Geroscience in heart failure: the search for therapeutic targets in the shared pathobiology of human aging and heart failure

Claire Castro , Constance Delwarde , Yanxi Shi , Jason Roh

The Journal of Cardiovascular Aging ›› 2025, Vol. 5 ›› Issue (1) : 1

PDF
The Journal of Cardiovascular Aging ›› 2025, Vol. 5 ›› Issue (1) :1 DOI: 10.20517/jca.2024.15
Review

Geroscience in heart failure: the search for therapeutic targets in the shared pathobiology of human aging and heart failure

Author information +
History +
PDF

Abstract

Age is a major risk factor for heart failure, but one that has been historically viewed as non-modifiable. Emerging evidence suggests that the biology of aging is malleable, and can potentially be intervened upon to treat age-associated chronic diseases, such as heart failure. While aging biology represents a new frontier for therapeutic target discovery in heart failure, the challenges of translating Geroscience research to the clinic are multifold. In this review, we propose a strategy that prioritizes initial target discovery in human biology. We review the rationale for starting with human omics, which has generated important insights into the shared (patho)biology of human aging and heart failure. We then discuss how this knowledge can be leveraged to identify the mechanisms of aging biology most relevant to heart failure. Lastly, we provide examples of how this human-first Geroscience approach, when paired with rigorous functional assessments in preclinical models, is leading to early-stage clinical development of gerotherapeutic approaches for heart failure.

Keywords

Translational research / heart failure / genomics / proteomics / aging biology / geroscience

Cite this article

Download citation ▾
Claire Castro, Constance Delwarde, Yanxi Shi, Jason Roh. Geroscience in heart failure: the search for therapeutic targets in the shared pathobiology of human aging and heart failure. The Journal of Cardiovascular Aging, 2025, 5(1): 1 DOI:10.20517/jca.2024.15

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bozkurt B,Tsutsui H.Universal definition and classification of heart failure: a report of the heart failure society of America, heart failure association of the European society of cardiology, Japanese heart failure society and writing committee of the universal definition of heart failure.J Cardiac Fail2021;

[2]

Savarese G,Lund LH,Rosano GMC.Global burden of heart failure: a comprehensive and updated review of epidemiology.Cardiovasc Res2023;118:3272-87

[3]

Martin SS,Almarzooq ZI.2024 heart disease and stroke statistics: a report of US and global data from the American heart association.Circulation2024;149:e347-913

[4]

Bozkurt B,Alexander KM.Heart failure epidemiology and outcomes statistics: a report of the heart failure society of America.J Card Fail2023;29:1412-51 PMCID:PMC10864030

[5]

Curtis LH,Hammill BG.Early and long-term outcomes of heart failure in elderly persons, 2001-2005.Arch Intern Med2008;168:2481-8 PMCID:PMC2629051

[6]

Mann DL.Mechanisms and models in heart failure: the biomechanical model and beyond.Circulation2005;111:2837-49

[7]

Maurer MS,Gundapaneni B.Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy.N Engl J Med2018;379:1007-16

[8]

Olivotto I,Barriales-Villa R.Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial.Lancet2020;396:759-69

[9]

McMurray JJV,Inzucchi SE.Dapagliflozin in patients with heart failure and reduced ejection fraction.N Engl J Med2019;381:1995-2008

[10]

Anker SD,Filippatos G.Empagliflozin in heart failure with a preserved ejection fraction.N Engl J Med2021;385:1451-61

[11]

Kosiborod MN,Borlaug BA.Semaglutide in patients with heart failure with preserved ejection fraction and obesity.N Engl J Med2023;389:1069-84

[12]

López-Otín C,Partridge L,Kroemer G.Hallmarks of aging: an expanding universe.Cell2023;186:243-78

[13]

Li H,Rhee J,Roh JD.Targeting age-related pathways in heart failure.Circ Res2020;126:533-51 PMCID:PMC7041880

[14]

Goyal P,Roh J.Aging in heart failure: embracing biology over chronology: JACC family series.JACC Heart Fail2024;12:795-809 PMCID:PMC11331491

[15]

Sierra F.The emergence of geroscience as an interdisciplinary approach to the enhancement of health span and life span.Cold Spring Harb Perspect Med2016;6:a025163 PMCID:PMC4817738

[16]

Dock W.Presbycardia or aging of the myocardium.NY State J Med1945;45:983-6

[17]

Tromp J,Lau ES.Age dependent associations of risk factors with heart failure: pooled population based cohort study.BMJ2021;372:n461

[18]

Strait JB.Aging-associated cardiovascular changes and their relationship to heart failure.Heart Fail Clin2012;8:143-64 PMCID:PMC3223374

[19]

Lakatta EG.Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part II: the aging heart in health: links to heart disease.Circulation2003;107:346-54

[20]

Pandey A,Brubaker PH.Healthy aging and cardiovascular function: invasive hemodynamics during rest and exercise in 104 healthy volunteers.JACC Heart Fail2020;8:111-21 PMCID:PMC10367061

[21]

Roh J,Chaudhari V.The role of exercise in cardiac aging: from physiology to molecular mechanisms.Circ Res2016;118:279-95 PMCID:PMC4914047

[22]

Abdellatif M,Sedej S.Hallmarks of cardiovascular ageing.Nat Rev Cardiol2023;20:754-77

[23]

