupled P-31 MR spectroscopy.J Magn Reson Imaging1992;2:711-9

[105]

Sieverding L,Breuer J.Proton-decoupled myocardial 31P NMR spectroscopy reveals decreased PCr/Pi in patients with severe hypertrophic cardiomyopathy.Am J Cardiol1997;80:34A-40A

[106]

Jung WI,Breuer J.31P NMR spectroscopy detects metabolic abnormalities in asymptomatic patients with hypertrophic cardiomyopathy.Circulation1998;97:2536-42

[107]

Valkovič L,Schmid AI.Measuring inorganic phosphate and intracellular pH in the healthy and hypertrophic cardiomyopathy hearts by in vivo 7T 31P-cardiovascular magnetic resonance spectroscopy.J Cardiovasc Magn Reson2019;21:19 PMCID:PMC6419336

[108]

Dass S,Suttie JJ.Exacerbation of cardiac energetic impairment during exercise in hypertrophic cardiomyopathy: a potential mechanism for diastolic dysfunction.Eur Heart J2015;36:1547-54

[109]

Pesta D.High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. In: Palmeira CM, Moreno AJ, editors. Mitochondrial bioenergetics. Totowa: Humana Press; 2012. pp. 25-58.

[110]

Maron BJ,Henry WL.Differences in distribution of myocardial abnormalities in patients with obstructive and nonobstructive asymmetric septal hypertrophy (ASH): light and electron microscopic findings.Circulation1974;50:436-46

[111]

Maron BJ,Roberts WC.Ultrastructural features of degenerated cardiac muscle cells in patients with cardiac hypertrophy.Am J Pathol1975;79:387-434 PMCID:PMC1912738

[112]

Wilding JR,de Araujo C.Altered energy transfer from mitochondria to sarcoplasmic reticulum after cytoarchitectural perturbations in mice hearts.J Physiol2006;575:191-200 PMCID:PMC1819422

[113]

Ramaccini D,Aan FJ.Mitochondrial function and dysfunction in dilated cardiomyopathy.Front Cell Dev Biol2020;8:624216 PMCID:PMC7835522

[114]

Kohlhaas M,Parikh S.Mitochondrial reactive oxygen species cause arrhythmias in hypertrophic cardiomyopathy.bioRxiv2024;2024.10.02.616214

[115]

Paar V,Krombholz-Reindl P.Hypertrophic cardiomyopathy is characterized by alterations of the mitochondrial calcium uniporter complex proteins: insights from patients with aortic valve stenosis versus hypertrophic obstructive cardiomyopathy.Front Pharmacol2023;14:1264216 PMCID:PMC10703305

[116]

Pisano A,Perli E.Impaired mitochondrial biogenesis is a common feature to myocardial hypertrophy and end-stage ischemic heart failure.Cardiovasc Pathol2016;25:103-12

[117]

Hinton A Jr,Neikirk K.Mitochondrial structure and function in human heart failure.Circ Res2024;135:372-96 PMCID:PMC11225798

[118]

Kavantzas NG,Agapitos EV.Histological assessment of apoptotic cell death in cardiomyopathies.Pathology2000;32:176-80

[119]

Ikon N.Cardiolipin and mitochondrial cristae organization.Biochim Biophys Acta Biomembr2017;1859:1156-63 PMCID:PMC5426559

[120]

Meddeb M,Binek A.Myocardial ultrastructure of human heart failure with preserved ejection fraction.Nat Cardiovasc Res2024;3:907-14 PMCID:PMC11498130

[121]

Čunátová K,Puertas-Frias G.Mitochondrial translation is the primary determinant of secondary mitochondrial complex I deficiencies.iScience2024;27:110560 PMCID:PMC11342289

[122]

Smith CS,Schulman SP,Weiss RG.Altered creatine kinase adenosine triphosphate kinetics in failing hypertrophied human myocardium.Circulation2006;114:1151-8 PMCID:PMC1808438

[123]

Abraham MR,Dimaano VL.Creatine kinase adenosine triphosphate and phosphocreatine energy supply in a single kindred of patients with hypertrophic cardiomyopathy.Am J Cardiol2013;112:861-6 PMCID:PMC3759602

[124]

Mekhfi H,Mateo P,Rochette L.Creatine kinase is the main target of reactive oxygen species in cardiac myofibrils.Circ Res1996;78:1016-27

[125]

Lee L,Scheuermann-Freestone M.Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment.Circulation2005;112:3280-8

[126]

Kennedy JA,Horowitz JD.Inhibition of carnitine palmitoyltransferase-1 in rat heart and liver by perhexiline and amiodarone.Biochem Pharmacol1996;52:273-80

[127]

Abozguia K,McKenna W.Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy.Circulation2010;122:1562-9

[128]

Chrusciel P,Banach M.Defining the role of trimetazidine in the treatment of cardiovascular disorders: some insights on its role in heart failure and peripheral artery disease.Drugs2014;74:971-80 PMCID:PMC4061463

[129]

Coats CJ,Watkinson OT.Effect of trimetazidine dihydrochloride therapy on exercise capacity in patients with nonobstructive hypertrophic cardiomyopathy: a randomized clinical trial.JAMA Cardiol2019;4:230-5 PMCID:PMC6439550

[130]

van Driel B,Borodzicz-Jazdzuk S.Effect of trimetazidine dihydrochloride therapy on myocardial external efficiency in preclinical individuals with an HCM sarcomeric gene mutation.Eur Heart J2024;45:ehae666. 2032.

