The role of senescence in cancer therapy-associated cardiovascular toxicity

Yasmin K. Alshoubaki , Vivienne Grüterich , Valentina Zollet , Gabriela M. Kuster

The Journal of Cardiovascular Aging ›› 2024, Vol. 4 ›› Issue (4) : 23

PDF
The Journal of Cardiovascular Aging ›› 2024, Vol. 4 ›› Issue (4) :23 DOI: 10.20517/jca.2024.14
Review

The role of senescence in cancer therapy-associated cardiovascular toxicity

Author information +
History +
PDF

Abstract

Cardiovascular diseases (CVDs) and cancer are the two leading causes of global mortality. Cancer treatments, including radiotherapy and chemotherapy, can have severe cardiotoxic side effects, raising concerns for cancer patients and increasing the financial burden on healthcare systems. Recent studies have shown a link between cancer therapy-induced cardiotoxicity and cardiac senescence. Specifically, systemic cancer therapies are known to induce cardiac senescence, which may directly result in cardiac dysfunction or enhance the vulnerability of the heart to other stressors. Besides anthracyclines, newer, more targeted therapies such as tyrosine kinase inhibitors (TKIs) have also been shown to induce cardiac senescence. Cellular senescence is triggered by DNA damage, oncogene activation, reactive oxygen and nitrogen species, and other stressors, leading to the secretion of proinflammatory factors, increased oxidative stress, and disruption of normal cellular functions. Understanding the molecular mechanisms of cardiac senescence induced by cancer therapy is essential for attenuating or even preventing clinically overt cardiotoxicity using senotherapies such as senolytics and senomorphics. In this review, cancer therapies that are associated with CVDs are described with an emphasis on the potential role of cardiac senescence in the disease progression. In addition, the known mechanisms by which anthracyclines, particularly doxorubicin (DOX), radiotherapy, and TKIs lead to cardiac senescence are highlighted. Finally, recent and novel senotherapies for treating cellular senescence are discussed with a focus on targeting cardiac senescence following cancer treatment. The field remains in its early stages, with further research required to clarify how cancer treatments contribute to cardiotoxicity. At the same time, identifying senotherapies that can be safely combined with cancer drugs is essential for targeting cardiac senescence and protecting cardiac health in cancer patients.

Keywords

Cardiovascular senescence / cardiovascular diseases / cardiac senescence / cardiotoxicity / senotherapy / senolytics / senomorphics

Cite this article

Download citation ▾
Yasmin K. Alshoubaki, Vivienne Grüterich, Valentina Zollet, Gabriela M. Kuster. The role of senescence in cancer therapy-associated cardiovascular toxicity. The Journal of Cardiovascular Aging, 2024, 4(4): 23 DOI:10.20517/jca.2024.14

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sturgeon KM,Bluethmann SM.A population-based study of cardiovascular disease mortality risk in US cancer patients.Eur Heart J2019;40:3889-97 PMCID:PMC6925383

[2]

Curigliano G,Fradley M.Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations.Ann Oncol2020;31:171-90 PMCID:PMC8019325

[3]

Nagy A,Hoffmann A.A comprehensive overview on chemotherapy-induced cardiotoxicity: insights into the underlying inflammatory and oxidative mechanisms. Cardiovasc Drugs Ther 2024.

[4]

Evangelou K,Papaspyropoulos A.Cellular senescence and cardiovascular diseases: moving to the "heart" of the problem.Physiol Rev2023;103:609-47

[5]

He S.Senescence in health and disease.Cell2017;169:1000-11 PMCID:PMC5643029

[6]

Yang Y,Masereeuw R.Protein-bound uremic toxins in senescence and kidney fibrosis.Biomedicines2023;11:2408 PMCID:PMC10525416

[7]

Hayflick L.The serial cultivation of human diploid cell strains.Exp Cell Res1961;25:585-621

[8]

Rossiello F,Passos JF.Telomere dysfunction in ageing and age-related diseases.Nat Cell Biol2022;24:135-47 PMCID:PMC8985209

[9]

de Lange T. How telomeres solve the end-protection problem.Science2009;326:948-52 PMCID:PMC2819049

[10]

Li D,Ding H,Xie Y.Cellular senescence in cardiovascular diseases: from pathogenesis to therapeutic challenges.J Cardiovasc Dev Dis2023;10:439 PMCID:PMC10607269

[11]

Serrano M,McCurrach ME,Lowe SW.Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a.Cell1997;88:593-602

[12]

Liu XL,Meng LH.Oncogene-induced senescence: a double edged sword in cancer.Acta Pharmacol Sin2018;39:1553-8 PMCID:PMC6289471

[13]

Freund A,Demaria M.Lamin B1 loss is a senescence-associated biomarker.Mol Biol Cell2012;23:2066-75 PMCID:PMC3364172

[14]

Shimi T,Adam SA.The role of nuclear lamin B1 in cell proliferation and senescence.Genes Dev2011;25:2579-93 PMCID:PMC3248680

[15]

Miller KN,Liu T,Vizioli MG.Cytoplasmic chromatin fragments-from mechanisms to therapeutic potential.Elife2021;10:e63728 PMCID:PMC7846272

[16]

Prokocimer M,Nissim-Rafinia M.Nuclear lamins: key regulators of nuclear structure and activities.J Cell Mol Med2009;13:1059-85

[17]

Sadaie M,Carroll T.Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence.Genes Dev2013;27:1800-8 PMCID:PMC3759696

[18]

Narita M,Heard E.Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence.Cell2003;113:703-16

[19]

Ivanov A,Manoharan I.Lysosome-mediated processing of chromatin in senescence.J Cell Biol2013;202:129-43 PMCID:PMC3704985

[20]

Takahashi A,Yamakoshi K.DNA damage signaling triggers degradation of histone methyltransferases through APC/CCdh1 in senescent cells.Mol Cell2012;45:123-31

[21]

Zou L.Single- and double-stranded DNA: building a trigger of ATR-mediated DNA damage response.Genes Dev2007;21:879-85

