Molecular mechanisms underlying sarcopenia in heart failure

Cody A. Rutledge

The Journal of Cardiovascular Aging ›› 2024, Vol. 4 ›› Issue (1) : 7

PDF
The Journal of Cardiovascular Aging ›› 2024, Vol. 4 ›› Issue (1) :7 DOI: 10.20517/jca.2023.40
Review

Molecular mechanisms underlying sarcopenia in heart failure

Author information +
History +
PDF

Abstract

The loss of skeletal muscle, also known as sarcopenia, is an aging-associated muscle disorder that is disproportionately present in heart failure (HF) patients. HF patients with sarcopenia have poor outcomes compared to the overall HF patient population. The prevalence of sarcopenia in HF is only expected to grow as the global population ages, and novel treatment strategies are needed to improve outcomes in this cohort. Multiple mechanistic pathways have emerged that may explain the increased prevalence of sarcopenia in the HF population, and a better understanding of these pathways may lead to the development of therapies to prevent muscle loss. This review article aims to explore the molecular mechanisms linking sarcopenia and HF, and to discuss treatment strategies aimed at addressing such molecular signals.

Keywords

Heart failure / sarcopenia / mitochondria / proteostasis / inflammation / skeletal muscle

Cite this article

Download citation ▾
Cody A. Rutledge. Molecular mechanisms underlying sarcopenia in heart failure. The Journal of Cardiovascular Aging, 2024, 4(1): 7 DOI:10.20517/jca.2023.40

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Becher PM,Coats AJS.An update on global epidemiology in heart failure.Eur Heart J2022;43:3005-7

[2]

Tsao CW,Almarzooq ZI.Heart disease and stroke statistics-2023 update: a report from the american heart association.Circulation2023;147:e93-621

[3]

Li H,Rhee J,Roh JD.Targeting age-related pathways in heart failure.Circ Res2020;126:533-51 PMCID:PMC7041880

[4]

Ho KK,Kannel WB.The epidemiology of heart failure: the Framingham study.J Am Coll Cardiol1993;22:6A-13A

[5]

Savarese G,Lund LH,Rosano GMC.Global burden of heart failure: a comprehensive and updated review of epidemiology.Cardiovasc Res2023;118:3272-87

[6]

Groenewegen A,Mosterd A.Epidemiology of heart failure.Eur J Heart Fail2020;22:1342-56 PMCID:PMC7540043

[7]

Díez-Villanueva P.Heart failure in the elderly.J Geriatr Cardiol2016;13:115-7 PMCID:PMC4854948

[8]

Uchmanowicz I.The relationship between frailty, anxiety and depression, and health-related quality of life in elderly patients with heart failure.Clin Interv Aging2015;10:1595-600 PMCID:PMC4599570

[9]

Beltrami M,Milli M.Frailty, sarcopenia and cachexia in heart failure patients: different clinical entities of the same painting.World J Cardiol2021;13:1-10 PMCID:PMC7821009

[10]

Jeejeebhoy KN.Malnutrition, fatigue, frailty, vulnerability, sarcopenia and cachexia: overlap of clinical features.Curr Opin Clin Nutr Metab Care2012;15:213-9

[11]

Petermann-Rocha F,Celis-Morales C.Frailty, sarcopenia, cachexia and malnutrition as comorbid conditions and their associations with mortality: a prospective study from UK biobank.J Public Health2022;44:e172-80 PMCID:PMC9234318

[12]

Mirzai S,Chen PH,Tang WHW.Current approach to the diagnosis of sarcopenia in heart failure: a narrative review on the role of clinical and imaging assessments.Circ Heart Fail2022;15:e009322 PMCID:PMC9588634

[13]

Cruz-Jentoft AJ,Bauer J.Sarcopenia: revised European consensus on definition and diagnosis.Age Ageing2019;48:16-31

[14]

Muscaritoli M,Argilés J.Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”.Clin Nutr2010;29:154-9

[15]

Ali S.Sarcopenia, cachexia and aging: diagnosis, mechanisms and therapeutic options - a mini-review.Gerontology2014;60:294-305 PMCID:PMC4112511

