The role of exercise in bolstering cardiac resilience during aging

Ankur Saini , Kirsty Foote , Martin Bennett , Ana Vujic

The Journal of Cardiovascular Aging ›› 2025, Vol. 5 ›› Issue (1) : 2

PDF
The Journal of Cardiovascular Aging ›› 2025, Vol. 5 ›› Issue (1) :2 DOI: 10.20517/jca.2024.18
Review

The role of exercise in bolstering cardiac resilience during aging

Author information +
History +
PDF

Abstract

Aging leads to structural and functional deterioration of the heart, reducing its capacity to withstand internal and external stressors and consequently increasing the risk of heart failure. Exercise is a potent modulator of cardiovascular and metabolic health, offering numerous physiological benefits that can persist throughout the aging process. Studies suggest that exercise can decelerate age-related cardiac deterioration and mitigate the risk of heart failure. In this review, we discuss recent advances in our understanding of exercise-mediated molecular and cellular adaptations that could serve as therapeutic targets for age-related cardiac remodeling and functional decline. We also explore how exercise-induced changes may enhance cardiac resilience with age, examine sex differences in cardiac aging and response to exercise, and highlight the value of murine exercise models as research tools for identifying novel therapeutic targets and strategies to combat heart failure.

Keywords

Heart / exercise / aging / cardiac resilience

Cite this article

Download citation ▾
Ankur Saini, Kirsty Foote, Martin Bennett, Ana Vujic. The role of exercise in bolstering cardiac resilience during aging. The Journal of Cardiovascular Aging, 2025, 5(1): 2 DOI:10.20517/jca.2024.18

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GBD 2021 Forecasting Collaborators. Burden of disease scenarios for 204 countries and territories, 2022-2050: a forecasting analysis for the Global Burden of Disease Study 2021.Lancet2024;403:2204-56 PMCID:PMC11121021

[2]

Ekelund U,Steene-Johannessen J.Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis.BMJ2019;366:l4570 PMCID:PMC6699591

[3]

Martin SS,Almarzooq ZI.2024 heart disease and stroke statistics: a report of US and global data from the American heart association.Circulation2024;149:e347-913

[4]

Fleg JL,Gerstenblith G.Impact of age on the cardiovascular response to dynamic upright exercise in healthy men and women.J Appl Physiol1995;78:890-900

[5]

Hollingsworth KG,Keavney BD.Left ventricular torsion, energetics, and diastolic function in normal human aging.Am J Physiol Heart Circ Physiol2012;302:H885-92 PMCID:PMC3322734

[6]

Shah SJ,Kitzman DW.Research priorities for heart failure with preserved ejection fraction: national heart, lung, and blood institute working group summary.Circulation2020;141:1001-26 PMCID:PMC7101072

[7]

Caspersen CJ,Christenson GM.Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research.Public Health Rep1985;100:126-31 PMCID:PMC1424733

[8]

Valenzuela PL,Morales JS.Effects of physical exercise on physical function in older adults in residential care: a systematic review and network meta-analysis of randomised controlled trials.Lancet Healthy Longev2023;4:e247-56

[9]

Kitzman DW,Morgan T.Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial.JAMA2016;315:36-46 PMCID:PMC4787295

[10]

Kraigher-Krainer E,Massaro JM.Association of physical activity and heart failure with preserved vs. reduced ejection fraction in the elderly: the Framingham Heart Study.Eur J Heart Fail2013;15:742-6 PMCID:PMC3857918

[11]

Moore SC,Matthews CE.Leisure time physical activity of moderate to vigorous intensity and mortality: a large pooled cohort analysis.PLoS Med2012;9:e1001335 PMCID:PMC3491006

[12]

Strain T,Dempsey PC.Wearable-device-measured physical activity and future health risk.Nat Med2020;26:1385-91 PMCID:PMC7116559

[13]

Chakravarty EF,Lingala VB.Reduced disability and mortality among aging runners: a 21-year longitudinal study.Arch Intern Med2008;168:1638-46 PMCID:PMC3175643

[14]

Howden EJ,Lawley JS.Reversing the cardiac effects of sedentary aging in middle age-a randomized controlled trial: implications for heart failure prevention.Circulation2018;137:1549-60 PMCID:PMC5893372

[15]