[22]

Xie A,Stucki M.Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair.Mol Cell2007;28:1045-57 PMCID:PMC2275782

[23]

Bartkova J,Sehested M.DNA damage response mediators MDC1 and 53BP1: constitutive activation and aberrant loss in breast and lung cancer, but not in testicular germ cell tumours.Oncogene2007;26:7414-22

[24]

Huang W,Eirin A,Lerman LO.Cellular senescence: the good, the bad and the unknown.Nat Rev Nephrol2022;18:611-27 PMCID:PMC9362342

[25]

Safwan-Zaiter H,Wagner KD.P16INK4A-more than a senescence marker.Life2022;12:1332 PMCID:PMC9501954

[26]

Passos JF,Ahmed S.Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence.PLoS Biol2007;5:e110 PMCID:PMC1858712

[27]

Passos JF,Wang C.Feedback between p21 and reactive oxygen production is necessary for cell senescence.Mol Syst Biol2010;6:347 PMCID:PMC2835567

[28]

Nelson G,Wordsworth J.The senescent bystander effect is caused by ROS-activated NF-κB signalling.Mech Ageing Dev2018;170:30-6 PMCID:PMC5861994

[29]

Di Micco R,Cicalese A.Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication.Nature2006;444:638-42

[30]

Kwon SM,Lee YK,Yoon G.Metabolic features and regulation in cell senescence.BMB Rep2019;52:5-12 PMCID:PMC6386228

[31]

Miwa S,Chini E.Mitochondrial dysfunction in cell senescence and aging.J Clin Invest2022;132:e158447 PMCID:PMC9246372

[32]

Wu S.AMPK, mitochondrial function, and cardiovascular disease.Int J Mol Sci2020;21:4987 PMCID:PMC7404275

[33]

Tang X,Wang NY.SIRT2 acts as a cardioprotective deacetylase in pathological cardiac hypertrophy.Circulation2017;136:2051-67 PMCID:PMC5698109

[34]

Wiley CD.The metabolic roots of senescence: mechanisms and opportunities for intervention.Nat Metab2021;3:1290-301 PMCID:PMC8889622

[35]

Wiley CD.From ancient pathways to aging cells-connecting metabolism and cellular senescence.Cell Metab2016;23:1013-21 PMCID:PMC4911819

[36]

Kwon Y,Jeoung JA,Kang C.Autophagy is pro-senescence when seen in close-up, but anti-senescence in long-shot.Mol Cells2017;40:607-12 PMCID:PMC5638768

[37]

Lee BY,Im JS.Senescence-associated β-galactosidase is lysosomal β-galactosidase.Aging Cell2006;5:187-95

[38]

Di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities.Nat Rev Mol Cell Biol2021;22:75-95 PMCID:PMC8344376

[39]

Wiley CD,Davis SS.Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis.Cell Metab2021;33:1124-36.e5 PMCID:PMC8501892

[40]

Takasugi M,Takahashi A,Watanabe S.Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2.Nat Commun2017;8:15729 PMCID:PMC5467215

[41]

Weiner-Gorzel K,Milewska M.Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells.Cancer Med2015;4:745-58 PMCID:PMC4430267

[42]

Borghesan M,Eleftheriadou O.Small extracellular vesicles are key regulators of non-cell autonomous intercellular communication in senescence via the interferon protein IFITM3.Cell Rep2019;27:3956-71.e6 PMCID:PMC6613042

[43]

Sagini K,Costanzi E.Oncogenic H-ras expression induces fatty acid profile changes in human fibroblasts and extracellular vesicles.Int J Mol Sci2018;19:3515 PMCID:PMC6275056

[44]

Jacob J,Aggarwal A.Senescent chondrogenic progenitor cells derived from articular cartilage of knee osteoarthritis patients contributes to senescence-associated secretory phenotype via release of IL-6 and IL-8.Acta Histochem2022;124:151867

[45]

Kuilman T,Vredeveld LCW.Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network.Cell2008;133:1019-31

[46]

Laberge RM,Orjalo AV.MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation.Nat Cell Biol2015;17:1049-61 PMCID:PMC4691706

[47]

Nakamura Y,Iwata H,Shirasuna K.IL1B triggers inflammatory cytokine production in bovine oviduct epithelial cells and induces neutrophil accumulation via CCL2.Am J Reprod Immunol2021;85:e13365

[48]

Orjalo AV,Gengler BK,Campisi J.Cell surface-bound IL-1α is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network.Proc Natl Acad Sci USA2009;106:17031-6 PMCID:PMC2761322

[49]

Ortiz-Montero P,Vernot JP.Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line.Cell Commun Signal2017;15:17 PMCID:PMC5418812

[50]

Rossi M,Idda ML.Pleiotropic effects of BAFF on the senescence-associated secretome and growth arrest.Elife2023;12:e84238 PMCID:PMC10121226

[51]

Wang AP,Tian Y.Pulmonary artery smooth muscle cell senescence promotes the proliferation of PASMCs by paracrine IL-6 in hypoxia-induced pulmonary hypertension.Front Physiol2021;12:656139 PMCID:PMC8058366

[52]

Yamagishi R,Nakamura M.Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma.Sci Immunol2022;7:eabl7209

[53]

Zhou J,Wang Q.Sirt1 overexpression improves senescence-associated pulmonary fibrosis induced by vitamin D deficiency through downregulating IL-11 transcription.Aging Cell2022;21:e13680 PMCID:PMC9381906

[54]

Coppé JP,Rodier F.Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor.PLoS Biol2008;6:2853-68 PMCID:PMC2592359

[55]

Chambers ES,Shih BB.Recruitment of inflammatory monocytes by senescent fibroblasts inhibits antigen-specific tissue immunity during human aging.Nat Aging2021;1:101-13

[56]

Cheng N,Lau LF.Senescent hepatic stellate cells promote liver regeneration through IL-6 and ligands of CXCR2.JCI Insight2022;7:e158207 PMCID:PMC9431681