[16]

Wang DXM,Zirek Y,Maier AB.Muscle mass, strength, and physical performance predicting activities of daily living: a meta-analysis.J Cachexia Sarcopenia Muscle2020;11:3-25 PMCID:PMC7015244

[17]

Yeung SSY,Pham VK.Sarcopenia and its association with falls and fractures in older adults: a systematic review and meta-analysis.J Cachexia Sarcopenia Muscle2019;10:485-500 PMCID:PMC6596401

[18]

Beaudart C,Pasleau F,Bruyère O.Health outcomes of sarcopenia: a systematic review and meta-analysis.PLoS One2017;12:e0169548 PMCID:PMC5240970

[19]

Xu J,Ktoris K,Maier AB.Sarcopenia is associated with mortality in adults: a systematic review and meta-analysis.Gerontology2022;68:361-76

[20]

Chen R,Wang Y.Prevalence of sarcopenia and its association with clinical outcomes in heart failure: an updated meta-analysis and systematic review.Clin Cardiol2023;46:260-8

[21]

Fülster S,Sandek A.Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF).Eur Heart J2013;34:512-9

[22]

Yuan S.Epidemiology of sarcopenia: prevalence, risk factors, and consequences.Metabolism2023;144:155533

[23]

Machackova J,Dhalla NS.Myofibrillar remodeling in cardiac hypertrophy, heart failure and cardiomyopathies.Can J Cardiol2006;22:953-68 PMCID:PMC2570240

[24]

Kostin S,Elsässer A.Myocytes die by multiple mechanisms in failing human hearts.Circ Res2003;92:715-24

[25]

Narumi T,Kadowaki S.Sarcopenia evaluated by fat-free mass index is an important prognostic factor in patients with chronic heart failure.Eur J Intern Med2015;26:118-22

[26]

Anker SD,Varney S.Wasting as independent risk factor for mortality in chronic heart failure.Lancet1997;349:1050-3

[27]

Konishi M,Kamiya K.Impact of sarcopenia on prognosis in patients with heart failure with reduced and preserved ejection fraction.Eur J Prev Cardiol2021;28:1022-9

[28]

Landi F,Martone AM,Onder G.Exercise as a remedy for sarcopenia.Curr Opin Clin Nutr Metab Care2014;17:25-31

[29]

Loncar G,Anker M,Lainscak M.Cardiac cachexia: hic et nunc: “hic et nunc” - here and now.Int J Cardiol2015;201:e1-12

[30]

Anker SD,Coats AJS.Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study.Lancet2003;361:1077-83

[31]

Del Buono MG,Borlaug BA.Exercise intolerance in patients with heart failure: JACC state-of-the-art review.J Am Coll Cardiol2019;73:2209-25

[32]

von Haehling S, Ebner N, Dos Santos MR, Springer J, Anker SD. Muscle wasting and cachexia in heart failure: mechanisms and therapies.Nat Rev Cardiol2017;14:323-41

[33]

Piepoli MF,Francis DP.ExTraMATCH CollaborativeExercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH).BMJ2004;328:189 PMCID:PMC318480

[34]

Anker SD,Ponikowski P.Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia.Circulation1997;96:526-34

[35]

Yamamoto E,Yaku H.Appetite loss at discharge from acute decompensated heart failure: observation from KCHF registry.PLoS One2022;17:e0267327 PMCID:PMC9071124

[36]

The 2019 American Geriatrics Society Beers Criteria® Update Expert Panel. American geriatrics society 2019 updated AGS beers criteria® for Potentially inappropriate medication use in older adults.J Am Geriatr Soc2019;67:674-94

[37]

Rocha de Avila Pelozin B, Felipe Rodrigues L, Menezes De Oliveira E, Fernandes T. Cardiac and cancer-associated cachexia: role of exercise training, non-coding RNAs, and future perspectives. In: D’Onofrio G, Cseri J, editors. Frailty and sarcopenia - recent evidence and new perspectives. IntechOpen; 2022.

