T lymphocytes linking autoimmunity and cardiovascular disease in aging

Enrique Ortega-Sollero , Ignacio Ruíz-Fernández , Pilar Martín

The Journal of Cardiovascular Aging ›› 2025, Vol. 5 ›› Issue (2) : 10

PDF
The Journal of Cardiovascular Aging ›› 2025, Vol. 5 ›› Issue (2) :10 DOI: 10.20517/jca.2024.40
Review

T lymphocytes linking autoimmunity and cardiovascular disease in aging

Author information +
History +
PDF

Abstract

Aging alters the immune system, leading to immunosenescence characterized by impaired T cell functions. The balance between regulatory T cells and type 17 helper T (Th17) cells is crucial for maintaining peripheral immune homeostasis. Aging disrupts this balance, contributing to a systemic chronic proinflammatory environment that increases the prevalence of age-related diseases. The Treg/Th17 imbalance compromises self-tolerance, promoting autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis. Furthermore, chronic inflammation driven by aberrant T cell responses is a significant risk factor for the progression of cardiovascular diseases (CVD), including hypertension, atherosclerosis, myocardial infarction, and myocarditis. Autoimmune disorders further exacerbate the risk of CVD, which remains the leading cause of mortality among patients with autoimmune diseases. This review provides an in-depth analysis of the mechanisms driving Treg/Th17 imbalance during aging, highlighting its impact on immune homeostasis, autoimmunity, and cardiovascular health. It explores how inflammaging and T cell dysfunction contribute to diseases such as rheumatoid arthritis, systemic lupus erythematosus, atherosclerosis, and myocardial infarction, emphasizing shared pathways and therapeutic strategies to restore immune balance and mitigate chronic inflammation. Understanding these immune pathways highlights the therapeutic potential of restoring Treg/Th17 balance to restore immune tolerance and reduce chronic inflammation, thereby mitigating the onset and progression of these age-related conditions.

Keywords

T lymphocytes / cardiovascular disease / aging / autoimmunity / Th17 / Tregs

Cite this article

Download citation ▾
Enrique Ortega-Sollero, Ignacio Ruíz-Fernández, Pilar Martín. T lymphocytes linking autoimmunity and cardiovascular disease in aging. The Journal of Cardiovascular Aging, 2025, 5(2): 10 DOI:10.20517/jca.2024.40

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang J,Wan YY.Intricacies of TGF-β signaling in Treg and Th17 cell biology.Cell Mol Immunol2023;20:1002-22 PMCID:PMC10468540

[2]

Knochelmann HM,Bailey SR.When worlds collide: Th17 and Treg cells in cancer and autoimmunity.Cell Mol Immunol2018;15:458-69 PMCID:PMC6068176

[3]

Schmitt V,Uciechowski P.The Th17/Treg balance is disturbed during aging.Exp Gerontol2013;48:1379-86

[4]

Ding T,Su R.Elevated Th17 cells are associated with cardiovascular complications in ankylosing spondylitis.Rheumatology2022;61:3481-90

[5]

He X,Gu N.Th17/Treg Imbalance and Atherosclerosis.Dis Markers2020;2020:8821029 PMCID:PMC7648711

[6]

Mittelbrunn M.Hallmarks of T cell aging.Nat Immunol2021;22:687-98

[7]

Wang Y,Han Y,Sun C.Immunosenescence, aging and successful aging.Front Immunol2022;13:942796 PMCID:PMC9379926

[8]

Shirakawa K.T cell immunosenescence in aging, obesity, and cardiovascular disease.Cells2021;10:2435 PMCID:PMC8464832

[9]

Carrasco E,Gabandé-Rodríguez E,Aranda JF.The role of T cells in age-related diseases.Nat Rev Immunol2022;22:97-111

[10]

Lee GR.The balance of Th17 versus treg cells in autoimmunity.Int J Mol Sci2018;19:730 PMCID:PMC5877591

[11]