Hieda M,Hearon CM Jr.One-year committed exercise training reverses abnormal left ventricular myocardial stiffness in patients with stage B heart failure with preserved ejection fraction.Circulation2021;144:934-46 PMCID:PMC8849598

[16]

Safdar A,Kraytsberg Y.Amelioration of premature aging in mtDNA mutator mouse by exercise: the interplay of oxidative stress, PGC-1α, p53, and DNA damage. A hypothesis.Curr Opin Genet Dev2016;38:127-32 PMCID:PMC5592087

[17]

Roh JD,Yu A.Exercise training reverses cardiac aging phenotypes associated with heart failure with preserved ejection fraction in male mice.Aging Cell2020;19:e13159 PMCID:PMC7294786

[18]

World Health Organization. WHO guidelines on physical activity and sedentary behaviour. 2020. Available from: https://www.who.int/publications/i/item/9789240015128 [Last accessed on 14 Jan 2025]

[19]

Cheng S,Sullivan LM.Correlates of echocardiographic indices of cardiac remodeling over the adult life course: longitudinal observations from the Framingham Heart Study.Circulation2010;122:570-8 PMCID:PMC2942081

[20]

Martos R,Ledwidge M.Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction.Circulation2007;115:888-95

[21]

Fleg JL,Bos AG.Accelerated longitudinal decline of aerobic capacity in healthy older adults.Circulation2005;112:674-82

[22]

Dannenberg AL,Garrison RJ.Impact of age on echocardiographic left ventricular mass in a healthy population (the Framingham Study).Am J Cardiol1989;64:1066-8

[23]

Schulman SP,Fleg JL,Becker LC.Age-related decline in left ventricular filling at rest and exercise.Am J Physiol1992;263:H1932-8

[24]

Sui X,Laditka JN.Cardiorespiratory fitness and adiposity as mortality predictors in older adults.JAMA2007;298:2507-16 PMCID:PMC2692959

[25]

Lakatta EG.Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease.Circulation2003;107:346-54

[26]

Chyou JY,Butler J,Lam CSP.Sex-related similarities and differences in responses to heart failure therapies.Nat Rev Cardiol2024;21:498-516

[27]

Strain T,Guthold R.National, regional, and global trends in insufficient physical activity among adults from 2000 to 2022: a pooled analysis of 507 population-based surveys with 5·7 million participants.Lancet Glob Health2024;12:e1232-43

[28]

Denfeld QE,Camacho SA.Characterizing sex differences in physical frailty phenotypes in heart failure.Circ Heart Fail2021;14:e008076

[29]

Dewan P,Jhund PS.Differential impact of heart failure with reduced ejection fraction on men and women.J Am Coll Cardiol2019;73:29-40

[30]

Bergmann O,Bernard S.Evidence for cardiomyocyte renewal in humans.Science2009;324:98-102 PMCID:PMC2991140

[31]

Bergmann O,Felker A.Dynamics of cell generation and turnover in the human heart.Cell2015;161:1566-75

[32]

Senyo SE,Pizzimenti CL.Mammalian heart renewal by pre-existing cardiomyocytes.Nature2013;493:433-6 PMCID:PMC3548046

[33]

Pinto AR,Ivey MJ.Revisiting cardiac cellular composition.Circ Res2016;118:400-9 PMCID:PMC4744092

[34]

López-Otín C,Partridge L,Kroemer G.The hallmarks of aging.Cell2013;153:1194-217 PMCID:PMC3836174

[35]

Mallat Z,Costagliola R.Age and gender effects on cardiomyocyte apoptosis in the normal human heart.J Gerontol A Biol Sci Med Sci2001;56:M719-23

[36]

Tang X,Chen HZ.Cardiomyocyte senescence and cellular communications within myocardial microenvironments.Front Endocrinol2020;11:280 PMCID:PMC7253644

[37]

Leri A,Zacheo A.Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation.EMBO J2003;22:131-9 PMCID:PMC140062

[38]

Chen MS,Garbern JC.Senescence mechanisms and targets in the heart.Cardiovasc Res2022;118:1173-87 PMCID:PMC8953446

[39]

Baker DJ,Durik M.Naturally occurring p16Ink4a-positive cells shorten healthy lifespan.Nature2016;530:184-9

[40]