[38]

Bruggeman AR,LeBlanc TW,Baracos VE.Cancer cachexia: beyond weight loss.J Oncol Pract2016;12:1163-71

[39]

Musolino V,Tschirner A.Megestrol acetate improves cardiac function in a model of cancer cachexia-induced cardiomyopathy by autophagic modulation.J Cachexia Sarcopenia Muscle2016;7:555-66 PMCID:PMC4864048

[40]

Fernández-Pombo A,Castro AI.Relevance of nutritional assessment and treatment to counteract cardiac cachexia and sarcopenia in chronic heart failure.Clin Nutr2021;40:5141-55

[41]

Habaybeh D,Slee A.Nutritional interventions for heart failure patients who are malnourished or at risk of malnutrition or cachexia: a systematic review and meta-analysis.Heart Fail Rev2021;26:1103-18

[42]

Maimónides Biomedical Research Institute of Córdoba. Mediterranean diet and nutritional support in heart failure sarcopenia. 2023. Available from: https://clinicaltrials.gov/study/NCT05848960 [Last accessed on 21 Dec 2023]

[43]

Doughan AK,Dikalov SI.Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction.Circ Res2008;102:488-96

[44]

Sanders PM,Tisdale MJ.Angiotensin II directly induces muscle protein catabolism through the ubiquitin-proteasome proteolytic pathway and may play a role in cancer cachexia.Br J Cancer2005;93:425-34 PMCID:PMC3217221

[45]

Lee JY,Choi E,Park SJ.Aldosterone inhibits in vitro myogenesis by increasing intracellular oxidative stress via mineralocorticoid receptor.Endocrinol Metab2021;36:865-74 PMCID:PMC8419622

[46]

Burton LA,Struthers AD.Mineralocorticoid antagonism: a novel way to treat sarcopenia and physical impairment in older people?.Clin Endocrinol2011;75:725-9

[47]

Angelidis G,Georgoulias P.Current and potential roles of ghrelin in clinical practice.J Endocrinol Invest2010;33:823-38

[48]

Akamizu T.Therapeutic applications of ghrelin to cachexia utilizing its appetite-stimulating effect.Peptides2011;32:2295-300

[49]

Xin X,Zheng X.Disturbance of circulating ghrelin and obestatin in chronic heart failure patients especially in those with cachexia.Peptides2009;30:2281-5

[50]

Lenk K,Schur R.Effect of ghrelin and its analogues, BIM-28131 and BIM-28125, on the expression of myostatin in a rat heart failure model.J Cachexia Sarcopenia Muscle2013;4:63-9 PMCID:PMC3581616

[51]

Stitt TN,Clarke BA.The IGF-1/PI3K/akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors.Mol Cell2004;14:395-403

[52]

Nagaya N,Yasumura Y.Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure.Circulation2004;110:3674-9

[53]

Zhang G,Qi Y.Ghrelin and cardiovascular diseases.Curr Cardiol Rev2010;6:62-70 PMCID:PMC2845796

[54]

Akamizu T.Ghrelin for cachexia.J Cachexia Sarcopenia Muscle2010;1:169-76 PMCID:PMC3060649

[55]

Caminiti G,Iellamo F.Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study.J Am Coll Cardiol2009;54:919-27

[56]

Pugh PJ,West JN,Channer KS.Testosterone treatment for men with chronic heart failure.Heart2004;90:446-7 PMCID:PMC1768161

[57]

Mirdamadi A,Pourmoghaddas A,Mahmoudi H.Beneficial effects of testosterone therapy on functional capacity, cardiovascular parameters, and quality of life in patients with congestive heart failure.Biomed Res Int2014;2014:392432 PMCID:PMC4109421

[58]

Dos Santos MR,Bacurau AVN.Effect of exercise training and testosterone replacement on skeletal muscle wasting in patients with heart failure with testosterone deficiency.Mayo Clin Proc2016;91:575-86

[59]

Stout M,Doll H.Testosterone therapy during exercise rehabilitation in male patients with chronic heart failure who have low testosterone status: a double-blind randomized controlled feasibility study.Am Heart J2012;164:893-901

[60]

Navarro-Peñalver M,Gómez-Bueno M.Testosterone replacement therapy in deficient patients with chronic heart failure: a randomized double-blind controlled pilot study.J Cardiovasc Pharmacol Ther2018;23:543-50