Zheng Y,Goronzy JJ.Immune aging - A mechanism in autoimmune disease.Semin Immunol2023;69:101814 PMCID:PMC10663095

[12]

Costantini E,Reale M.The Role of immunosenescence in neurodegenerative diseases.Mediators Inflamm2018;2018:6039171 PMCID:PMC5863336

[13]

Donato AJ,Lesniewski LA.Mechanisms of dysfunction in the aging vasculature and role in age-related disease.Circ Res2018;123:825-48 PMCID:PMC6207260

[14]

Heslinga M,Smulders Y,Nurmohamed MT.Amplified prevalence and incidence of cardiovascular disease in patients with inflammatory arthritis and coexistent autoimmune disorders.Rheumatology2020;59:2448-54

[15]

Schwartz DM,Kitakule MM,Mehta NN.T cells in autoimmunity-associated cardiovascular diseases.Front Immunol2020;11:588776 PMCID:PMC7576936

[16]

McGeachy MJ.Th17 cell differentiation: the long and winding road.Immunity2008;28:445-53

[17]

Rutz S,Kiefer JR.Post-translational regulation of RORγt-A therapeutic target for the modulation of interleukin-17-mediated responses in autoimmune diseases.Cytokine Growth Factor Rev2016;30:1-17

[18]

Yasuda K,Hirota K.The pathogenicity of Th17 cells in autoimmune diseases.Semin Immunopathol2019;41:283-97

[19]

Keir ME,Lu TT.The role of IL-22 in intestinal health and disease.J Exp Med2020;217:e20192195. PMCID:PMC7062536

[20]

Veldhoen M.Interleukin 17 is a chief orchestrator of immunity.Nat Immunol2017;18:612-21

[21]

Taniki N,Chu PS,Teratani T.Th17 cells in the liver: balancing autoimmunity and pathogen defense.Semin Immunopathol2022;44:509-26

[22]

Pan Y,Tang B.The protective and pathogenic role of Th17 cell plasticity and function in the tumor microenvironment.Front Immunol2023;14:1192303 PMCID:PMC10339829

[23]

Brucklacher-Waldert V,Innocentin S.Tbet or Continued RORγt expression is not required for Th17-associated immunopathology.J Immunol2016;196:4893-904

[24]

Ghoreschi K,Enerbäck C.Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis.Lancet2021;397:754-66

[25]

Hori S,Sakaguchi S.Control of regulatory T cell development by the transcription factor Foxp3.Science2003;299:1057-61

[26]

Shevach EM.tTregs, pTregs, and iTregs: similarities and differences.Immunol Rev2014;259:88-102 PMCID:PMC3982187

[27]

Savage PA,Miller CH.Regulatory T cell development.Annu Rev Immunol2020;38:421-53

[28]

Bilate AM.Induced CD4+Foxp3+ regulatory T cells in immune tolerance.Annu Rev Immunol2012;30:733-58

[29]

Kanamori M,Okada M,Yoshimura A.Induced regulatory T cells: their development, stability, and applications.Trends Immunol2016;37:803-11

[30]

Miragaia RJ,Chomka A.Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation.Immunity2019;50:493-504.e7 PMCID:PMC6382439

[31]

Goswami TK,Dhawan M.Regulatory T cells (Tregs) and their therapeutic potential against autoimmune disorders - Advances and challenges.Hum Vaccin Immunother2022;18:2035117 PMCID:PMC9009914

[32]

Bauché D,Jain R.LAG3+ regulatory T cells restrain interleukin-23-producing CX3CR1+ gut-resident macrophages during group 3 innate lymphoid cell-driven colitis.Immunity2018;49:342-52.e5

[33]

Tekguc M,Osaki M,Sakaguchi S.Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells.Proc Natl Acad Sci USA2021;118:e2023739118 PMCID:PMC8325248

[34]

Woo SR,Goldberg MV.Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape.Cancer Res2012;72:917-27 PMCID:PMC3288154

[35]

Okazaki T,Wang J.PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice.J Exp Med2011;208:395-407 PMCID:PMC3039848