Xie S,Deng W.Metabolic landscape in cardiac aging: insights into molecular biology and therapeutic implications.Signal Transduct Target Ther2023;8:114 PMCID:PMC10015017

[24]

Williams GC.Pleiotropy, natural selection, and the evolution of senescence.Eolution1957;11:398-411

[25]

Kirkwood TBL.Evolution of ageing.Nature1977;270:301-4

[26]

Hua Y,Ceylan-Isik AF,Nunn JM.Chronic AKT activation accentuates aging-induced cardiac hypertrophy and myocardial contractile dysfunction: role of autophagy.Basic Res Cardiol2011;106:1173-91

[27]

Chaanine AH.AKT signalling in the failing heart.Eur J Heart Fail2011;13:825-9 PMCID:PMC3143831

[28]

Anderson R,Maggiorani D.Length-independent telomere damage drives post-mitotic cardiomyocyte senescence.EMBO J2019;38:e100492

[29]

Hartupee J.Neurohormonal activation in heart failure with reduced ejection fraction.Nat Rev Cardiol2017;14:30-8 PMCID:PMC5286912

[30]

Campisi J.Cellular senescence: when bad things happen to good cells.Nat Rev Mol Cell Biol2007;8:729-40

[31]

Kenyon C,Gensch E,Tabtiang R.A C. elegans mutant that lives twice as long as wild type.Nature1993;366:461-4

[32]

Kenyon C.The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing.Philos Trans R Soc Lond B Biol Sci2011;366:9-16 PMCID:PMC3001308

[33]

Zhang WB,Barzilai N.The antagonistic pleiotropy of insulin-like growth factor 1.Aging Cell2021;20:e13443 PMCID:PMC8441393

[34]

Milman S,Barzilai N.The somatotropic axis in human aging: framework for the current state of knowledge and future research.Cell Metab2016;23:980-9 PMCID:PMC4919980

[35]

Vasan RS,D'Agostino RB.Serum insulin-like growth factor I and risk for heart failure in elderly individuals without a previous myocardial infarction: the Framingham Heart Study.Ann Intern Med2003;139:642-8

[36]

Abdellatif M,Kroemer G.Spermidine overrides INSR (insulin receptor)-IGF1R (insulin-like growth factor 1 receptor)-mediated inhibition of autophagy in the aging heart.Autophagy2022;18:2500-2 PMCID:PMC9542397

[37]

Abdellatif M,Heberle AM.Fine-tuning cardiac insulin-like growth factor 1 receptor signaling to promote health and longevity.Circulation2022;145:1853-66

[38]

Forman DE,Newman JC.Impact of geroscience on therapeutic strategies for older adults with cardiovascular disease: JACC scientific statement.J Am Coll Cardiol2023;82:631-47 PMCID:PMC10414756

[39]

Dowden H.Trends in clinical success rates and therapeutic focus.Nat Rev Drug Discov2019;18:495-6

[40]

Vatner SF.Why so few new cardiovascular drugs translate to the clinics.Circ Res2016;119:714-7 PMCID:PMC5012301

[41]

Roh J,Singh A,Sam F.Heart failure with preserved ejection fraction: heterogeneous syndrome, diverse preclinical models.Circ Res2022;130:1906-25 PMCID:PMC10035274

[42]

Haldar SM.Keeping translational research grounded in human biology.J Clin Invest2024;134:e178332 PMCID:PMC10763720

[43]

Nelson MR,Painter JL.The support of human genetic evidence for approved drug indications.Nat Genet2015;47:856-60

[44]

Rosenzweig A.The growing importance of basic models of cardiovascular disease.Circ Res2022;130:1743-6 PMCID:PMC9202074

[45]

Kaplanis J,Shor T.Quantitative analysis of population-scale family trees with millions of relatives.Science2018;360:171-5 PMCID:PMC6593158

[46]

Deelen J,Uh HW.Genome-wide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age.Hum Mol Genet2014;23:4420-32

[47]

Broer L,Deelen J.GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy.J Gerontol A Biol Sci Med Sci2015;70:110-8 PMCID:PMC4296168

[48]

Yashin AI,Arbeeva LS.Genetics of aging, health, and survival: dynamic regulation of human longevity related traits.Front Genet2015;6:122 PMCID:PMC4394697

[49]

Zeng Y,Min J.Novel loci and pathways significantly associated with longevity.Sci Rep2016;6:21243

[50]

Gurinovich A,Zhang W.Effect of longevity genetic variants on the molecular aging rate.Geroscience2021;43:1237-51 PMCID:PMC8190315

[51]

Deelen J,Arking DE.A meta-analysis of genome-wide association studies identifies multiple longevity genes.Nat Commun2019;10:3669

[52]

Atkins JL,Ble A.Longer-lived parents and cardiovascular outcomes: 8-year follow-up in 186,000 U.K. biobank participants.J Am Coll Cardiol2016;68:874-5

[53]

Smith NL,Morrison AC.Association of genome-wide variation with the risk of incident heart failure in adults of European and African ancestry: a prospective meta-analysis from the cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium.Circ Cardiovasc Genet2010;3:256-66

[54]

Shah S,Roselli C.Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure.Nat Commun2020;11:163 PMCID:PMC6952380

[55]

Levin MG,Singhal P.Genome-wide association and multi-trait analyses characterize the common genetic architecture of heart failure.Nat Commun2022;13:6914

[56]

Joseph J,Hui Q.Genetic architecture of heart failure with preserved versus reduced ejection fraction.Nat Commun2022;13:7753 PMCID:PMC9751124