[57]

Hwang HJ,Kang D.Endothelial cells under therapy-induced senescence secrete CXCL11, which increases aggressiveness of breast cancer cells.Cancer Lett2020;490:100-10

[58]

Jin HJ,Heo J.Senescence-associated MCP-1 secretion is dependent on a decline in BMI1 in human mesenchymal stromal cells.Antioxid Redox Signal2016;24:471-85 PMCID:PMC4800271

[59]

Kawagoe Y,Sato Y,Matsubara K.CXCL5-CXCR2 signaling is a senescence-associated secretory phenotype in preimplantation embryos.Aging Cell2020;19:e13240 PMCID:PMC7576282

[60]

Shen L,Cheng J.CCL5 secreted by senescent theca-interstitial cells inhibits preantral follicular development via granulosa cellular apoptosis.J Cell Physiol2019;234:22554-64

[61]

Sturmlechner I,Sine CC.p21 produces a bioactive secretome that places stressed cells under immunosurveillance.Science2021;374:eabb3420

[62]

Takikawa T,Matsumoto R.Senescent human pancreatic stellate cells secrete CXCR2 agonist CXCLs to promote proliferation and migration of human pancreatic cancer AsPC-1 and MIAPaCa-2 cell lines.Int J Mol Sci2022;23:9275 PMCID:PMC9409091

[63]

Zang J,Zhang C,Gao J.Senescent hepatocytes enhance natural killer cell activity via the CXCL-10/CXCR3 axis.Exp Ther Med2019;18:3845-52 PMCID:PMC6781833

[64]

Zheng X,Xie Z.The elevated level of IL-1α in the bone marrow of aged mice leads to MSC senescence partly by down-regulating Bmi-1.Exp Gerontol2021;148:111313

[65]

Kim H,Song MJ.Inhibition of matrix metalloproteinase expression by selective clearing of senescent dermal fibroblasts attenuates ultraviolet-induced photoaging.Biomed Pharmacother2022;150:113034

[66]

Eren M,Murphy SB.PAI-1-regulated extracellular proteolysis governs senescence and survival in Klotho mice.Proc Natl Acad Sci USA2014;111:7090-5 PMCID:PMC4024885

[67]

Özcan S,Acar MBB.Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses.Aging2016;8:1316-27 PMCID:PMC4993333

[68]

Mehdizadeh M,Thorin E,Nattel S.The role of cellular senescence in cardiac disease: basic biology and clinical relevance.Nat Rev Cardiol2022;19:250-64

[69]

Basisty N,Jeon OH.A proteomic atlas of senescence-associated secretomes for aging biomarker development.PLoS Biol2020;18:e3000599 PMCID:PMC6964821

[70]

Wang B,Elisseeff JH.The senescence-associated secretory phenotype and its physiological and pathological implications.Nat Rev Mol Cell Biol2024;25:958-78

[71]

Ohtani N.The roles and mechanisms of senescence-associated secretory phenotype (SASP): can it be controlled by senolysis?.Inflamm Regen2022;42:11 PMCID:PMC8976373

[72]

Zhai P.Cardiomyocyte senescence and the potential therapeutic role of senolytics in the heart.J Cardiovasc Aging2024;4:18 PMCID:PMC11309366

[73]

Luan Y,Jiao Y.Cardiac cell senescence: molecular mechanisms, key proteins and therapeutic targets.Cell Death Discov2024;10:78 PMCID:PMC10866973

[74]

von Zglinicki T, Wan T, Miwa S. Senescence in post-mitotic cells: a driver of aging?.Antioxid Redox Signal2021;34:308-23 PMCID:PMC7821432

[75]

Anderson R,Maggiorani D.Length-independent telomere damage drives post-mitotic cardiomyocyte senescence.EMBO J2019;38:e100492

[76]

Shan H,Zhang L.Heme oxygenase-1 prevents heart against myocardial infarction by attenuating ischemic injury-induced cardiomyocytes senescence.EBioMedicine2019;39:59-68 PMCID:PMC6355645

[77]

Suda M,Minamino T.Senescent cells: a therapeutic target in cardiovascular diseases.Cells2023;12:1296 PMCID:PMC10177324

[78]

Turdi S,Li J.AMP-activated protein kinase deficiency exacerbates aging-induced myocardial contractile dysfunction.Aging Cell2010;9:592-606 PMCID:PMC2910211

[79]

Gorski DJ,Reichert C,Grandoch M.Cardiac fibroblast activation and hyaluronan synthesis in response to hyperglycemia and diet-induced insulin resistance.Sci Rep2019;9:1827 PMCID:PMC6372628

[80]

Wang L,He Y.A novel mechanism of Smads/miR-675/TGFβR1 axis modulating the proliferation and remodeling of mouse cardiac fibroblasts.J Cell Physiol2019;234:20275-85

[81]

Czubryt MP.Common threads in cardiac fibrosis, infarct scar formation, and wound healing.Fibrogenesis Tissue Repair2012;5:19 PMCID:PMC3534582

[82]

Shibamoto M,Naito AT.Activation of DNA damage response and cellular senescence in cardiac fibroblasts limit cardiac fibrosis after myocardial infarction.Int Heart J2019;60:944-57

[83]

Baggett BC,Sengun E.Myofibroblast senescence promotes arrhythmogenic remodeling in the aged infarcted rabbit heart.Elife2023;12:e84088

[84]

Ock S,Kang CW,Lee WS.IGF-1 protects against angiotensin II-induced cardiac fibrosis by targeting αSMA.Cell Death Dis2021;12:688 PMCID:PMC8270920

[85]

Tao A,Lan T.Cardiomyocyte-fibroblast interaction contributes to diabetic cardiomyopathy in mice: role of HMGB1/TLR4/IL-33 axis.Biochim Biophys Acta2015;1852:2075-85

[86]

Qi H,Li S.Activation of AMPK attenuated cardiac fibrosis by inhibiting CDK2 via p21/p27 and miR-29 family pathways in rats.Mol Ther Nucleic Acids2017;8:277-90 PMCID:PMC5527157