Lewis-McDougall FC,Domenjo-Vila E.Aged-senescent cells contribute to impaired heart regeneration.Aging Cell2019;18:e12931 PMCID:PMC6516154

[41]

Meyer K,Ramanujam D,Sarikas A.Essential role for premature senescence of myofibroblasts in myocardial fibrosis.J Am Coll Cardiol2016;67:2018-28

[42]

Tchkonia T,van Deursen J,Kirkland JL.Cellular senescence and the senescent secretory phenotype: therapeutic opportunities.J Clin Invest2013;123:966-72 PMCID:PMC3582125

[43]

Zhu Y,Pirtskhalava T.The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs.Aging Cell2015;14:644-58

[44]

Wang M.Age-associated pro-inflammatory remodeling and functional phenotype in the heart and large arteries.J Mol Cell Cardiol2015;83:101-11 PMCID:PMC4459900

[45]

Gwechenberger M,Youker KA.Cardiac myocytes produce interleukin-6 in culture and in viable border zone of reperfused infarctions.Circulation1999;99:546-51

[46]

Saucerman JJ,Buchholz KS,Omens JH.Mechanical regulation of gene expression in cardiac myocytes and fibroblasts.Nat Rev Cardiol2019;16:361-78 PMCID:PMC6525041

[47]

Accornero F,Benard MJ,Carmeliet P.Placental growth factor regulates cardiac adaptation and hypertrophy through a paracrine mechanism.Circ Res2011;109:272-80 PMCID:PMC3146170

[48]

Zhai P.Cardiomyocyte senescence and the potential therapeutic role of senolytics in the heart.J Cardiovasc Aging2024;4:18 PMCID:PMC11309366

[49]

Donato AJ,Lesniewski LA.Mechanisms of dysfunction in the aging vasculature and role in age-related disease.Circ Res2018;123:825-48 PMCID:PMC6207260

[50]

Godo S.Endothelial functions.Arterioscler Thromb Vasc Biol2017;37:e108-14

[51]

Ungvari Z,Sorond F,Csiszar A.Mechanisms of vascular aging, a geroscience perspective: JACC focus seminar.J Am Coll Cardiol2020;75:931-41 PMCID:PMC8559983

[52]

Hamilton CA,McIntyre M,Dominiczak AF.Superoxide excess in hypertension and aging: a common cause of endothelial dysfunction.Hypertension2001;37:529-34

[53]

Csiszar A,Lakatta EG.Inflammation and endothelial dysfunction during aging: role of NF-κB.J Appl Physiol2008;105:1333-41 PMCID:PMC2576023

[54]

Gaetano A, Gibellini L, Zanini G, Nasi M, Cossarizza A, Pinti M. Mitophagy and oxidative stress: the role of aging.Antioxidants2021;10:794 PMCID:PMC8156559

[55]

Unterluggauer H,Lener B.Premature senescence of human endothelial cells induced by inhibition of glutaminase.Biogerontology2008;9:247-59

[56]

Han Y.Endothelial senescence in vascular diseases: current understanding and future opportunities in senotherapeutics.Exp Mol Med2023;55:1-12 PMCID:PMC9898542

[57]

Ting KK,Zhao Y,Gamble JR.The aging endothelium.Vasc Biol2021;3:R35-47 PMCID:PMC8052565

[58]

Jia G,Jia C.Endothelial cell senescence in aging-related vascular dysfunction.Biochim Biophys Acta Mol Basis Dis2019;1865:1802-9

[59]

Moreau KL,Hildreth KL.Sex differences in vascular aging in response to testosterone.Biol Sex Differ2020;11:18 PMCID:PMC7161199

[60]

Stanhewicz AE,Stachenfeld NS.Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan.Am J Physiol Heart Circ Physiol2018;315:H1569-88 PMCID:PMC6734083

[61]

Frangogiannis NG.Cardiac fibrosis.Cardiovasc Res2021;117:1450-88 PMCID:PMC8152700

[62]

Frangogiannis NG.Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities.Mol Aspects Med2019;65:70-99

[63]

Li Z,Cui Y.Cardiac-specific expression of cre recombinase leads to age-related cardiac dysfunction associated with tumor-like growth of atrial cardiomyocyte and ventricular fibrosis and ferroptosis.Int J Mol Sci2023;24:3094 PMCID:PMC9962429