[57]

Rasooly D,Pereira AC.Genome-wide association analysis and mendelian randomization proteomics identify drug targets for heart failure.Nat Commun2023;14:3826 PMCID:PMC10333277

[58]

Yousefzadeh M,Vyas R,Robbins P.DNA damage-how and why we age?.Elife2021;10:e62852 PMCID:PMC7846274

[59]

Vijg J.Pathogenic mechanisms of somatic mutation and genome mosaicism in aging.Cell2020;182:12-23 PMCID:PMC7354350

[60]

Choudhury S,Kim J.Somatic mutations in single human cardiomyocytes reveal age-associated DNA damage and widespread oxidative genotoxicity.Nat Aging2022;2:714-25 PMCID:PMC9432807

[61]

Jaiswal S,Flannick J.Age-related clonal hematopoiesis associated with adverse outcomes.N Engl J Med2014;371:2488-98 PMCID:PMC4306669

[62]

Nachun D,Bick AG.Clonal hematopoiesis associated with epigenetic aging and clinical outcomes.Aging Cell2021;20:e13366 PMCID:PMC8208788

[63]

Mack TM,Pershad Y.Epigenetic and proteomic signatures associate with clonal hematopoiesis expansion rate.Nat Aging2024;4:1043-52

[64]

Zhang CR,Kukhar O.Txnip enhances fitness of Dnmt3a-mutant hematopoietic stem cells via p21.Blood Cancer Discov2022;3:220-39 PMCID:PMC9414740

[65]

Singh S,Gudmundsson KO.Id1 promotes clonal hematopoiesis in mice with Tet2 loss of function.bioRxiv2024;

[66]

Jaiswal S,Silver AJ.Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease.N Engl J Med2017;377:111-21 PMCID:PMC6717509

[67]

Yu B,Raffield LM.Supplemental association of clonal hematopoiesis with incident heart failure.J Am Coll Cardiol2021;78:42-52 PMCID:PMC8313294

[68]

Pascual-Figal DA,Díez-Díez M.Clonal hematopoiesis and risk of progression of heart failure with reduced left ventricular ejection fraction.J Am Coll Cardiol2021;77:1747-59

[69]

Schuermans A,Raffield LM.Clonal hematopoiesis and incident heart failure with preserved ejection fraction.JAMA Netw Open2024;7:e2353244 PMCID:PMC10811556

[70]

Abplanalp WT,John D.Clonal hematopoiesis-driver DNMT3A mutations alter immune cells in heart failure.Circ Res2021;128:216-28

[71]

Deursen JM. The role of senescent cells in ageing.Nature2014;509:439-46 PMCID:PMC4214092

[72]

Mehdizadeh M,Thorin E,Nattel S.The role of cellular senescence in cardiac disease: basic biology and clinical relevance.Nat Rev Cardiol2022;19:250-64

[73]

Coppé JP,Rodier F.Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor.PLoS Biol2008;6:2853-68 PMCID:PMC2592359

[74]

Xu M,Farr JN.Senolytics improve physical function and increase lifespan in old age.Nat Med2018;24:1246-56

[75]

Baker DJ,Durik M.Naturally occurring p16Ink4a-positive cells shorten healthy lifespan.Nature2016;530:184-9

[76]

Childs BG,Wijshake T,Campisi J.Senescent intimal foam cells are deleterious at all stages of atherosclerosis.Science2016;354:472-7 PMCID:PMC5112585

[77]

Kovacic JC,Nabel EG,Fuster V.Cellular senescence, vascular disease, and aging: part 2 of a 2-part review: clinical vascular disease in the elderly.Circulation2011;123:1900-10

[78]

Lewis-McDougall FC,Domenjo-Vila E.Aged-senescent cells contribute to impaired heart regeneration.Aging Cell2019;18:e12931 PMCID:PMC6516154

[79]

Lyu G,Zhang C.TGF-β signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging.Nat Commun2018;9:2560 PMCID:PMC6028646

[80]

Li T,Ding P.Pathological implication of CaMKII in NF-κB pathway and SASP during cardiomyocytes senescence.Mech Ageing Dev2023;209:111758

[81]

Gevaert AB,Leloup AJ.Endothelial senescence contributes to heart failure with preserved ejection fraction in an aging mouse model.Circ Heart Fail2017;10:e003806

[82]

Redgrave RE,Booth LK.Senescent cardiomyocytes contribute to cardiac dysfunction following myocardial infarction.NPJ Aging2023;9:15 PMCID:PMC10267185

[83]

Meyer K,Ramanujam D,Sarikas A.Essential role for premature senescence of myofibroblasts in myocardial fibrosis.J Am Coll Cardiol2016;67:2018-28

[84]

Roh JD,Yu A.Placental senescence pathophysiology is shared between peripartum cardiomyopathy and preeclampsia in mouse and human.Sci Transl Med2024;16:eadi0077

[85]

Walaszczyk A,Redgrave R.Pharmacological clearance of senescent cells improves survival and recovery in aged mice following acute myocardial infarction.Aging Cell2019;18:e12945 PMCID:PMC6516151

[86]

Salerno N,Scalise M.Pharmacological clearance of senescent cells improves cardiac remodeling and function after myocardial infarction in female aged mice.Mech Ageing Dev2022;208:111740

[87]