[87]

Chiribau CB,Cucoranu IC,Clempus RE.FOXO3A regulates peroxiredoxin III expression in human cardiac fibroblasts.J Biol Chem2008;283:8211-7 PMCID:PMC2276380

[88]

Feng T,Kou S.CCN1-induced cellular senescence promotes heart regeneration.Circulation2019;139:2495-8

[89]

Aw D,Palmer DB.Immunosenescence: emerging challenges for an ageing population.Immunology2007;120:435-46 PMCID:PMC2265901

[90]

Childs BG,Wijshake T,Campisi J.Senescent intimal foam cells are deleterious at all stages of atherosclerosis.Science2016;354:472-7 PMCID:PMC5112585

[91]

Yu HT,Shin EC.T cell senescence and cardiovascular diseases.Clin Exp Med2016;16:257-63

[92]

Franceschi C,Valensin S.Inflamm-aging: an evolutionary perspective on immunosenescence.Ann N Y Acad Sci2000;908:244-54

[93]

Varricchi G,Poto R,Shamji MH.The emerging role of T follicular helper (TFH) cells in aging: Influence on the immune frailty.Ageing Res Rev2020;61:101071

[94]

Ramos GC,Nunes-Silva V.Myocardial aging as a T-cell-mediated phenomenon.Proc Natl Acad Sci USA2017;114:E2420-9 PMCID:PMC5373357

[95]

Tae Yu H,Lee J.Characterization of CD8+CD57+ T cells in patients with acute myocardial infarction.Cell Mol Immunol2015;12:466-73 PMCID:PMC4496543

[96]

Youn JC,Lim BJ.Immunosenescent CD8+ T cells and C-X-C chemokine receptor type 3 chemokines are increased in human hypertension.Hypertension2013;62:126-33

[97]

Lagnado A,Ruchaud-Sparagano MH.Neutrophils induce paracrine telomere dysfunction and senescence in ROS-dependent manner.EMBO J2021;40:e106048 PMCID:PMC8090854

[98]

Donato AJ,Walker AE.Cellular and molecular biology of aging endothelial cells.J Mol Cell Cardiol2015;89:122-35 PMCID:PMC4522407

[99]

Weber C.Atherosclerosis: current pathogenesis and therapeutic options.Nat Med2011;17:1410-22

[100]

Abbas M,Auger C.Endothelial microparticles from acute coronary syndrome patients induce premature coronary artery endothelial cell aging and thrombogenicity: role of the ang II/AT1 receptor/NADPH oxidase-mediated activation of MAPKs and PI3-kinase pathways.Circulation2017;135:280-96

[101]

Rossman MJ,Hill SD.Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function.Am J Physiol Heart Circ Physiol2017;313:H890-5 PMCID:PMC5792201

[102]

Grootaert MOJ,Roth L.Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis.Cardiovasc Res2018;114:622-34

[103]

Matthews C,Scott S.Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress.Circ Res2006;99:156-64

[104]

Wang J,Reinhold J.Vascular smooth muscle cell senescence promotes atherosclerosis and features of plaque vulnerability.Circulation2015;132:1909-19

[105]

Gardner SE,Bennett MR.Senescent vascular smooth muscle cells drive inflammation through an interleukin-1α-dependent senescence-associated secretory phenotype.Arterioscler Thromb Vasc Biol2015;35:1963-74 PMCID:PMC4548545

[106]

Kunieda T,Nishi JI.Angiotensin II induces premature senescence of vascular smooth muscle cells and accelerates the development of atherosclerosis via a p21-dependent pathway.Circulation2006;114:953-60

[107]

Cahu J,Sola B.Senescence-associated secretory phenotype favors the emergence of cancer stem-like cells.Cell Death Dis2012;3:e446 PMCID:PMC3542619

[108]

Muhandiramge J,van Londen GJ.Cardiovascular disease in adult cancer survivors: a review of current evidence, strategies for prevention and management, and future directions for cardio-oncology.Curr Oncol Rep2022;24:1579-92 PMCID:PMC9606033

[109]

Lipshultz SE,Colan SD.Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: pathophysiology, course, monitoring, management, prevention, and research directions: a scientific statement from the American Heart Association.Circulation2013;128:1927-95

[110]

Lipshultz SE,Mone SM.Female sex and higher drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer.N Engl J Med1995;332:1738-43

[111]

Altieri P,Lazzarini E.Testosterone antagonizes doxorubicin-induced senescence of cardiomyocytes.J Am Heart Assoc2016;5:e002383 PMCID:PMC4859360

[112]

Adão R,Leite-Moreira A.Cardiotoxicity associated with cancer therapy: pathophysiology and prevention [Cardiotoxicidade associada à terapêutica oncológica: mecanismos fisiopatológicos e estratégias de prevenção].Revista Portuguesa Cardiologia2013;32:395-409

[113]

Jha S,Malviya R.Hyperthermia: role and risk factor for cancer treatment.Achiev Life Sci2016;10:161-7

[114]

Gent DG,Dobson R.Cardiovascular disease after hematopoietic stem cell transplantation in adults: JACC: CardioOncology state-of-the-art review.JACC CardioOncol2024;6:475-95 PMCID:PMC11372032

[115]

Miller KD,Lin CC.Cancer treatment and survivorship statistics, 2016.CA Cancer J Clin2016;66:271-89

[116]

Ramadan R,Aerts A.The role of connexin proteins and their channels in radiation-induced atherosclerosis.Cell Mol Life Sci2021;78:3087-103

[117]

Belzile-Dugas E.Radiation-induced cardiovascular disease: review of an underrecognized pathology.J Am Heart Assoc2021;10:e021686 PMCID:PMC8649542

[118]

Shimizu Y,Nishi N.Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003.BMJ2010;340:b5349 PMCID:PMC2806940

[119]