[36]

Ortiz MA,De Agustin JJ.Altered CD39 and CD73 expression in rheumatoid arthritis: implications for disease activity and treatment response.Biomolecules2023;14:1 PMCID:PMC10813161

[37]

Sojka DK,Fowell DJ.Mechanisms of regulatory T-cell suppression - a diverse arsenal for a moving target.Immunology2008;124:13-22 PMCID:PMC2434375

[38]

Herrnstadt GR.The role of Treg subtypes in glomerulonephritis.Cell Tissue Res2021;385:293-304 PMCID:PMC8523467

[39]

Göschl L,Bonelli M.Treg cells in autoimmunity: from identification to Treg-based therapies.Semin Immunopathol2019;41:301-14

[40]

Shouse AN,Malek TR.Interleukin-2 signaling in the regulation of T cell biology in autoimmunity and cancer.Immunity2024;57:414-28 PMCID:PMC11126276

[41]

Vignoli M,Fioravanti A.CD25 deficiency: a new conformational mutation prevents the receptor expression on cell surface.Clin Immunol2019;201:15-9

[42]

Eggenhuizen PJ,Ooi JD.Treg enhancing therapies to treat autoimmune diseases.Int J Mol Sci2020;21:7015 PMCID:PMC7582931

[43]

De Simone V,Ronchetti G.Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth.Oncogene2015;34:3493-503 PMCID:PMC4493653

[44]

Qin Z,Hou P.TCR signaling induces STAT3 phosphorylation to promote TH17 cell differentiation.J Exp Med2024;221:e20230683 PMCID:PMC10849914

[45]

Gorabi AM,Kiaie N.The pivotal role of CD69 in autoimmunity.J Autoimmun2020;111:102453

[46]

Cibrián D.CD69: from activation marker to metabolic gatekeeper.Eur J Immunol2017;47:946-53 PMCID:PMC6485631

[47]

Jiménez-Fernández M,Martín P,Sánchez-Madrid F.Unraveling Cd69 signaling pathways, ligands and laterally associated molecules.EXCLI J2023;22:334-51 PMCID:PMC10201016

[48]

Kleinewietfeld M.The plasticity of human Treg and Th17 cells and its role in autoimmunity.Semin Immunol2013;25:305-12 PMCID:PMC3905679

[49]

López-Otín C,Partridge L,Kroemer G.The hallmarks of aging.Cell2013;153:1194-217 PMCID:PMC3836174

[50]

Schmauck-Medina T,Lautrup S.New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary.Aging2022;14:6829-39 PMCID:PMC9467401

[51]

Li Z,Ren Y.Aging and age-related diseases: from mechanisms to therapeutic strategies.Biogerontology2021;22:165-87 PMCID:PMC7838467

[52]

Liu Z,Ren Y.Immunosenescence: molecular mechanisms and diseases.Signal Transduct Target Ther2023;8:200 PMCID:PMC10182360

[53]

Rea IM,McGilligan V,Alexander HD.Age and Age-related diseases: role of inflammation triggers and cytokines.Front Immunol2018;9:586 PMCID:PMC5900450

[54]

van den Akker EB,Hulsman M.Dynamic clonal hematopoiesis and functional T-cell immunity in a supercentenarian.Leukemia2021;35:2125-9 PMCID:PMC8257492

[55]

Rodriguez IJ,Llano León M.Immunosenescence study of T cells: a systematic review.Front Immunol2020;11:604591 PMCID:PMC7843425

[56]

Han S,Ringel AE,Haigis MC.Age-associated remodeling of T cell immunity and metabolism.Cell Metab2023;35:36-55 PMCID:PMC10799654

[57]

Huang MC,Bonasera S,Goetzl EJ.Nuclear factor-kappaB-dependent reversal of aging-induced alterations in T cell cytokines.FASEB J2008;22:2142-50

[58]

Lim MA,Park JS.Increased Th17 differentiation in aged mice is significantly associated with high IL-1β level and low IL-2 expression.Exp Gerontol2014;49:55-62