Jia K,Liu A.Senolytic agent navitoclax inhibits angiotensin II-induced heart failure in mice.J Cardiovasc Pharmacol2020;76:452-60

[88]

Lérida-Viso A,Morellá-Aucejo Á.Pharmacological senolysis reduces doxorubicin-induced cardiotoxicity and improves cardiac function in mice.Pharmacol Res2022;183:106356

[89]

Kirkland JL.Senolytic drugs: from discovery to translation.J Intern Med2020;288:518-36 PMCID:PMC7405395

[90]

Nambiar A,Justice J.Senolytics dasatinib and quercetin in idiopathic pulmonary fibrosis: results of a phase I, single-blind, single-center, randomized, placebo-controlled pilot trial on feasibility and tolerability.EBioMedicine2023;90:104481 PMCID:PMC10006434

[91]

Gonzales MM,Kautz TF.Senolytic therapy in mild Alzheimer's disease: a phase 1 feasibility trial.Nat Med2023;29:2481-8 PMCID:PMC10875739

[92]

Lee E,Lopez L.Exploring the effects of dasatinib, quercetin, and fisetin on DNA methylation clocks: a longitudinal study on senolytic interventions.Aging2024;16:3088-106 PMCID:PMC10929829

[93]

Barzilai N,Kritchevsky SB.Metformin as a tool to target aging.Cell Metab2016;23:1060-5 PMCID:PMC5943638

[94]

Martin-Montalvo A,Mitchell SJ.Metformin improves healthspan and lifespan in mice.Nat Commun2013;4:2192 PMCID:PMC3736576

[95]

Abdelgawad IY,Sadaf B,Zordoky BN.Metformin mitigates SASP secretion and LPS-triggered hyper-inflammation in Doxorubicin-induced senescent endothelial cells.Front Aging2023;4:1170434 PMCID:PMC10164964

[96]

Moiseeva O,St-Germain E.Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation.Aging Cell2013;12:489-98

[97]

Slater RE,Methawasin M.Metformin improves diastolic function in an HFpEF-like mouse model by increasing titin compliance.J Gen Physiol2019;151:42-52 PMCID:PMC6314384

[98]

Gundewar S,Jha S.Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure.Circ Res2009;104:403-11 PMCID:PMC2709761

[99]

Crowley MJ,McDuffie JR.Clinical outcomes of metformin use in populations with chronic kidney disease, congestive heart failure, or chronic liver disease: a systematic review.Ann Intern Med2017;166:191-200

[100]

Halabi A,Huynh Q.Metformin treatment in heart failure with preserved ejection fraction: a systematic review and meta-regression analysis.Cardiovasc Diabetol2020;19:124 PMCID:PMC7409497

[101]

Li JZ.Cardiovascular protection by metformin: latest advances in basic and clinical research.Cardiology2023;148:374-84

[102]

Chin DWL,Virding Culleton S.Aged healthy mice acquire clonal hematopoiesis mutations.Blood2022;139:629-34 PMCID:PMC8832470

[103]

Sano S,Wang Y.Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome.J Am Coll Cardiol2018;71:875-86 PMCID:PMC5828038

[104]

Sano S,Yura Y.JAK2V617F-mediated clonal hematopoiesis accelerates pathological remodeling in murine heart failure.JACC Basic Transl Sci2019;4:684-97 PMCID:PMC6834960

[105]

Sano S,Wang Y,Sano M.CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease.Circ Res2018;123:335-41 PMCID:PMC6054544

[106]

Fuster JJ,Zuriaga MA.Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice.Science2017;355:842-7

[107]

Cheng X,Wen X,Guo S.NLRP3-inflammasome inhibition by MCC950 attenuates cardiac and pulmonary artery remodelling in heart failure with preserved ejection fraction.Life Sci2023;333:122185

[108]

Wang Y,Yura Y.Tet2-mediated clonal hematopoiesis in nonconditioned mice accelerates age-associated cardiac dysfunction.JCI Insight2020;5:135204 PMCID:PMC7213793

[109]

Fuster JJ,Zorita V.TET2-loss-of-function-driven clonal hematopoiesis exacerbates experimental insulin resistance in aging and obesity.Cell Rep2020;33:108326 PMCID:PMC7856871

[110]

Borlaug BA,Kitzman DW,Obokata M.Obesity and heart failure with preserved ejection fraction: new insights and pathophysiological targets.Cardiovasc Res2023;118:3434-50 PMCID:PMC10202444

[111]

Reyes Gaido OE,Granger JM.An improved reporter identifies ruxolitinib as a potent and cardioprotective CaMKII inhibitor.Sci Transl Med2023;15:eabq7839 PMCID:PMC11022683

[112]

Russell-Hallinan A,Watson CJ.Repurposing from oncology to cardiology: low-dose 5-azacytidine attenuates pathological cardiac remodeling in response to pressure overload injury.J Cardiovasc Pharmacol Ther2021;26:375-85

[113]

Lin AE,Xiao L.Clonal hematopoiesis of indeterminate potential with loss of Tet2 enhances risk for atrial fibrillation through Nlrp3 inflammasome activation.Circulation2024;149:1419-34

[114]

Hoisnard L,Maury S.Adverse events associated with JAK inhibitors in 126,815 reports from the WHO pharmacovigilance database.Sci Rep2022;12:7140 PMCID:PMC9065106

[115]