[64]

Cieslik KA,Carlson S,Trial J.Immune-inflammatory dysregulation modulates the incidence of progressive fibrosis and diastolic stiffness in the aging heart.J Mol Cell Cardiol2011;50:248-56 PMCID:PMC3019252

[65]

Khalil H,Prasad V.Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis.J Clin Invest2017;127:3770-83 PMCID:PMC5617658

[66]

Kuwahara F,Tokuda K.Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats.Circulation2002;106:130-5

[67]

Meléndez GC,Levick SP,Janicki JS.Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats.Hypertension2010;56:225-31 PMCID:PMC2921860

[68]

Brooks WW.Myocardial fibrosis in transforming growth factor β1 heterozygous mice.J Mol Cell Cardiol2000;32:187-95

[69]

Li L,Wang C.Angiotensin II increases periostin expression via Ras/p38 MAPK/CREB and ERK1/2/TGF-β1 pathways in cardiac fibroblasts.Cardiovasc Res2011;91:80-9

[70]

Gray MO,Kalinyak JE,Karliner JS.Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts.Cardiovasc Res1998;40:352-63

[71]

Basso N,Pietrelli A,Terragno NA.Protective effect of long-term angiotensin II inhibition.Am J Physiol Heart Circ Physiol2007;293:H1351-8

[72]

Benigni A,Zoja C.Disruption of the Ang II type 1 receptor promotes longevity in mice.J Clin Invest2009;119:524-30 PMCID:PMC2648681

[73]

Ghosh AK,Gleaves LA.Genetic deficiency of plasminogen activator inhibitor-1 promotes cardiac fibrosis in aged mice: involvement of constitutive transforming growth factor-beta signaling and endothelial-to-mesenchymal transition.Circulation2010;122:1200-9

[74]

Rohrbach S,Pregla R,Katschinski DM.Age-dependent increase of prolyl-4-hydroxylase domain (PHD) 3 expression in human and mouse heart.Biogerontology2005;6:165-71

[75]

Stephens EH.Age-related changes in collagen synthesis and turnover in porcine heart valves.J Heart Valve Dis2007;16:672-82

[76]

Martini H,Maggiorani D.Aging induces cardiac mesenchymal stromal cell senescence and promotes endothelial cell fate of the CD90 + subset.Aging Cell2019;18:e13015 PMCID:PMC6718537

[77]

Waterstrat A.Effects of aging on hematopoietic stem and progenitor cells.Curr Opin Immunol2009;21:408-13

[78]

Swirski FK.Inflammation and CVD in 2017: from clonal haematopoiesis to the CANTOS trial.Nat Rev Cardiol2018;15:79-80

[79]

Shumliakivska M,Hemmerling I.DNMT3A clonal hematopoiesis-driver mutations induce cardiac fibrosis by paracrine activation of fibroblasts.Nat Commun2024;15:606 PMCID:PMC10799021

[80]

Swirski FK.Cardioimmunology: the immune system in cardiac homeostasis and disease.Nat Rev Immunol2018;18:733-44

[81]

Ramos GC,Nunes-Silva V.Myocardial aging as a T-cell-mediated phenomenon.Proc Natl Acad Sci USA2017;114:E2420-9 PMCID:PMC5373357

[82]

Epelman S,Randolph GJ.Origin and functions of tissue macrophages.Immunity2014;41:21-35

[83]

Epelman S,Beaudin AE.Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation.Immunity2014;40:91-104 PMCID:PMC3923301

[84]

Heidt T,Dutta P.Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction.Circ Res2014;115:284-95 PMCID:PMC4082439

[85]

Bajpai G,Wong N.The human heart contains distinct macrophage subsets with divergent origins and functions.Nat Med2018;24:1234-45 PMCID:PMC6082687

[86]

Hulsmans M,Roh JD.Cardiac macrophages promote diastolic dysfunction.J Exp Med2018;215:423-40 PMCID:PMC5789416

[87]

Lim GB.Heart failure: macrophages promote cardiac fibrosis and diastolic dysfunction.Nat Rev Cardiol2018;15:196-7

[88]

Wick G,Mayerl C.The immunology of fibrosis.Annu Rev Immunol2013;31:107-35

[89]