[59]

Churov AV,Novitskaia AV.Homeostasis and the functional roles of CD4+ Treg cells in aging.Immunol Lett2020;226:83-9

[60]

Tsaknaridis L,Culbertson N.Functional assay for human CD4+CD25+ Treg cells reveals an age-dependent loss of suppressive activity.J Neurosci Res2003;74:296-308

[61]

Sun L,Thibodeaux SR.Aged regulatory T cells protect from autoimmune inflammation despite reduced STAT3 activation and decreased constraint of IL-17 producing T cells.Aging Cell2012;11:509-19

[62]

Jagger A,Goronzy JJ.Regulatory T cells and the immune aging process: a mini-review.Gerontology2014;60:130-7 PMCID:PMC4878402

[63]

Asami T,Matsui R.Long-term caloric restriction ameliorates T cell immunosenescence in mice.Mech Ageing Dev2022;206:111710

[64]

Wu C,Thalhamer T.Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1.Nature2013;496:513-7 PMCID:PMC3637879

[65]

Zhang S,Yang S.The alterations in and the role of the Th17/Treg balance in metabolic diseases.Front Immunol2021;12:678355 PMCID:PMC8311559

[66]

Vriens A,Janssen BG.Exposure to environmental pollutants and their association with biomarkers of aging: a multipollutant approach.Environ Sci Technol2019;53:5966-76

[67]

Ural BB,Dogra P.Inhaled particulate accumulation with age impairs immune function and architecture in human lung lymph nodes.Nat Med2022;28:2622-32 PMCID:PMC9835154

[68]

Qiu F,Liu H.Impacts of cigarette smoking on immune responsiveness: up and down or upside down?.Oncotarget2017;8:268-84 PMCID:PMC5352117

[69]

Rocamora-Reverte L,Würzner R.The complex role of regulatory T cells in immunity and aging.Front Immunol2020;11:616949 PMCID:PMC7873351

[70]

Lancaster JN,Srinivasan J.Central tolerance is impaired in the middle-aged thymic environment.Aging Cell2022;21:e13624 PMCID:PMC9197411

[71]

Youm YH,Vandanmagsar B.The Nlrp3 inflammasome promotes age-related thymic demise and immunosenescence.Cell Rep2012;1:56-68 PMCID:PMC3883512

[72]

Chen R,Feng Z.CD147 deficiency in T cells prevents thymic involution by inhibiting the EMT process in TECs in the presence of TGFβ.Cell Mol Immunol2021;18:171-81 PMCID:PMC7853129

[73]

Liang Z,Zhang Z,Zhao Y.Age-related thymic involution: Mechanisms and functional impact.Aging Cell2022;21:e13671 PMCID:PMC9381902

[74]

Hemmers S,Azizi E.IL-2 production by self-reactive CD4 thymocytes scales regulatory T cell generation in the thymus.J Exp Med2019;216:2466-78 PMCID:PMC6829602

[75]

ElTanbouly MA.Rethinking peripheral T cell tolerance: checkpoints across a T cell's journey.Nat Rev Immunol2021;21:257-67

[76]

ElTanbouly MA,Nowak E.VISTA is a checkpoint regulator for naïve T cell quiescence and peripheral tolerance.Science2020;367:aay0524

[77]

Wang L,Putra J.Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity.Proc Natl Acad Sci USA2014;111:14846-51 PMCID:PMC4205642

[78]

Wong WF,Nakamura A.Runx1 deficiency in CD4+ T cells causes fatal autoimmune inflammatory lung disease due to spontaneous hyperactivation of cells.J Immunol2012;188:5408-20

[79]

Oakley R.Vascular hyperpermeability and aging.Aging Dis2014;5:114-25 PMCID:PMC3966670

[80]

Erickson MA.Age-associated changes in the immune system and blood-brain barrier functions.Int J Mol Sci2019;20:1632 PMCID:PMC6479894

[81]