Hoisnard L,Dray-Spira R,Zureik M.Risk of major adverse cardiovascular and venous thromboembolism events in patients with rheumatoid arthritis exposed to JAK inhibitors versus adalimumab: a nationwide cohort study.Ann Rheum Dis2023;82:182-8

[116]

Naffakh N,Patel P.Incidence of cardiac events in patients with MDS or AML receiving azacitidine or decitabine within a large community health system.J Clin Oncol2023;41:16

[117]

Ridker PM,Thuren T.Antiinflammatory therapy with canakinumab for atherosclerotic disease.N Engl J Med2017;377:1119-31

[118]

Everett BM,Lainscak M.Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure.Circulation2019;139:1289-99

[119]

Svensson EC,Campbell CD.TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial.JAMA Cardiol2022;7:521-8 PMCID:PMC8988022

[120]

Mahfooz K,Palagati K.Anakinra in heart failure: a systematic review and meta-analysis of randomized controlled trials.Med Sci2022;11:4 PMCID:PMC9844326

[121]

Ferreira JP,Ferrão D.Fenofibrate and heart failure outcomes in patients with type 2 diabetes: analysis from ACCORD.Diabetes Care2022;45:1584-91 PMCID:PMC9274224

[122]

Kanno K,Chang J.Pemafibrate suppresses NLRP3 inflammasome activation in the liver and heart in a novel mouse model of steatohepatitis-related cardiomyopathy.Sci Rep2022;12:2996 PMCID:PMC8863801

[123]

Zheng J,Baird D.Phenome-wide mendelian randomization mapping the influence of the plasma proteome on complex diseases.Nat Genet2020;52:1122-31 PMCID:PMC7610464

[124]

Sun BB,Traylor M.Plasma proteomic associations with genetics and health in the UK Biobank.Nature2023;622:329-38 PMCID:PMC10567551

[125]

Eldjarn GH,Lund SH.Large-scale plasma proteomics comparisons through genetics and disease associations.Nature2023;622:348-58 PMCID:PMC10567571

[126]

Katz DH,Deng S.Proteomic profiling platforms head to head: leveraging genetics and clinical traits to compare aptamer- and antibody-based methods.Sci Adv2022;8:eabm5164 PMCID:PMC9390994

[127]

Menni C,Mangino M.Circulating proteomic signatures of chronological age.J Gerontol A Biol Sci Med Sci2015;70:809-16 PMCID:PMC4469006

[128]

Tanaka T,Moaddel R.Plasma proteomic signature of age in healthy humans.Aging Cell2018;17:e12799 PMCID:PMC6156492

[129]

Lehallier B,Schaum N.Undulating changes in human plasma proteome profiles across the lifespan.Nat Med2019;25:1843-50 PMCID:PMC7062043

[130]

Sathyan S,Gao T.Plasma proteomic profile of age, health span, and all-cause mortality in older adults.Aging Cell2020;19:e13250 PMCID:PMC7681045

[131]

Orwoll ES,Nielson CM.Proteomic assessment of serum biomarkers of longevity in older men.Aging Cell2020;19:e13253 PMCID:PMC7681066

[132]

Liu X,Xanthakis V.Plasma proteomic signature of decline in gait speed and grip strength.Aging Cell2022;21:e13736

[133]

Liu X,Newman AB.Plasma proteomic signature of human longevity.Aging Cell2024;23:e14136 PMCID:PMC11166369

[134]

Liu F,Schrack JA.Late-life plasma proteins associated with prevalent and incident frailty: a proteomic analysis.Aging Cell2023;22:e13975

[135]

Kuo CL,Liu P.Proteomic aging clock (PAC) predicts age-related outcomes in middle-aged and older adults.Aging Cell2024;23:e14195 PMCID:PMC11320350

[136]

Schaum N,Hahn O.Ageing hallmarks exhibit organ-specific temporal signatures.Nature2020;583:596-602

[137]

Oh HS,Nachun D.Organ aging signatures in the plasma proteome track health and disease.Nature2023;624:164-72 PMCID:PMC10700136

[138]

Basisty N,Jeon OH.A proteomic atlas of senescence-associated secretomes for aging biomarker development.PLoS Biol2020;18:e3000599 PMCID:PMC6964821

[139]

Roh JD,Guseh JS.Plasma proteomics of COVID-19-associated cardiovascular complications: implications for pathophysiology and therapeutics.JACC Basic Transl Sci2022;7:425-41

[140]

Ferreira JP,Collier T.Proteomic bioprofiles and mechanistic pathways of progression to heart failure.Circ Heart Fail2019;12:e005897

[141]

Nayor M,Rasheed H.Aptamer-based proteomic platform identifies novel protein predictors of incident heart failure and echocardiographic traits.Circ Heart Fail2020;13:e006749

[142]

Girerd N,Duarte K.Protein biomarkers of new-onset heart failure: insights from the heart omics and ageing cohort, the atherosclerosis risk in communities study, and the framingham heart study.Circ Heart Fail2023;16:e009694

[143]

Emilsson V,Austin TR.Proteomic prediction of incident heart failure and its main subtypes.Eur J Heart Fail2024;26:87-102

[144]

Shah AM,Arthur V.Large scale plasma proteomics identifies novel proteins and protein networks associated with heart failure development.Nat Commun2024;15:528 PMCID:PMC10789789

[145]

Ramonfaur D,Arthur V.High throughput plasma proteomics and risk of heart failure and frailty in late life.JAMA Cardiol2024;9:649-58 PMCID:PMC11137660