Karwi QG,Ho KL.Loss of metabolic flexibility in the failing heart.Front Cardiovasc Med2018;5:68 PMCID:PMC5997788

[90]

Kates AM,Dence C.Impact of aging on substrate metabolism by the human heart.J Am Coll Cardiol2003;41:293-9

[91]

Nyberg M.Matching of O2 utilization and O2 delivery in contracting skeletal muscle in health, aging, and heart failure.Front Physiol2022;13:898395 PMCID:PMC9237395

[92]

Lehman JJ.Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart.Clin Exp Pharmacol Physiol2002;29:339-45

[93]

Lima T,Mottis A.Pleiotropic effects of mitochondria in aging.Nat Aging2022;2:199-213

[94]

Picca A,Burman JL.Mitochondrial quality control mechanisms as molecular targets in cardiac ageing.Nat Rev Cardiol2018;15:543-54 PMCID:PMC6283278

[95]

Dai DF,Vermulst M.Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging.Circulation2009;119:2789-97 PMCID:PMC2858759

[96]

Schriner SE,Martin GM.Extension of murine life span by overexpression of catalase targeted to mitochondria.Science2005;308:1909-11

[97]

Owada T,Saitoh SI,Machii H.Resolution of mitochondrial oxidant stress improves aged-cardiovascular performance.Coron Artery Dis2017;28:33-43 PMCID:PMC5145249

[98]

Gioscia-Ryan RA,Sindler AL,Murphy MP.Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice.J Physiol2014;592:2549-61 PMCID:PMC4080937

[99]

Junior RF, Dabkowski ER, Shekar KC, O Connell KA, Hecker PA, Murphy MP. MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload.Free Radic Biol Med2018;117:18-29 PMCID:PMC5866124

[100]

Chiao YA,Sweetwyne M.Late-life restoration of mitochondrial function reverses cardiac dysfunction in old mice.Elife2020;9:e55513

[101]

Hollander JM,Shepherd DL.Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies.Am J Physiol Heart Circ Physiol2014;307:H1-14 PMCID:PMC4080170

[102]

Hernandez-Resendiz S,Loo SJ.Targeting mitochondrial shape: at the heart of cardioprotection.Basic Res Cardiol2023;118:49 PMCID:PMC10643419

[103]

Hatano A,Washio T,Sugiura S.Distinct functional roles of cardiac mitochondrial subpopulations revealed by a 3D simulation model.Biophys J2015;108:2732-9 PMCID:PMC4457478

[104]

Hinton A Jr,Neikirk K.Mitochondrial structure and function in human heart failure.Circ Res2024;135:372-96 PMCID:PMC11225798

[105]

Boengler K,van de Sand A.Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria.Basic Res Cardiol2009;104:141-7

[106]

Lu X,Lu S,Bers DM.Intrafibrillar and perinuclear mitochondrial heterogeneity in adult cardiac myocytes.J Mol Cell Cardiol2019;136:72-84 PMCID:PMC7173146

[107]

Tatarková Z,Račay P.Effects of aging on activities of mitochondrial electron transport chain complexes and oxidative damage in rat heart.Physiol Res2011;60:281-9

[108]

Paradies G,Petrosillo G.Age-dependent decrease in the cytochrome c oxidase activity and changes in phospholipids in rat-heart mitochondria.Arch Gerontol Geriatr1993;16:263-72

[109]

Vujic A,Prag HA.Mitochondrial redox and TCA cycle metabolite signaling in the heart.Free Radic Biol Med2021;166:287-96

[110]

Lerchenmüller C,Mittag S.Restoration of cardiomyogenesis in aged mouse hearts by voluntary exercise.Circulation2022;146:412-26 PMCID:PMC9357140

[111]

Lee DH,Joh HK.Long-term leisure-time physical activity intensity and all-cause and cause-specific mortality: a prospective cohort of US adults.Circulation2022;146:523-34 PMCID:PMC9378548

[112]

Beisvag V,Arbo I.Pathological and physiological hypertrophies are regulated by distinct gene programs.Eur J Cardiovasc Prev Rehabil2009;16:690-7

[113]

Seo DY,Kim AH.Cardiac adaptation to exercise training in health and disease.Pflugers Arch2020;472:155-68

[114]