[131]

Maron MS,Abd Samat AH.Safety and efficacy of metabolic modulation with ninerafaxstat in patients with nonobstructive hypertrophic cardiomyopathy.J Am Coll Cardiol2024;83:2037-48

[132]

George CH,Preece R,Yousef Z.Pleiotropic mechanisms of action of perhexiline in heart failure.Expert Opin Ther Pat2016;26:1049-59

[133]

Gehmlich K,Allwood JW.Changes in the cardiac metabolome caused by perhexiline treatment in a mouse model of hypertrophic cardiomyopathy.Mol Biosyst2015;11:564-73

[134]

Feldman JM,Aronow WS.Ninerafaxstat in the treatment of diabetic cardiomyopathy and nonobstructive hypertrophic cardiomyopathy.Cardiol Rev2024;10.1097

[135]

Fetterman JL,Ballinger SW.Mitochondrial toxicity of tobacco smoke and air pollution.Toxicology2017;391:18-33 PMCID:PMC5681398

[136]

Watson WD,Lewis AJM.Retained metabolic flexibility of the failing human heart.Circulation2023;148:109-23 PMCID:PMC10417210

[137]

Pfeiffer K,Stuart RA.Cardiolipin stabilizes respiratory chain supercomplexes.J Biol Chem2003;278:52873-80

[138]

Milenkovic D,Hevler JF.Preserved respiratory chain capacity and physiology in mice with profoundly reduced levels of mitochondrial respirasomes.Cell Metab2023;35:1799-1813.e7

[139]

Yin H.Free radical oxidation of cardiolipin: chemical mechanisms, detection and implication in apoptosis, mitochondrial dysfunction and human diseases.Free Radic Res2012;46:959-74

[140]

Nakamura K,Matsubara H.Relationship between oxidative stress and systolic dysfunction in patients with hypertrophic cardiomyopathy.J Card Fail2005;11:117-23

[141]

Christiansen LB,Koch J,Leifsson PS.Impaired cardiac mitochondrial oxidative phosphorylation and enhanced mitochondrial oxidative stress in feline hypertrophic cardiomyopathy.Am J Physiol Heart Circ Physiol2015;308:H1237-47

[142]

Szeto HH.First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics.Br J Pharmacol2014;171:2029-50 PMCID:PMC3976620

[143]

Paratz ED,Rowe SJ,Semsarian C.Gene therapy in cardiology: is a cure for hypertrophic cardiomyopathy on the horizon?.Can J Cardiol2024;40:777-88

[144]

Green EM,Anderson RL.A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice.Science2016;351:617-21 PMCID:PMC4784435

[145]

Hartman JJ,Robert-Paganin J.Aficamten is a small-molecule cardiac myosin inhibitor designed to treat hypertrophic cardiomyopathy.Nat Cardiovasc Res2024;3:1003-16

[146]

Chuang C,Ashcraft L.Discovery of aficamten (CK-274), a next-generation cardiac myosin inhibitor for the treatment of hypertrophic cardiomyopathy.J Med Chem2021;64:14142-52

[147]

Lehman SJ,Leinwand LA.Targeting the sarcomere in inherited cardiomyopathies.Nat Rev Cardiol2022;19:353-63 PMCID:PMC9119933

[148]

Olivotto I,Barriales-Villa R.EXPLORER-HCM study investigatorsMavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial.Lancet2020;396:759-69

[149]

Hegde SM,Solomon SD.Effect of mavacamten on echocardiographic features in symptomatic patients with obstructive hypertrophic cardiomyopathy.J Am Coll Cardiol2021;78:2518-32

[150]

Saberi S,Yamani M.Mavacamten favorably impacts cardiac structure in obstructive hypertrophic cardiomyopathy: EXPLORER-HCM cardiac magnetic resonance substudy analysis.Circulation2021;143:606-8

[151]

Wheeler MT,Elliott PM.Effects of mavacamten on measures of cardiopulmonary exercise testing beyond peak oxygen consumption: a secondary analysis of the EXPLORER-HCM randomized trial.JAMA Cardiol2023;8:240-7 PMCID:PMC9857843

[152]

Hegde SM,Wang X.SEQUOIA-HCM InvestigatorsImpact of aficamten on echocardiographic cardiac structure and function in symptomatic obstructive hypertrophic cardiomyopathy.J Am Coll Cardiol2024;84:1789-802

[153]

Maron MS,Nassif ME.SEQUOIA-HCM InvestigatorsAficamten for symptomatic obstructive hypertrophic cardiomyopathy.N Engl J Med2024;390:1849-61

[154]