Yamada M,Fujiwara S,Suzuki G.Noncancer disease incidence in atomic bomb survivors, 1958-1998.Radiat Res2004;161:622-32

[120]

Little MP,Richardson DB.Ionising radiation and cardiovascular disease: systematic review and meta-analysis.BMJ2023;380:e072924 PMCID:PMC10535030

[121]

Tapio S.Pathology and biology of radiation-induced cardiac disease.J Radiat Res2016;57:439-48 PMCID:PMC5045085

[122]

Sallam M,Baatout S,Aerts A.Radiation-induced cardiovascular disease: an overlooked role for DNA methylation?.Epigenetics2022;17:59-80 PMCID:PMC8812767

[123]

Brosius III FC,Roberts WC.Radiation heart disease. Analysis of 16 young (aged 15 to 33 years) necropsy patients who received over 3,500 rads to the heart.Am J Med1981;70:519-30

[124]

Zhang B,Pang X,Ai G.ER stress induced by ionising radiation in IEC-6 cells.Int J Radiat Biol2010;86:429-35

[125]

Wang Y,Zhou D.Ionizing radiation-induced endothelial cell senescence and cardiovascular diseases.Radiat Res2016;186:153-61 PMCID:PMC4997805

[126]

Yakes FM.Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress.Proc Natl Acad Sci USA1997;94:514-9 PMCID:PMC19544

[127]

Wang KX,Yang X,Yan C.New insights into the understanding of mechanisms of radiation-induced heart disease.Curr Treat Options Oncol2023;24:12-29

[128]

Schmitt K,Merl M.Early detection of doxorubicin and daunorubicin cardiotoxicity by echocardiography: diastolic versus systolic parameters.Eur J Pediatr1995;154:201-4

[129]

Ryberg M,Skovsgaard T,Jensen BV.Epirubicin cardiotoxicity: an analysis of 469 patients with metastatic breast cancer.J Clin Oncol1998;16:3502-8

[130]

Anderlini P,Wong FC.Idarubicin cardiotoxicity: a retrospective study in acute myeloid leukemia and myelodysplasia.J Clin Oncol1995;13:2827-34

[131]

Swain SM,Ewer MS.Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials.Cancer2003;97:2869-79

[132]

Cappetta D,Piegari E.Doxorubicin targets multiple players: a new view of an old problem.Pharmacol Res2018;127:4-14

[133]

Muller C,Gualano V.Cellular pharmacokinetics of doxorubicin in patients with chronic lymphocytic leukemia: comparison of bolus administration and continuous infusion.Cancer Chemother Pharmacol1993;32:379-84

[134]

Linders AN,López Fernández T,Bomer N.A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging.NPJ Aging2024;10:9 PMCID:PMC10806194

[135]

Sturgeon K,Muthukumaran G.Concomitant low-dose doxorubicin treatment and exercise.Am J Physiol Regul Integr Comp Physiol2014;307:R685-92 PMCID:PMC4166763

[136]

Choi WG,Shin Y.Liquid chromatography-tandem mass spectrometry for the simultaneous determination of doxorubicin and its metabolites doxorubicinol, doxorubicinone, doxorubicinolone, and 7-deoxydoxorubicinone in mouse plasma.Molecules2020;25:1254 PMCID:PMC7179444

[137]

Huang R.DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy.Signal Transduct Target Ther2021;6:254 PMCID:PMC8266832

[138]

Abdelgawad IY,Lone DW,Niedernhofer LJ.Molecular mechanisms and cardiovascular implications of cancer therapy-induced senescence.Pharmacol Ther2021;221:107751 PMCID:PMC8084867

[139]

Bielak-Zmijewska A,Przybylska D.A comparison of replicative senescence and doxorubicin-induced premature senescence of vascular smooth muscle cells isolated from human aorta.Biogerontology2014;15:47-64 PMCID:PMC3905196

[140]

d'Adda di Fagagna F. Living on a break: cellular senescence as a DNA-damage response.Nat Rev Cancer2008;8:512-22

[141]

Hodjat M,Dumler I.Urokinase receptor mediates doxorubicin-induced vascular smooth muscle cell senescence via proteasomal degradation of TRF2.J Vasc Res2013;50:109-23

[142]

Linders AN,Ovchinnikova ES.Evaluation of senescence and its prevention in doxorubicin-induced cardiotoxicity using dynamic engineered heart tissues.JACC CardioOncol2023;5:298-315 PMCID:PMC10308053

[143]

Maejima Y,Ito H,Isobe M.Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage.Aging Cell2008;7:125-36

[144]

Ruan Y,Patel J.SIRT1 suppresses doxorubicin-induced cardiotoxicity by regulating the oxidative stress and p38MAPK pathways.Cell Physiol Biochem2015;35:1116-24

[145]

Ou HL.DNA damage responses and p53 in the aging process.Blood2018;131:488-95 PMCID:PMC6839964

[146]

Agudelo D,Bérubé G.Intercalation of antitumor drug doxorubicin and its analogue by DNA duplex: structural features and biological implications.Int J Biol Macromol2014;66:144-50

[147]

Chen NT,Chung CY.Probing the dynamics of doxorubicin-DNA intercalation during the initial activation of apoptosis by fluorescence lifetime imaging microscopy (FLIM).PLoS One2012;7:e44947 PMCID:PMC3445590

[148]

Skladanowski A.Interstrand DNA crosslinking induced by anthracyclines in tumour cells.Biochem Pharmacol1994;47:2269-78

[149]

Zhang S,Bawa-Khalfe T.Identification of the molecular basis of doxorubicin-induced cardiotoxicity.Nat Med2012;18:1639-42

[150]

Thornton TM.Non-classical p38 map kinase functions: cell cycle checkpoints and survival.Int J Biol Sci2009;5:44-52 PMCID:PMC2610339

[151]

Khan SY,Oszwald A.Premature senescence of endothelial cells upon chronic exposure to TNFα can be prevented by N-acetyl cysteine and plumericin.Sci Rep2017;7:39501 PMCID:PMC5206708

[152]