Bhella PS,Fujimoto N.Impact of lifelong exercise “dose” on left ventricular compliance and distensibility.J Am Coll Cardiol2014;64:1257-66 PMCID:PMC4272199

[115]

Fujimoto N,Hastings JL.Cardiovascular effects of 1 year of progressive and vigorous exercise training in previously sedentary individuals older than 65 years of age.Circulation2010;122:1797-805 PMCID:PMC3730488

[116]

Woo JS,Stratton JR.The influence of age, gender, and training on exercise efficiency.J Am Coll Cardiol2006;47:1049-57

[117]

Jakovljevic DG,Blamire AM.Effect of physical activity on age-related changes in cardiac function and performance in women.Circ Cardiovasc Imaging2015;8:e002086

[118]

Chesky JA,Travis M.Effect of physical training on myocardial enzyme activities in aging rats.J Appl Physiol Respir Environ Exerc Physiol1983;55:1349-53

[119]

Pei Z,Guo Y,Wang F.Effect of different exercise training intensities on age-related cardiac damage in male mice.Aging2021;13:21700-11 PMCID:PMC8457595

[120]

Boström P,Wu J.C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling.Cell2010;143:1072-83 PMCID:PMC3035164

[121]

Kwak HB,Lawler JM.Exercise training attenuates age-induced elevation in Bax/Bcl-2 ratio, apoptosis, and remodeling in the rat heart.FASEB J2006;20:791-3

[122]

Liao PH,Kuo CH.Moderate exercise training attenuates aging-induced cardiac inflammation, hypertrophy and fibrosis injuries of rat hearts.Oncotarget2015;6:35383-94 PMCID:PMC4742112

[123]

Vujic A,Wu TD.Exercise induces new cardiomyocyte generation in the adult mammalian heart.Nat Commun2018;9:1659 PMCID:PMC5916892

[124]

Ding S,Song M.C/EBPB-CITED4 in exercised heart.Adv Exp Med Biol2017;1000:247-59

[125]

Green DJ,O’Driscoll G.Effect of exercise training on endothelium-derived nitric oxide function in humans.J Physiol2004;561:1-25 PMCID:PMC1665322

[126]

Hambrecht R,Weigl C.Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure.Circulation1998;98:2709-15

[127]

Scarfò G,Chelucci E.Regular exercise delays microvascular endothelial dysfunction by regulating antioxidant capacity and cellular metabolism.Sci Rep2023;13:17671 PMCID:PMC10582030

[128]

Tao X,Zhen K,Lv Y.Effect of continuous aerobic exercise on endothelial function: a systematic review and meta-analysis of randomized controlled trials.Front Physiol2023;14:1043108 PMCID:PMC9950521

[129]

Xia WH,Su C.Physical exercise attenuates age-associated reduction in endothelium-reparative capacity of endothelial progenitor cells by increasing CXCR4/JAK-2 signaling in healthy men.Aging Cell2012;11:111-9

[130]

Lesniewski LA,Connell ML.Aerobic exercise reverses arterial inflammation with aging in mice.Am J Physiol Heart Circ Physiol2011;301:H1025-32 PMCID:PMC3191071

[131]

Kalka C,Takahashi T.Vascular endothelial growth factor165 gene transfer augments circulating endothelial progenitor cells in human subjects.Circ Res2000;86:1198-202

[132]

Ma L,Wei W.Exercise protects aged mice against coronary endothelial senescence via FUNDC1-dependent mitophagy.Redox Biol2023;62:102693 PMCID:PMC10113862

[133]

Gu Q,Zhang XF,Liu JD.Chronic aerobic exercise training attenuates aortic stiffening and endothelial dysfunction through preserving aortic mitochondrial function in aged rats.Exp Gerontol2014;56:37-44

[134]

Meng Q.The impact of physical exercise on oxidative and nitrosative stress: balancing the benefits and risks.Antioxidants2024;13:573 PMCID:PMC11118032

[135]

Simioni C,Martelli AM.Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging.Oncotarget2018;9:17181-98 PMCID:PMC5908316

[136]

Lighthouse JK,Velasquez LS.Exercise promotes a cardioprotective gene program in resident cardiac fibroblasts.JCI Insight2019;4:e92098 PMCID:PMC6485363

[137]