Giudicessi JR,Geske JB.Genotype influences mavacamten responsiveness in obstructive hypertrophic cardiomyopathy.Mayo Clin Proc2024;99:341-3

[155]

Nollet EE,de Boer RA,van der Velden J.Unraveling the genotype-phenotype relationship in hypertrophic cardiomyopathy: obesity-related cardiac defects as a major disease modifier.J Am Heart Assoc2020;9:e018641

[156]

Robertson J,Schaufelberger M.Body mass index in young women and risk of cardiomyopathy: a long-term follow-up study in sweden.Circulation2020;141:520-9 PMCID:PMC7017947

[157]

Robertson J,Lindgren M.Higher body mass index in adolescence predicts cardiomyopathy risk in midlife: term follow-up among Swedish men.Circulation2019;140:117-25

[158]

Wasserstrum Y,Fernández-Fernández X.The impact of diabetes mellitus on the clinical phenotype of hypertrophic cardiomyopathy.Eur Heart J2019;40:1671-7

[159]

Park JB,Lee H.Obesity and metabolic health status are determinants for the clinical expression of hypertrophic cardiomyopathy.Eur J Prev Cardiol2020;27:1849-57

[160]

Claes GR,Lindsey P.Hypertrophic remodelling in cardiac regulatory myosin light chain (MYL2) founder mutation carriers.Eur Heart J2016;37:1815-22

[161]

Olivotto I,Tomberli B.Obesity and its association to phenotype and clinical course in hypertrophic cardiomyopathy.J Am Coll Cardiol2013;62:449-57

[162]

Fumagalli C,Day SM.SHARE InvestigatorsAssociation of obesity with adverse long-term outcomes in hypertrophic cardiomyopathy.JAMA Cardiol2020;5:65-72

[163]

Yu SQ,Li Y.The impact of diabetes mellitus on cardiac function assessed by magnetic resonance imaging in patients with hypertrophic cardiomyopathy.Cardiovasc Diabetol2024;23:293

[164]

Harper AR,Grace C.HCMR InvestigatorsCommon genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity.Nat Genet2021;53:135-42 PMCID:PMC8240954

[165]

Ingles J,Bagnall RD.Nonfamilial hypertrophic cardiomyopathy: prevalence, natural history, and clinical implications.Circ Cardiovasc Genet2017;10:e001620

[166]

Nollet EE,Goebel M.Western diet triggers cardiac dysfunction in heterozygous Mybpc3-targeted knock-in mice: a two-hit model of hypertrophic cardiomyopathy.J Mol Cell Cardiol Plus2023;6:100050

[167]

Feria AE,Becker JR.Sarcomere mutation negative hypertrophic cardiomyopathy is associated with ageing and obesity.Open Heart2021;8:e001560 PMCID:PMC7919593

[168]

Schoonvelde SAC,Zwetsloot PP.Genotype-negative hypertrophic cardiomyopathy: exploring the role of cardiovascular risk factors in disease expression.Int J Cardiol2025;437:133444

[169]

Ommen SR,Asif IM.Peer Review Committee Members2024 AHA/ACC/AMSSM/HRS/PACES/SCMR guideline for the management of hypertrophic cardiomyopathy: a report of the american heart association/american college of cardiology joint committee on clinical practice guidelines.Circulation2024;149:e1239-311

[170]

Cavigli L,Fattirolli F.Prescribing, dosing and titrating exercise in patients with hypertrophic cardiomyopathy for prevention of comorbidities: ready for prime time.Eur J Prev Cardiol2021;28:1093-9

[171]

Anker SD,Filippatos G.EMPEROR-preserved trial investigatorsEmpagliflozin in heart failure with a preserved ejection fraction.N Engl J Med2021;385:1451-61

[172]

Kosiborod MN,Borlaug BA.STEP-HFpEF Trial Committees and InvestigatorsEffects of semaglutide on symptoms, function, and quality of life in patients with heart failure with preserved ejection fraction and obesity: a prespecified analysis of the STEP-HFpEF trial.Circulation2024;149:204-16

[173]

Lopaschuk GD.Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: a state-of-the-art review.JACC Basic Transl Sci2020;5:632-44 PMCID:PMC7315190

[174]

Osataphan S,Singhal G.SGLT2 inhibition reprograms systemic metabolism via FGF21-dependent and -independent mechanisms.JCI Insight2019;4:e123130 PMCID:PMC6483601

[175]

Aglan A,Eldaly AS.Impact of sodium-glucose cotransporter 2 inhibitors on mortality in hypertrophic cardiomyopathy.JACC Adv2024;3:100843 PMCID:PMC11198447

[176]

Wijnker PJM,van der Laan NC.Hypertrophic cardiomyopathy dysfunction mimicked in human engineered heart tissue and improved by sodium-glucose cotransporter 2 inhibitors.Cardiovasc Res2024;120:301-17

[177]

Vučković S,Nollet EE.Characterization of cardiac metabolism in iPSC-derived cardiomyocytes: lessons from maturation and disease modeling.Stem Cell Res Ther2022;13:332 PMCID:PMC9308297

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/