[146]

Morikawa M,Miyazono K.TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology.Cold Spring Harb Perspect Biol2016;8:a021873 PMCID:PMC4852809

[147]

Chang C.Agonists and antagonists of TGF-β family ligands.Cold Spring Harb Perspect Biol2016;8:a021923 PMCID:PMC4968162

[148]

Acosta JC,Wuestefeld T.A complex secretory program orchestrated by the inflammasome controls paracrine senescence.Nat Cell Biol2013;15:978-90 PMCID:PMC3732483

[149]

Loffredo FS,Jay SM.Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy.Cell2013;153:828-39 PMCID:PMC3677132

[150]

Sinha M,Oh J.Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle.Science2014;344:649-52 PMCID:PMC4104429

[151]

Katsimpardi L,Schein PA.Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors.Science2014;344:630-4 PMCID:PMC4123747

[152]

Egerman MA,Gilbert JA.GDF11 increases with age and inhibits skeletal muscle regeneration.Cell Metab2015;22:164-74 PMCID:PMC4497834

[153]

Schafer MJ,Vanderboom PM.Quantification of GDF11 and myostatin in human aging and cardiovascular disease.Cell Metab2016;23:1207-15 PMCID:PMC4913514

[154]

Smith SC,Zhang X.GDF11 does not rescue aging-related pathological hypertrophy.Circ Res2015;117:926-32 PMCID:PMC4636963

[155]

Harper SC,Borghetti G.GDF11 decreases pressure overload-induced hypertrophy, but can cause severe cachexia and premature death.Circ Res2018;123:1220-31 PMCID:PMC6309347

[156]

Kraler S,Vdovenko D.Circulating GDF11 exacerbates myocardial injury in mice and associates with increased infarct size in humans.Cardiovasc Res2023;119:2729-42 PMCID:PMC10757585

[157]

Zimmers TA,Wang M.Exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting.Basic Res Cardiol2017;112:48 PMCID:PMC5833306

[158]

Chen L,Liu Y.Growth differentiation factor 11 attenuates cardiac ischemia reperfusion injury via enhancing mitochondrial biogenesis and telomerase activity.Cell Death Dis2021;12:665 PMCID:PMC8253774

[159]

Zhu J,Zhao Y.Deficiency of GDF-11 accelerates TAC-induced heart failure by impairing cardiac angiogenesis.JACC Basic Transl Sci2023;8:617-35 PMCID:PMC10322730

[160]

Kizer JR,Ganz P.Circulating growth differentiation factors 11 and 8, their antagonists follistatin and follistatin-like-3, and risk of heart failure in elders.J Gerontol A Biol Sci Med Sci2024;79:glad206 PMCID:PMC10733168

[161]

Roh JD,Chaudhari V.Activin type II receptor signaling in cardiac aging and heart failure.Sci Transl Med2019;11:eaau8680 PMCID:PMC7124007

[162]

Baccarelli A,Corsi A.Activin A serum levels and aging of the pituitary-gonadal axis: a cross-sectional study in middle-aged and elderly healthy subjects.Exp Gerontol2001;36:1403-12

[163]

Chang HC,Gu X.Correlation of serum VEGF-C, ANGPTL4, and activin A levels with frailty.Exp Gerontol2024;185:112345

[164]

Clavere NG,Rostron KA.Inhibition of activin A receptor signalling attenuates age-related pathological cardiac remodelling.Dis Model Mech2022;15:dmm049424 PMCID:PMC9118092

[165]

Yndestad A,Øie E.Elevated levels of activin A in heart failure: potential role in myocardial remodeling.Circulation2004;109:1379-85

[166]

Castillero E,Najjar M.Activin type II receptor ligand signaling inhibition after experimental ischemic heart failure attenuates cardiac remodeling and prevents fibrosis.Am J Physiol Heart Circ Physiol2020;318:H378-90 PMCID:PMC7052626

[167]

Zhou X,Lu J.Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival.Cell2010;142:531-43

[168]

Fukushima N,Akazawa H.A crucial role of activin A-mediated growth hormone suppression in mouse and human heart failure.PLoS One2011;6:e27901 PMCID:PMC3247209

[169]

MacDonnell S,Ruan Q.Activin A directly impairs human cardiomyocyte contractile function indicating a potential role in heart failure development.Front Cardiovasc Med2022;9:1038114 PMCID:PMC9685658

[170]

Oshima Y,Shimano M.Activin A and follistatin-like 3 determine the susceptibility of heart to ischemic injury.Circulation2009;120:1606-15 PMCID:PMC2764796

[171]

Yung LM,Joshi S.ACTRIIA-Fc rebalances activin/GDF versus BMP signaling in pulmonary hypertension.Sci Transl Med2020;12:eaaz5660 PMCID:PMC8259900

[172]

Hoeper MM,Ghofrani HA.Phase 3 trial of sotatercept for treatment of pulmonary arterial hypertension.N Engl J Med2023;388:1478-90

[173]

Joshi SR,Bloom T.Sotatercept analog suppresses inflammation to reverse experimental pulmonary arterial hypertension.Sci Rep2022;12:7803 PMCID:PMC9098455

[174]

Nunn E,Gavin M.Antibody blockade of activin type II receptors preserves skeletal muscle mass and enhances fat loss during GLP-1 receptor agonism.Mol Metab2024;80:101880 PMCID:PMC10832506

[175]