Lerchenmüller C,Yeri A.CITED4 protects against adverse remodeling in response to physiological and pathological stress.Circ Res2020;127:631-46 PMCID:PMC7725361

[138]

Ma X,Xiao H.Cardiac fibrosis alleviated by exercise training is AMPK-dependent.PLoS One2015;10:e0129971 PMCID:PMC4466316

[139]

Jia D,Lv Y,Tian Z.Postinfarction exercise training alleviates cardiac dysfunction and adverse remodeling via mitochondrial biogenesis and SIRT1/PGC-1α/PI3K/Akt signaling.J Cell Physiol2019;234:23705-18

[140]

Dawson K,Ordög B.MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation.Circulation2013;127:1466-75

[141]

Chaturvedi P,Medina I,Tyagi SC.Cardiosome mediated regulation of MMP9 in diabetic heart: role of mir29b and mir455 in exercise.J Cell Mol Med2015;19:2153-61 PMCID:PMC4568920

[142]

Takeda N,Uchino Y.Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload.J Clin Invest2010;120:254-65 PMCID:PMC2798693

[143]

Epelman S,Mann DL.Role of innate and adaptive immune mechanisms in cardiac injury and repair.Nat Rev Immunol2015;15:117-29 PMCID:PMC4669103

[144]

Leuschner F.Novel functions of macrophages in the heart: insights into electrical conduction, stress, and diastolic dysfunction.Eur Heart J2020;41:989-94 PMCID:PMC7778432

[145]

Yang HL,Hung CH.Early moderate intensity aerobic exercise intervention prevents doxorubicin-caused cardiac dysfunction through inhibition of cardiac fibrosis and inflammation.Cancers2020;12:1102 PMCID:PMC7281105

[146]

Xu X,Powers AS.Effects of exercise training on cardiac function and myocardial remodeling in post myocardial infarction rats.J Mol Cell Cardiol2008;44:114-22 PMCID:PMC2244592

[147]

Noz MP,Hopman MTE.Sixteen-week physical activity intervention in subjects with increased cardiometabolic risk shifts innate immune function towards a less proinflammatory state.J Am Heart Assoc2019;8:e013764 PMCID:PMC6898840

[148]

Morici G,Santoro A.Supramaximal exercise mobilizes hematopoietic progenitors and reticulocytes in athletes.Am J Physiol Regul Integr Comp Physiol2005;289:R1496-503

[149]

Study Group, Lead Analysts, MoTrPAC Study Group. Temporal dynamics of the multi-omic response to endurance exercise training.Nature2024;629:174-83

[150]

Botta A,Beam J.Short term exercise induces PGC-1α, ameliorates inflammation and increases mitochondrial membrane proteins but fails to increase respiratory enzymes in aging diabetic hearts.PLoS One2013;8:e70248 PMCID:PMC3731348

[151]

Feng L,An J.Exercise training protects against heart failure via expansion of myeloid-derived suppressor cells through regulating IL-10/STAT3/S100A9 pathway.Circ Heart Fail2022;15:e008550

[152]

Frodermann V,Courties G.Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells.Nat Med2019;25:1761-71

[153]

Butts B,Dunbar SB,Gary RA.Effects of exercise on ASC methylation and IL-1 cytokines in heart failure.Med Sci Sports Exerc2018;50:1757-66 PMCID:PMC6095733

[154]

Butts B,Dunbar SB.Methylation of apoptosis-associated speck-like protein with a caspase recruitment domain and outcomes in heart failure.J Card Fail2016;22:340-6 PMCID:PMC4861674

[155]

Nakajima K,Mori M.Exercise effects on methylation of ASC gene.Int J Sports Med2010;31:671-5

[156]

Duggal NA,Harridge SDR,Lord JM.Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity?.Nat Rev Immunol2019;19:563-72

[157]

Langston PK,Ryback BA.Regulatory T cells shield muscle mitochondria from interferon-γ-mediated damage to promote the beneficial effects of exercise.Sci Immunol2023;8:eadi5377 PMCID:PMC10860652

[158]

Vega RB,Kelly DP.Molecular mechanisms underlying cardiac adaptation to exercise.Cell Metab2017;25:1012-26 PMCID:PMC5512429

[159]