McKinney EF,Jayne DR,Smith KG.T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection.Nature2015;523:612-6 PMCID:PMC4623162

[82]

Mogilenko DA,Andhey PS.Comprehensive profiling of an aging immune system reveals clonal GZMK+ CD8+ T cells as conserved hallmark of inflammaging.Immunity2021;54:99-115.e12

[83]

Kalekar LA,Nandiwada SL.CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors.Nat Immunol2016;17:304-14 PMCID:PMC4755884

[84]

Maue AC,Swain SL,Blackman MA.T-cell immunosenescence: lessons learned from mouse models of aging.Trends Immunol2009;30:301-5 PMCID:PMC3755270

[85]

Krüger P,Fenzl F.Inflammation and fibrosis in progeria: organ-specific responses in an HGPS mouse model.Int J Mol Sci2024;25:9323 PMCID:PMC11395088

[86]

Zaghini A,Barboni C.Long term breeding of the Lmna G609G progeric mouse: characterization of homozygous and heterozygous models.Exp Gerontol2020;130:110784

[87]

Bravo-Ferrer I,Medina V.Lack of the aryl hydrocarbon receptor accelerates aging in mice.FASEB J2019;33:12644-54

[88]

Desdín-Micó G,Aranda JF.T cells with dysfunctional mitochondria induce multimorbidity and premature senescence.Science2020;368:1371-6 PMCID:PMC7616968

[89]

Brinks R,Weber S.Age-specific and sex-specific incidence of systemic lupus erythematosus: an estimate from cross-sectional claims data of 2.3 million people in the German statutory health insurance 2002.Lupus Sci Med2016;3:e000181 PMCID:PMC5133401

[90]

Kiriakidou M.Systemic lupus erythematosus.Ann Intern Med2020;172:ITC81-96

[91]

Shan J,Xu Y.T Cell metabolism: a new perspective on Th17/Treg cell imbalance in systemic lupus erythematosus.Front Immunol2020;11:1027 PMCID:PMC7257669

[92]

Yusoff F, Wong KK, Mohd Redzwan N. Th1, Th2, and Th17 cytokines in systemic lupus erythematosus.Autoimmunity2020;53:8-20

[93]

Li H,Endo Y.Abnormalities of T cells in systemic lupus erythematosus: new insights in pathogenesis and therapeutic strategies.J Autoimmun2022;132:102870

[94]

Li Y,Liu S.Interleukin-25 is upregulated in patients with systemic lupus erythematosus and ameliorates murine lupus by inhibiting inflammatory cytokine production.Int Immunopharmacol2019;74:105680

[95]

Sharabi A.T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy.Nat Rev Rheumatol2020;16:100-12

[96]

Wang R,Shi LZ.The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation.Immunity2011;35:871-82 PMCID:PMC3248798

[97]

Delgoffe GM,Zheng Y.The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment.Immunity2009;30:832-44 PMCID:PMC2768135

[98]

Niu Q,Huang ZC,Wang LL.Disturbed Th17/Treg balance in patients with rheumatoid arthritis.Rheumatol Int2012;32:2731-6

[99]

Li Y,Hohensinner P.Deficient activity of the nuclease MRE11A induces T cell aging and promotes arthritogenic effector functions in patients with rheumatoid arthritis.Immunity2016;45:903-16 PMCID:PMC5123765

[100]

Paradowska-Gorycka A,Romanowska-Próchnicka K.Th17/Treg-related transcriptional factor expression and cytokine profile in patients with rheumatoid arthritis.Front Immunol2020;11:572858 PMCID:PMC7759671

[101]

Pesce B,Sabugo F.Effect of interleukin-6 receptor blockade on the balance between regulatory T cells and T helper type 17 cells in rheumatoid arthritis patients.Clin Exp Immunol2013;171:237-42 PMCID:PMC3569529

[102]

Komiyama Y,Matsuki T.IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis.J Immunol2006;177:566-73

[103]

Habbestad A,Aarseth JH.Increasing age of multiple sclerosis onset from 1920 to 2022: a population-based study.J Neurol2024;271:1610-7 PMCID:PMC10973050