Swan J,Peters J.Inhibition of activin receptor 2 signalling ameliorates metabolic dysfunction-associated steatotic liver disease in western diet/L-NAME induced cardiometabolic disease.Biomed Pharmacother2024;175:116683

[176]

Mullican SE,Chin CN.GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates.Nat Med2017;23:1150-7

[177]

Rothenbacher D,Christow H,Denkinger M.Association of growth differentiation factor 15 with other key biomarkers, functional parameters and mortality in community-dwelling older adults.Age Ageing2019;48:541-6

[178]

Daniels LB,Laughlin GA,Barrett-Connor E.Growth-differentiation factor-15 is a robust, independent predictor of 11-year mortality risk in community-dwelling older adults: the Rancho Bernardo Study.Circulation2011;123:2101-10 PMCID:PMC3107013

[179]

Wesseling M,de Jager SCA.Growth differentiation factor 15 in adverse cardiac remodelling: from biomarker to causal player.ESC Heart Fail2020;7:1488-501 PMCID:PMC7373942

[180]

Conte M,Chiariello A,Franceschi C.GDF15, an emerging key player in human aging.Ageing Res Rev2022;75:101569

[181]

Moon JS,Kim JT.Growth differentiation factor 15 protects against the aging-mediated systemic inflammatory response in humans and mice.Aging Cell2020;19:e13195 PMCID:PMC7431835

[182]

Wang X,Kosak J.hNAG-1 increases lifespan by regulating energy metabolism and insulin/IGF-1/mTOR signaling.Aging2014;6:690-704 PMCID:PMC4169862

[183]

Park H,Jeong JH,Kim KS.GDF15 contributes to radiation-induced senescence through the ROS-mediated p16 pathway in human endothelial cells.Oncotarget2016;7:9634-44 PMCID:PMC4891072

[184]

Mazagova M,Landheer SW.Growth differentiation factor 15 impairs aortic contractile and relaxing function through altered caveolar signaling of the endothelium.Am J Physiol Heart Circ Physiol2013;304:H709-18

[185]

Guo H,Li H.GDF15 promotes cardiac fibrosis and proliferation of cardiac fibroblasts via the MAPK/ERK1/2 pathway after irradiation in rats.Radiat Res2021;196:183-91

[186]

Abulizi P,Zhao D.Growth differentiation factor-15 deficiency augments inflammatory response and exacerbates septic heart and renal injury induced by lipopolysaccharide.Sci Rep2017;7:1037 PMCID:PMC5430818

[187]

Xu J,Lorenz JN.GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation.Circ Res2006;98:342-50

[188]

Dogon G,Potel E.Growth/differentiation factor 15 (GDF15) expression in the heart after myocardial infarction and cardioprotective effect of pre-ischemic rGDF15 administration.Sci Rep2024;14:12949 PMCID:PMC11153639

[189]

Takaoka M,Al-Hadithi A.GDF15 antagonism limits severe heart failure and prevents cardiac cachexia in mice.bioRxiv2022;

[190]

Khetarpal SA,Vitale T.Cardiomyocyte PGC-1α enables physiological adaptations to endurance exercise through suppression of GDF15 and cardiac atrophy.bioRxiv2024;

[191]

Kim-Muller JY,LaCarubba Paulhus B.GDF15 neutralization restores muscle function and physical performance in a mouse model of cancer cachexia.Cell Rep2023;42:111947

[192]

Albuquerque B,Hirenallur-Shanthappa D.Neutralization of GDF15 prevents anorexia and weight loss in the monocrotaline-induced cardiac cachexia rat model.Cells2022;11:1073 PMCID:PMC8997866

[193]

Benichou O,Gonciarz MD.Discovery, development, and clinical proof of mechanism of LY3463251, a long-acting GDF15 receptor agonist.Cell Metab2023;35:274-86.e10

[194]

Sanchez-Soria P.ErbB signaling in cardiac development and disease.Semin Cell Dev Biol2010;21:929-35 PMCID:PMC3032360

[195]

Lemmens K,De Keulenaer GW.Role of neuregulin-1/ErbB signaling in cardiovascular physiology and disease: implications for therapy of heart failure.Circulation2007;116:954-60

[196]

Baliga RR,Zhao YY.NRG-1-induced cardiomyocyte hypertrophy. role of PI-3-kinase, p70(S6K), and MEK-MAPK-RSK.Am J Physiol1999;277:H2026-37

[197]

Bersell K,Haring B.Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury.Cell2009;138:257-70

[198]

Haskins JW,Stern DF.Neuregulin 1-activated ERBB4 interacts with YAP to induce Hippo pathway target genes and promote cell migration.Sci Signal2014;7:ra116 PMCID:PMC4648367

[199]

Gassmann M,Orioli D.Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor.Nature1995;378:390-4

[200]

Vermeulen Z,Dugaucquier L.Inhibitory actions of the NRG-1/ErbB4 pathway in macrophages during tissue fibrosis in the heart, skin, and lung.Am J Physiol Heart Circ Physiol2017;313:H934-45

[201]

Rentschler S,Meyers K.Neuregulin-1 promotes formation of the murine cardiac conduction system.Proc Natl Acad Sci USA2002;99:10464-9 PMCID:PMC124940

[202]

Okoshi K,Yan X.Neuregulins regulate cardiac parasympathetic activity: muscarinic modulation of beta-adrenergic activity in myocytes from mice with neuregulin-1 gene deletion.Circulation2004;110:713-7