Kim J,Sena S.Insulin-like growth factor I receptor signaling is required for exercise-induced cardiac hypertrophy.Mol Endocrinol2008;22:2531-43 PMCID:PMC2582541

[160]

Weeks KL,Ooi JYY,Mcmullen JR.The IGF1-PI3K-akt signaling pathway in mediating exercise-induced cardiac hypertrophy and protection.Adv Exp Med Biol2017;1000:187-210

[161]

McMullen JR,Zhang L.Phosphoinositide 3-kinase(p110α) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy.Proc Natl Acad Sci USA2003;100:12355-60 PMCID:PMC218762

[162]

Weeks KL,Du XJ.Phosphoinositide 3-kinase p110α is a master regulator of exercise-induced cardioprotection and PI3K gene therapy rescues cardiac dysfunction.Circ Heart Fail2012;5:523-34

[163]

Matsui T,del Monte F.Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo.Circulation2001;104:330-5

[164]

DeBosch B,Lupu TS.Akt1 is required for physiological cardiac growth.Circulation2006;113:2097-104

[165]

Bezzerides VJ,Lerchenmüller C.CITED4 induces physiologic hypertrophy and promotes functional recovery after ischemic injury.JCI Insight2016;1:e85904 PMCID:PMC4945110

[166]

Zou J,Chen X.C/EBPβ knockdown protects cardiomyocytes from hypertrophy via inhibition of p65-NFκB.Mol Cell Endocrinol2014;390:18-25

[167]

Liu X,Zhu H.miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling.Cell Metab2015;21:584-95 PMCID:PMC4393846

[168]

Shi J,Kong X.miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury.Theranostics2017;7:664-76 PMCID:PMC5327641

[169]

Calvert JW,Aragón JP.Exercise protects against myocardial ischemia-reperfusion injury via stimulation of β3-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols.Circ Res2011;108:1448-58 PMCID:PMC3140870

[170]

Yang L,Yang L.Exercise protects against chronic β-adrenergic remodeling of the heart by activation of endothelial nitric oxide synthase.PLoS One2014;9:e96892 PMCID:PMC4014558

[171]

Fajardo G,Matthews M.Mitochondrial quality control in the heart: the balance between physiological and pathological stress.Biomedicines2022;10:1375 PMCID:PMC9220167

[172]

Ghahremani R,Salehi I,Esposito F.Mitochondrial dynamics as an underlying mechanism involved in aerobic exercise training-induced cardioprotection against ischemia-reperfusion injury.Life Sci2018;213:102-8

[173]

Lehman JJ,Kovacs A,Medeiros DM.Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis.J Clin Invest2000;106:847-56 PMCID:PMC517815

[174]

Vettor R,Ragni M.Exercise training boosts eNOS-dependent mitochondrial biogenesis in mouse heart: role in adaptation of glucose metabolism.Am J Physiol Endocrinol Metab2014;306:E519-28

[175]

Scarpulla RC,Kelly DP.Transcriptional integration of mitochondrial biogenesis.Trends Endocrinol Metab2012;23:459-66 PMCID:PMC3580164

[176]

Musi N,Arad M.Functional role of AMP-activated protein kinase in the heart during exercise.FEBS Lett2005;579:2045-50

[177]

Timm KN.The role of AMPK activation for cardioprotection in doxorubicin-induced cardiotoxicity.Cardiovasc Drugs Ther2020;34:255-69 PMCID:PMC7125062

[178]

Qian L,Deng C.Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases.Signal Transduct Target Ther2024;9:50 PMCID:PMC10904817

[179]

Judge S,Smith A.Exercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the heart.Am J Physiol Regul Integr Comp Physiol2005;289:R1564-72

[180]

Lanza IR,Short KR.Endurance exercise as a countermeasure for aging.Diabetes2008;57:2933-42 PMCID:PMC2570389

[181]

Narkar VA,Yu RT.AMPK and PPARdelta agonists are exercise mimetics.Cell2008;134:405-15 PMCID:PMC2706130

[182]

Kim TT.Is AMPK the savior of the failing heart?.Trends Endocrinol Metab2015;26:40-8

[183]

Yang Y,Liu N.Metformin decelerates aging clock in male monkeys.Cell2024;187:6358-78.e29

AI Summary AI Mindmap
PDF

46

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/