Carvalho FS,Garcia R,Carvalho RA.Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy.Med Res Rev2014;34:106-35

[153]

Peoples JN,Ghazal N,Kwong JQ.Mitochondrial dysfunction and oxidative stress in heart disease.Exp Mol Med2019;51:1-13 PMCID:PMC6923355

[154]

Sangomla S,Khurana A.Nanoceria ameliorates doxorubicin induced cardiotoxicity: possible mitigation via reduction of oxidative stress and inflammation.J Trace Elem Med Biol2018;47:53-62

[155]

Wallace KB.Doxorubicin-induced cardiac mitochondrionopathy.Pharmacol Toxicol2003;93:105-15

[156]

Ferreira A,Simões RF.Altered mitochondrial epigenetics associated with subchronic doxorubicin cardiotoxicity.Toxicology2017;390:63-73

[157]

Lesnefsky EJ,Hoppel CL.Mitochondrial metabolism in aging heart.Circ Res2016;118:1593-611 PMCID:PMC5009371

[158]

Pillai VB,Fang YH.Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice.Oncotarget2017;8:34082-98 PMCID:PMC5470953

[159]

De Falco E,Pagano F.Role of NOX2 in mediating doxorubicin-induced senescence in human endothelial progenitor cells.Mech Ageing Dev2016;159:37-43

[160]

Ong G.Unfolding the interactions between endoplasmic reticulum stress and oxidative stress.Antioxidants2023;12:981 PMCID:PMC10215201

[161]

Guo RM,Lin JC.Activation of the p38 MAPK/NF-κB pathway contributes to doxorubicin-induced inflammation and cytotoxicity in H9c2 cardiac cells.Mol Med Rep2013;8:603-8

[162]

Notarbartolo M,Perri D,Cervello M.Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-κB activation levels and in IAP gene expression.Cancer Lett2005;224:53-65

[163]

Fallah M,Shaki F.Doxorubicin and liposomal doxorubicin induce senescence by enhancing nuclear factor kappa B and mitochondrial membrane potential.Life Sci2019;232:116677

[164]

Tilstra JS,Wang J.NF-κB inhibition delays DNA damage-induced senescence and aging in mice.J Clin Invest2012;122:2601-12 PMCID:PMC3386805

[165]

Mancilla TR,Aune GJ.Doxorubicin-induced p53 interferes with mitophagy in cardiac fibroblasts.PLoS One2020;15:e0238856 PMCID:PMC7508395

[166]

Bent EH,Hemann MT.A senescence secretory switch mediated by PI3K/AKT/mTOR activation controls chemoprotective endothelial secretory responses.Genes Dev2016;30:1811-21 PMCID:PMC5024680

[167]

Smogorzewska A.Different telomere damage signaling pathways in human and mouse cells.EMBO J2002;21:4338-48 PMCID:PMC126171

[168]

Beauséjour CM,Galimi F.Reversal of human cellular senescence: roles of the p53 and p16 pathways.EMBO J2003;22:4212-22 PMCID:PMC175806

[169]

Jacobs JJL.Significant role for p16INK4a in p53-independent telomere-directed senescence.Curr Biol2004;14:2302-8

[170]

Spallarossa P,Aloi C.Doxorubicin induces senescence or apoptosis in rat neonatal cardiomyocytes by regulating the expression levels of the telomere binding factors 1 and 2.Am J Physiol Heart Circ Physiol2009;297:H2169-81

[171]

Roos CM,Palmer AK.Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice.Aging Cell2016;15:973-7

[172]

Crouch J,Thanapaul RJRS,Roh D.Epigenetic regulation of cellular senescence.Cells2022;11:672 PMCID:PMC8870565

[173]

Jones MJ,Kobor MS.DNA methylation and healthy human aging.Aging Cell2015;14:924-32 PMCID:PMC4693469

[174]

Ferreira LL,Veloso CD,Wallace KB.Single nanomolar doxorubicin exposure triggers compensatory mitochondrial responses in H9c2 cardiomyoblasts.Food Chem Toxicol2019;124:450-61

[175]

Cruickshanks HA,Nelson DM.Senescent cells harbour features of the cancer epigenome.Nat Cell Biol2013;15:1495-506 PMCID:PMC4106249

[176]

Song R,Lei H.HDAC6 inhibition protects cardiomyocytes against doxorubicin-induced acute damage by improving α-tubulin acetylation.J Mol Cell Cardiol2018;124:58-69

[177]

Piotrowska I,Mielcarek M.Early transcriptional alteration of histone deacetylases in a murine model of doxorubicin-induced cardiomyopathy.PLoS One2017;12:e0180571 PMCID:PMC5491252

[178]

McIntyre RL,Molenaars M,Janssens GE.From molecular promise to preclinical results: HDAC inhibitors in the race for healthy aging drugs.EMBO Mol Med2019;11:e9854 PMCID:PMC6728603

[179]

Chaudhari U,Wagh V.Metabolite signatures of doxorubicin induced toxicity in human induced pluripotent stem cell-derived cardiomyocytes.Amino Acids2017;49:1955-63 PMCID:PMC5696498

[180]

Garcia MM,Pooya S.Methyl donor deficiency induces cardiomyopathy through altered methylation/acetylation of PGC-1α by PRMT1 and SIRT1.J Pathol2011;225:324-35

[181]

Xiong S,Patrushev N.Peroxisome proliferator-activated receptor γ coactivator-1α is a central negative regulator of vascular senescence.Arterioscler Thromb Vasc Biol2013;33:988-98 PMCID:PMC3663327

[182]

Li W,Wang X.Ferruginol restores SIRT1-PGC-1α-mediated mitochondrial biogenesis and fatty acid oxidation for the treatment of DOX-induced cardiotoxicity.Front Pharmacol2021;12:773834 PMCID:PMC8652228

[183]

Lamore SD,Peters MF.Cardiovascular toxicity induced by kinase inhibitors: mechanisms and preclinical approaches.Chem Res Toxicol2020;33:125-36