[104]

Ruiz-Fernández I,Ortega-Sollero E.Update on the role of T cells in cognitive impairment.Br J Pharmacol2024;181:799-815

[105]

Bolton C.The influence and impact of ageing and immunosenescence (ISC) on adaptive immunity during multiple sclerosis (MS) and the animal counterpart experimental autoimmune encephalomyelitis (EAE).Ageing Res Rev2018;41:64-81

[106]

Capasso N,Covelli A.Aging in multiple sclerosis: from childhood to old age, etiopathogenesis, and unmet needs: a narrative review.Front Neurol2023;14:1207617 PMCID:PMC10272733

[107]

Moser T,Proschmann U,Ziemssen T.The role of TH17 cells in multiple sclerosis: therapeutic implications.Autoimmun Rev2020;19:102647

[108]

Liu R,Zhao L.Autoreactive lymphocytes in multiple sclerosis: pathogenesis and treatment target.Front Immunol2022;13:996469 PMCID:PMC9539795

[109]

Schwab N,Wiendl H.Therapeutic uses of anti-α4-integrin (anti-VLA-4) antibodies in multiple sclerosis.Int Immunol2015;27:47-53

[110]

Starost L,Herold M.Extrinsic immune cell-derived, but not intrinsic oligodendroglial factors contribute to oligodendroglial differentiation block in multiple sclerosis.Acta Neuropathol2020;140:715-36 PMCID:PMC7547031

[111]

Palle P,Milne SM.Cytokine signaling in multiple sclerosis and its therapeutic applications.Med Sci2017;5:23 PMCID:PMC5753652

[112]

Bai Z,Wang L.Cerebrospinal fluid and blood cytokines as biomarkers for multiple sclerosis: a systematic review and meta-analysis of 226 studies with 13,526 multiple sclerosis patients.Front Neurosci2019;13:1026 PMCID:PMC6787166

[113]

Mexhitaj I,Li R.Abnormal effector and regulatory T cell subsets in paediatric-onset multiple sclerosis.Brain2019;142:617-32 PMCID:PMC6391601

[114]

Kaskow BJ.Effector T Cells in multiple sclerosis.Cold Spring Harb Perspect Med2018;8:a029025 PMCID:PMC5880159

[115]

Kundu S,Tracy RP.Circulating T cells and cardiovascular risk in people with and without HIV infection.J Am Coll Cardiol2022;80:1633-44 PMCID:PMC10918771

[116]

Sun Z.Aging, arterial stiffness, and hypertension.Hypertension2015;65:252-6

[117]

Ren J.Role of T-cell activation in salt-sensitive hypertension.Am J Physiol Heart Circ Physiol2019;316:H1345-53 PMCID:PMC6620682

[118]

Yu HT,Shin EC.T cell senescence and cardiovascular diseases.Clin Exp Med2016;16:257-63

[119]

Pan XX,Chen XH.T-cell senescence accelerates angiotensin II-induced target organ damage.Cardiovasc Res2021;117:271-83

[120]

Higaki A.The chicken or the egg: the role of T cell polarity in salt-sensitive hypertension.Hypertens Res2023;46:2425-7

[121]

Barhoumi T,Li MW.T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury.Hypertension2011;57:469-76

[122]

Watanabe R,Zhang H.Pro-inflammatory and anti-inflammatory T cells in giant cell arteritis.Joint Bone Spine2017;84:421-6 PMCID:PMC5639893

[123]

Espígol-Frigolé G,Planas-Rigol E.Increased IL-17A expression in temporal artery lesions is a predictor of sustained response to glucocorticoid treatment in patients with giant-cell arteritis.Ann Rheum Dis2013;72:1481-7

[124]

Wen Z,Shirai T.NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs.J Clin Invest2016;126:1953-67 PMCID:PMC4855948

[125]

Nakagawa H,Cantor H.Chapter One - New Insights into the biology of CD8 regulatory T cells.Adv Immunol2018;140:1-20