[203]

Shiraishi M,Suzuki K.Nrg1/ErbB signaling-mediated regulation of fibrosis after myocardial infarction.FASEB J2022;36:e22150

[204]

Lemmens K,Demolder M.Role of neuregulin-1/ErbB2 signaling in endothelium-cardiomyocyte cross-talk.J Biol Chem2006;281:19469-77

[205]

Edrey YH,Huchon D.Sustained high levels of neuregulin-1 in the longest-lived rodents; a key determinant of rodent longevity.Aging Cell2012;11:213-22 PMCID:PMC4399559

[206]

Shakeri H,Schrijvers DM.Neuregulin-1 attenuates stress-induced vascular senescence.Cardiovasc Res2018;114:1041-51

[207]

Rohrbach S,Abushouk AM.Caloric restriction and mitochondrial function in the ageing myocardium.Exp Gerontol2006;41:525-31

[208]

Lemmens K,De Keulenaer GW.Activation of the neuregulin/ErbB system during physiological ventricular remodeling in pregnancy.Am J Physiol Heart Circ Physiol2011;300:H931-42

[209]

Cai MX,Chen T.Exercise training activates neuregulin 1/ErbB signaling and promotes cardiac repair in a rat myocardial infarction model.Life Sci2016;149:1-9

[210]

Keulenaer GW, Doggen K, Lemmens K. The vulnerability of the heart as a pluricellular paracrine organ: lessons from unexpected triggers of heart failure in targeted ErbB2 anticancer therapy.Circ Res2010;106:35-46

[211]

Slamon DJ,Shak S.Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2.N Engl J Med2001;344:783-92

[212]

Ozcelik C,Pilz B.Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy.Proc Natl Acad Sci USA2002;99:8880-5 PMCID:PMC124392

[213]

Crone SA,Fan L.ErbB2 is essential in the prevention of dilated cardiomyopathy.Nat Med2002;8:459-65

[214]

García-Rivello H,Said M.Dilated cardiomyopathy in Erb-b4-deficient ventricular muscle.Am J Physiol Heart Circ Physiol2005;289:H1153-60

[215]

Rohrbach S,Silber RE.Neuregulin receptors erbB2 and erbB4 in failing human myocardium - depressed expression and attenuated activation.Basic Res Cardiol2005;100:240-9

[216]

Ky B,Safa RN.Neuregulin-1 beta is associated with disease severity and adverse outcomes in chronic heart failure.Circulation2009;120:310-7

[217]

Liu X,Li Z.Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy.J Am Coll Cardiol2006;48:1438-47

[218]

Wang Y,Zhang P.Neuregulin-1, a potential therapeutic target for cardiac repair.Front Pharmacol2022;13:945206 PMCID:PMC9471952

[219]

Gu X,Xu D.Cardiac functional improvement in rats with myocardial infarction by up-regulating cardiac myosin light chain kinase with neuregulin.Cardiovasc Res2010;88:334-43

[220]

Gao R,Cheng L.A Phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure.J Am Coll Cardiol2010;55:1907-14

[221]

Jabbour A,Keogh AM.Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses.Eur J Heart Fail2011;13:83-92

[222]

Lenihan DJ,Lenneman CG.A phase I, single ascending dose study of Cimaglermin alfa (Neuregulin 1β3) in patients with systolic dysfunction and heart failure.JACC Basic Transl Sci2016;1:576-86 PMCID:PMC6113538

[223]

Hill MF,Murphy A.Intravenous glial growth factor 2 (GGF2) isoform of neuregulin-1β improves left ventricular function, gene and protein expression in rats after myocardial infarction.PLoS One2013;8:e55741 PMCID:PMC3578842

[224]

Galindo CL,Murphy A.Anti-remodeling and anti-fibrotic effects of the neuregulin-1β glial growth factor 2 in a large animal model of heart failure.J Am Heart Assoc2014;3:e000773

[225]

Tang WH,Kassi M.Final analysis of safety and exploratory echo data in a phase 1, first-in-human, randomized, double-blind, placebo-controlled, single ascending dose study to evaluate JK07 in subjects with heart failure with reduced ejection fraction.J Card Fail2024;30:314

[226]

Murphy SL,Zhuang X.Abstract 18358: preclinical evaluation of the safety and activity of JK07, a novel bifunctional neuregulin antibody fusion which selectively activates ErbB4, for the treatment of heart failure.Circulation2023;148:A18358

[227]

Pilling LC,Sicinski K.Human longevity: 25 genetic loci associated in 389,166 UK biobank participants.Aging2017;9:2504-20 PMCID:PMC5764389

[228]

Joshi PK,Kentistou KA.Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity.Nat Commun2017;8:910 PMCID:PMC5715013

[229]

Wright KM,Kermany A.A prospective analysis of genetic variants associated with human lifespan.G32019;9:2863-78 PMCID:PMC6723124

[230]

Timmers PR,Lall K.Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances.Elife2019;8:e39856 PMCID:PMC6333444

[231]

Timmers PRHJ,Joshi PK.Multivariate genomic scan implicates novel loci and haem metabolism in human ageing.Nat Commun2020;11:3570 PMCID:PMC7366647

[232]

Sathyan S,Gao T,Barzilai N.Plasma proteomic profile of frailty.Aging Cell2020;19:e13193 PMCID:PMC7511877

AI Summary AI Mindmap
PDF

62

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/