[184]

Wang H,Li J.Three tyrosine kinase inhibitors cause cardiotoxicity by inducing endoplasmic reticulum stress and inflammation in cardiomyocytes.BMC Med2023;21:147 PMCID:PMC10108821

[185]

Tanriverdi O,Sandal KK,Bosna IC.Left ventricular dysfunction associated with axitinib and nivolumab experience in an advanced renal cell carcinoma.J Oncol Pharm Pract2020;26:1765-8

[186]

Mongiardi MP,Piras M.Axitinib exposure triggers endothelial cells senescence through ROS accumulation and ATM activation.Oncogene2019;38:5413-24

[187]

Neves KB,Montezano AC.Role of PARP and TRPM2 in VEGF inhibitor-induced vascular dysfunction.J Am Heart Assoc2023;12:e027769 PMCID:PMC10111475

[188]

Gu Y,Alvino VV.The tyrosine kinase inhibitor Dasatinib reduces cardiac steatosis and fibrosis in obese, type 2 diabetic mice.Cardiovasc Diabetol2023;22:214 PMCID:PMC10436421

[189]

Singh AP,Tousif S.Cardiotoxicity of the BCR-ABL1 tyrosine kinase inhibitors: emphasis on ponatinib.Int J Cardiol2020;316:214-21 PMCID:PMC8095092

[190]

Madonna R,Moscato S.Sodium-glucose cotransporter type 2 inhibitors prevent ponatinib-induced endothelial senescence and disfunction: a potential rescue strategy.Vascul Pharmacol2022;142:106949

[191]

Madonna R,Cufaro MC.Ponatinib induces vascular toxicity through the Notch-1 signaling pathway.J Clin Med2020;9:820 PMCID:PMC7141219

[192]

Madonna R,Cufaro MC.Sex-related differential susceptibility to ponatinib cardiotoxicity and differential modulation of the Notch1 signalling pathway in a murine model.J Cell Mol Med2022;26:1380-91 PMCID:PMC8899159

[193]

Wang D,Feng Z.Sunitinib facilitates metastatic breast cancer spreading by inducing endothelial cell senescence.Breast Cancer Res2020;22:103 PMCID:PMC7526390

[194]

Zhu Y,Zhang J.Sunitinib induces cellular senescence via p53/Dec1 activation in renal cell carcinoma cells.Cancer Sci2013;104:1052-61 PMCID:PMC7657144

[195]

Chu TF,Kerkela R.Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib.Lancet2007;370:2011-9 PMCID:PMC2643085

[196]

Hotta K,Kiura K.Gefitinib induces premature senescence in non-small cell lung cancer cells with or without EGFR gene mutation.Oncol Rep2007;17:313-7

[197]

Gasek NS,Kirkland JL.Strategies for targeting senescent cells in human disease.Nat Aging2021;1:870-9 PMCID:PMC8612694

[198]

Owens WA,Spyridopoulos I,Richardson GD.Senescence and senolytics in cardiovascular disease: promise and potential pitfalls.Mech Ageing Dev2021;198:111540 PMCID:PMC8387860

[199]

Zhu Y,Fuhrmann-Stroissnigg H.Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors.Aging Cell2016;15:428-35 PMCID:PMC4854923

[200]

Leverson JD,Mitten MJ.Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy.Sci Transl Med2015;7:279ra40

[201]

Chang J,Shao L.Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice.Nat Med2016;22:78-83 PMCID:PMC4762215

[202]

Wilson WH,Czuczman MS.Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity.Lancet Oncol2010;11:1149-59 PMCID:PMC3025495

[203]

AbbVie. A phase 2 open-label study evaluating tolerability and efficacy of navitoclax alone or in combination with Ruxolitinib in subjects with myelofibrosis (REFINE). 2017. Available from: https://clinicaltrials.gov/study/NCT03222609 [Last accessed on 14 Nov 2024]

[204]

Lérida-Viso A,Morellá-Aucejo Á.Pharmacological senolysis reduces doxorubicin-induced cardiotoxicity and improves cardiac function in mice.Pharmacol Res2022;183:106356

[205]

Zhu Y,Pirtskhalava T.New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463.Aging2017;9:955-63 PMCID:PMC5391241

[206]

Zhu Y,Pirtskhalava T.The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs.Aging Cell2015;14:644-58

[207]

Gonzales MM,Kautz TF.Senolytic therapy in mild Alzheimer's disease: a phase 1 feasibility trial.Nat Med2023;29:2481-8 PMCID:PMC10875739

[208]

Wake Forest University Health Sciences. Phase II clinical trial to evaluate the safety and feasibility of senolytic therapy in Alzheimer’s disease. 2020. Available from: https://clinicaltrials.gov/study/NCT04685590 [Last accessed on 14 Nov 2024]

[209]

Yousefzadeh MJ,McGowan SJ.Fisetin is a senotherapeutic that extends health and lifespan.EBioMedicine2018;36:18-28 PMCID:PMC6197652

[210]

Gupta SC,Deshmukh-Taskar P,Prasad S.Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols.Arch Biochem Biophys2014;559:91-9

[211]

Huard CA,Dey Hazra ME.Effects of fisetin treatment on cellular senescence of various tissues and organs of old sheep.Antioxidants2023;12:1646 PMCID:PMC10451965

[212]

Jonsson Comprehensive Cancer Center. A phase II randomized placebo-controlled study of fisetin and exercise to prevent frailty in breast cancer survivors. 2023. Available from: https://clinicaltrials.gov/study/NCT06113016 [Last accessed on 14 Nov 2024]

[213]

Jonsson Comprehensive Cancer Center. A phase II randomized double-blind placebo-controlled study of fisetin to improve physical function in breast cancer survivors. 2022. Available from: https://clinicaltrials.gov/study/NCT05595499 [Last accessed on 14 Nov 2024]

[214]

Stojanović SD,Bauersachs J,Sedding DG.Senescence-induced inflammation: an important player and key therapeutic target in atherosclerosis.Eur Heart J2020;41:2983-96 PMCID:PMC7453834