[126]

Saigusa R,Ley K.T cell subsets and functions in atherosclerosis.Nat Rev Cardiol2020;17:387-401 PMCID:PMC7872210

[127]

Cheng X,Ding YJ.The Th17/Treg imbalance in patients with acute coronary syndrome.Clin Immunol2008;127:89-97

[128]

Sánchez-Díaz R,Lasarte S.Thymus-derived regulatory T cell development is regulated by C-type lectin-mediated BIC/MicroRNA 155 expression.Mol Cell Biol2017;37:e00341-16 PMCID:PMC5394276

[129]

Tsilingiri K,Relaño M.Oxidized low-density lipoprotein receptor in lymphocytes prevents atherosclerosis and predicts subclinical disease.Circulation2019;139:243-55

[130]

Erbel C,Bea F.Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice.J Immunol2009;183:8167-75

[131]

Danzaki K,Ikesue M.Interleukin-17A deficiency accelerates unstable atherosclerotic plaque formation in apolipoprotein E-deficient mice.Arterioscler Thromb Vasc Biol2012;32:273-80

[132]

Suda M,Minamino T.Senescent cells: a therapeutic target in cardiovascular diseases.Cells2023;12:1296 PMCID:PMC10177324

[133]

Haghikia A,Schumann P.Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism.Eur Heart J2022;43:518-33 PMCID:PMC9097250

[134]

Saleh M.Understanding myocardial infarction.F1000Res2018;7:1378 PMCID:PMC6124376

[135]

Liu J,Liang T.The roles of Th cells in myocardial infarction.Cell Death Discov2024;10:287 PMCID:PMC11180143

[136]

Kino T,Mohsin S.The regulatory role of T cell responses in cardiac remodeling following myocardial infarction.Int J Mol Sci2020;21:5013 PMCID:PMC7404395

[137]

Kubota A,Suga K.Inhibition of Interleukin-21 prolongs the survival through the promotion of wound healing after myocardial infarction.J Mol Cell Cardiol2021;159:48-61

[138]

Youn JC,Yu HT.Increased frequency of CD4+CD57+ senescent T cells in patients with newly diagnosed acute heart failure: exploring new pathogenic mechanisms with clinical relevance.Sci Rep2019;9:12887 PMCID:PMC6733929

[139]

Delgobo M,Ashour D.Myocardial milieu favors local differentiation of regulatory T cells.Circ Res2023;132:565-82

[140]

Blanco-Domínguez R,Rodríguez C.CD69 expression on regulatory T cells protects from immune damage after myocardial infarction.J Clin Invest2022;132:e52418

[141]

Lampejo T,Bhatt N.Acute myocarditis: aetiology, diagnosis and management.Clin Med2021;21:e505-10 PMCID:PMC8439515

[142]

Munir AZ,Qin J,Moslehi JJ.Immune-checkpoint inhibitor-mediated myocarditis: CTLA4, PD1 and LAG3 in the heart.Nat Rev Cancer2024;24:540-53

[143]

Fenioux C,Boussouar S.Thymus alterations and susceptibility to immune checkpoint inhibitor myocarditis.Nat Med2023;29:3100-10

[144]

Jiménez-Alejandre R,Martín P.Pathophysiology of immune checkpoint inhibitor-induced myocarditis.Cancers2022;14:4494 PMCID:PMC9497311

[145]

Blanco-Domínguez R,de la Fuente H.A novel circulating MicroRNA for the detection of acute myocarditis.N Engl J Med2021;384:2014-27 PMCID:PMC8258773

[146]

Cruz-Adalia A,Ramírez-Huesca M.CD69 limits the severity of cardiomyopathy after autoimmune myocarditis.Circulation2010;122:1396-404

[147]

Ramos GC,Nunes-Silva V.Myocardial aging as a T-cell-mediated phenomenon.Proc Natl Acad Sci USA2017;114:E2420-9 PMCID:PMC5373357

[148]

Ammirati E,Adler ED.Management of acute myocarditis and chronic inflammatory cardiomyopathy: an expert consensus document.Circ Heart Fail2020;13:e007405 PMCID:PMC7673642

[149]

Porsch F.Autoimmune diseases and atherosclerotic cardiovascular disease.Nat Rev Cardiol2024;21:780-807

[150]

Pan SY,Zhu Y.Cardiac damage in autoimmune diseases: Target organ involvement that cannot be ignored.Front Immunol2022;13:1056400 PMCID:PMC9722763

[151]

Martini E,Felicetta A.Autoimmune-like mechanism in heart failure enables preventive vaccine therapy.Circ Res2025;136:4-25 PMCID:PMC11692788

[152]

Robinson G,Ciurtin C.Lipid metabolism in autoimmune rheumatic disease: implications for modern and conventional therapies.J Clin Invest2022;132:e148552 PMCID:PMC8759788

[153]

Purmalek MM,Dey AK.Association of lipoprotein subfractions and glycoprotein acetylation with coronary plaque burden in SLE.Lupus Sci Med2019;6:e000332 PMCID:PMC6667837

[154]

Baardman J.Regulatory T cell metabolism in atherosclerosis.Metabolites2020;10:279 PMCID:PMC7408402

[155]

Bonetti PO,Lerman A.Endothelial dysfunction: a marker of atherosclerotic risk.Arterioscler Thromb Vasc Biol2003;23:168-75

[156]

Alghareeb R,Maheshwari MV,Patel PD.Cardiovascular complications in systemic lupus erythematosus.Cureus2022;14:e26671 PMCID:PMC9358056

[157]

Kessler J,Devaux S,Wendling D.Animal models to study pathogenesis and treatments of cardiac disorders in rheumatoid arthritis: Advances and challenges for clinical translation.Pharmacol Res2021;170:105494

[158]

Dai H,Yin S.Atrial fibrillation promotion in a rat model of rheumatoid arthritis.J Am Heart Assoc2017;6:007320 PMCID:PMC5779041

[159]

Wang X,Wang Y.Elevated peripheral T helper cells are associated with atrial fibrillation in patients with rheumatoid arthritis.Front Immunol2021;12:744254 PMCID:PMC8554094

[160]

Amor C,Leibold J.Senolytic CAR T cells reverse senescence-associated pathologies.Nature2020;583:127-32 PMCID:PMC7583560

[161]

Deng Y,Xie K.Targeting senescent cells with NKG2D-CAR T cells.Cell Death Discov2024;10:217 PMCID:PMC11069534

[162]

Huang W,Eirin A,Lerman LO.Cellular senescence: the good, the bad and the unknown.Nat Rev Nephrol2022;18:611-27 PMCID:PMC9362342

[163]

Notley CA,Inglis JJ.ANTI-CD3 therapy expands the numbers of CD4+ and CD8+ Treg cells and induces sustained amelioration of collagen-induced arthritis.Arthritis Rheum2010;62:171-8

[164]

Bryl E,Matteson EL,Weyand CM.Modulation of CD28 expression with anti-tumor necrosis factor alpha therapy in rheumatoid arthritis.Arthritis Rheum2005;52:2996-3003

[165]

Tanaka T,Kishimoto T.Interleukin (IL-6) immunotherapy.Cold Spring Harb Perspect Biol2018;10:a028456 PMCID:PMC6071487

[166]

Zhao TX,Mallat Z.2019 ATVB plenary lecture: interleukin-2 therapy in cardiovascular disease: the potential to regulate innate and adaptive immunity.Arterioscler Thromb Vasc Biol2020;40:853-64

[167]

Zhao TX,Griffiths C.Low-dose interleukin-2 in patients with stable ischaemic heart disease and acute coronary syndromes (LILACS): protocol and study rationale for a randomised, double-blind, placebo-controlled, phase I/II clinical trial.BMJ Open2018;8:e022452 PMCID:PMC6144322

AI Summary AI Mindmap
PDF

58

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/