[215]

Wang R,Sunchu B.Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism.Aging Cell2017;16:564-74 PMCID:PMC5418203

[216]

Singh M,Lerman A.Effect of low-dose rapamycin on senescence markers and physical functioning in older adults with coronary artery disease: results of a pilot study.J Frailty Aging2016;5:204-7

[217]

Kulkarni AS,Barzilai N.Benefits of metformin in attenuating the hallmarks of aging.Cell Metab2020;32:15-30 PMCID:PMC7347426

[218]

Albert Einstein College of Medicine. Metformin in Longevity Study (MILES). 2015. Available from: https://clinicaltrials.gov/study/NCT02432287 [Last accessed on 14 Nov 2024]

[219]

University of Utah. Metformin to prevent inactivity-induced loss of muscle health during aging. 2017. Available from: https://clinicaltrials.gov/study/NCT03107884 [Last accessed on 14 Nov 2024]

[220]

University of New Mexico. A double-blind, placebo-controlled trial of anti-aging, pro-autophagy effects of metformin in adults with prediabetes. 2017. Available from: https://clinicaltrials.gov/study/NCT03309007 [Last accessed on 14 Nov 2024]

[221]

Kulkarni AS,Anghel V.Metformin regulates metabolic and nonmetabolic pathways in skeletal muscle and subcutaneous adipose tissues of older adults.Aging Cell2018;17:e12723 PMCID:PMC5847877

[222]

Alimbetov D,Brook AJ.Suppression of the senescence-associated secretory phenotype (SASP) in human fibroblasts using small molecule inhibitors of p38 MAP kinase and MK2.Biogerontology2016;17:305-15 PMCID:PMC4819486

[223]

Zhang L,Mu X.Novel small molecule inhibition of IKK/NF-κB activation reduces markers of senescence and improves healthspan in mouse models of aging.Aging Cell2021;20:e13486 PMCID:PMC8672781

[224]

Yu H,Jove R.STATs in cancer inflammation and immunity: a leading role for STAT3.Nat Rev Cancer2009;9:798-809 PMCID:PMC4856025

[225]

Xu M,Ding H.JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age.Proc Natl Acad Sci USA2015;112:E6301-10 PMCID:PMC4655580

[226]

Laberge RM,Sarantos MR.Glucocorticoids suppress selected components of the senescence-associated secretory phenotype.Aging Cell2012;11:569-78 PMCID:PMC3387333

[227]

Varghese LN,Katare R.Role of noncoding RNAs in cardiac ageing.Front Cardiovasc Med2023;10:1142575 PMCID:PMC10073704

[228]

Devaux Y,Schroen B.Long noncoding RNAs in cardiac development and ageing.Nat Rev Cardiol2015;12:415-25

[229]

Suski JM,Lebiedzinska M.p66Shc aging protein in control of fibroblasts cell fate.Int J Mol Sci2011;12:5373-89 PMCID:PMC3179172

[230]

Migliaccio E,Mele S.The p66shc adaptor protein controls oxidative stress response and life span in mammals.Nature1999;402:309-13

[231]

Napoli C,de Nigris F.Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet.Proc Natl Acad Sci USA2003;100:2112-6 PMCID:PMC149967

[232]

Rezk NA,Sabbah NA.MiRNA 34-a regulate SIRT-1 and Foxo-1 expression in endometriosis.Noncoding RNA Res2021;6:35-41 PMCID:PMC7905260

[233]

Fomison-Nurse I,Gandhi S.Diabetes induces the activation of pro-ageing miR-34a in the heart, but has differential effects on cardiomyocytes and cardiac progenitor cells.Cell Death Differ2018;25:1336-49 PMCID:PMC6030067

[234]

Wang H,Shi J,Kong X.Non-coding RNAs in cardiac aging.Cell Physiol Biochem2015;36:1679-87

[235]

Du WW,Li T.The microRNA miR-17-3p inhibits mouse cardiac fibroblast senescence by targeting Par4.J Cell Sci2015;128:293-304

[236]

Jazbutyte V,Kneitz S.MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart.Age2013;35:747-62 PMCID:PMC3636396

[237]

Deckx S,Carai P.Osteoglycin prevents the development of age-related diastolic dysfunction during pressure overload by reducing cardiac fibrosis and inflammation.Matrix Biol2018;66:110-24

[238]

Li H,Li F.Plasma miR-22-5p, miR-132-5p, and miR-150-3p are associated with acute myocardial infarction.Biomed Res Int2019;2019:5012648 PMCID:PMC6507259

[239]

Weigl M,Pultar M.Profiling microRNA expression during senescence and aging: mining for a diagnostic tool of senescent-cell burden. bioRxiv 2024. PMCID:PMC11030445

[240]

Tripathi V,Chakraborty A.Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB.PLoS Genet2013;9:e1003368 PMCID:PMC3605280

[241]

Ratti M,Ghidini M.MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: first steps from bench to bedside.Target Oncol2020;15:261-78 PMCID:PMC7283209

[242]

Fang Y,Wang R.Recent advances on the roles of LncRNAs in cardiovascular disease.J Cell Mol Med2020;24:12246-57 PMCID:PMC7686979

[243]

Suda M,Katsuumi G.Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice.Nat Aging2021;1:1117-26

[244]

Johmura Y,Omori S.Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders.Science2021;371:265-70

[245]

Cheng JW.Use of digoxin for heart failure and atrial fibrillation in elderly patients.Am J Geriatr Pharmacother2010;8:419-27

[246]

Triana-Martínez F,Da Silva-Álvarez S.Identification and characterization of Cardiac Glycosides as senolytic compounds.Nat Commun2019;10:4731 PMCID:PMC6803708

[247]

Amor C,Leibold J.Senolytic CAR T cells reverse senescence-associated pathologies.Nature2020;583:127-32 PMCID:PMC7583560

AI Summary AI Mindmap
PDF

489

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/