[61]

Malkin CJ,West JN,Jones TH.Testosterone therapy in men with moderate severity heart failure: a double-blind randomized placebo controlled trial.Eur Heart J2006;27:57-64

[62]

Lincoff AM,Flevaris P.Cardiovascular safety of testosterone-replacement therapy.N Engl J Med2023;389:107-17

[63]

Sculthorpe N,Sinanan ACM,Grace F.Androgens affect myogenesis in vitro and increase local IGF-1 expression.Med Sci Sports Exerc2012;44:610-5

[64]

Ferrando AA,Doyle D,Cortiella J.Testosterone injection stimulates net protein synthesis but not tissue amino acid transport.Am J Physiol1998;275:E864-71

[65]

Powers ML.A direct effect of testosterone on muscle cells in tissue culture.Endocrinology1975;97:1043-7

[66]

Saxton RA.mTOR signaling in growth, metabolism, and disease.Cell2017;168:960-76

[67]

Adhikari R,Dardari Z.National trends in use of sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists by cardiologists and other specialties, 2015 to 2020.J Am Heart Assoc2022;11:e023811 PMCID:PMC9238581

[68]

Heidenreich PA,Aguilar D.2022 AHA/ACC/HFSA guideline for the management of heart failure: executive summary: a report of the american college of cardiology/American heart association joint committee on clinical practice guidelines.J Am Coll Cardiol2022;79:1757-80

[69]

Massimino E,Riccardi G.The impact of glucose-lowering drugs on sarcopenia in type 2 diabetes: current evidence and underlying mechanisms.Cells2021;10:1958 PMCID:PMC8393336

[70]

Dyck JRB,Hamdani N.Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: evidence for potential off-target effects.J Mol Cell Cardiol2022;167:17-31

[71]

Takada S,Kinugawa S.Treatments for skeletal muscle abnormalities in heart failure: sodium-glucose transporter 2 and ketone bodies.Am J Physiol Heart Circ Physiol2022;322:H117-28

[72]

Rutledge C,Redding K.Liraglutide protects against diastolic dysfunction and improves ventricular protein translation. Cardiovasc Drugs Ther 2023

[73]

Moore PW,VanValkenburg D.GLP-1 agonists for weight loss: pharmacology and clinical implications.Adv Ther2023;40:723-42

[74]

Wang JY,Yang XY.GLP-1 receptor agonists for the treatment of obesity: role as a promising approach.Front Endocrinol2023;14:1085799 PMCID:PMC9945324

[75]

Gurjar AA,Chattopadhyay S.Long acting GLP-1 analog liraglutide ameliorates skeletal muscle atrophy in rodents.Metabolism2020;103:154044

[76]

Hong Y,Jeong KW,Jun HS.Amelioration of muscle wasting by glucagon-like peptide-1 receptor agonist in muscle atrophy.J Cachexia Sarcopenia Muscle2019;10:903-18 PMCID:PMC6711418

[77]

Monzel AS,Picard M.Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction.Nat Metab2023;5:546-62 PMCID:PMC10427836

[78]

Zhou B.Mitochondrial dysfunction in pathophysiology of heart failure.J Clin Invest2018;128:3716-26 PMCID:PMC6118589

[79]

Lai L,Keller MP.Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach.Circ Heart Fail2014;7:1022-31 PMCID:PMC4241130

[80]

Sagar S.Cardiovascular aging: the mitochondrial influence.J Cardiovasc Aging2023;3:33 PMCID:PMC10426788

[81]

Mishra P,Pham AH.Mitochondrial dynamics is a distinguishing feature of skeletal muscle fiber types and regulates organellar compartmentalization.Cell Metab2015;22:1033-44 PMCID:PMC4670593

[82]

Adhihetty PJ,Chabi B,Hood DA.Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle.J Appl Physiol2007;102:1143-51

[83]

Romanello V,Gomes L.Mitochondrial fission and remodelling contributes to muscle atrophy.EMBO J2010;29:1774-85 PMCID:PMC2876965

[84]

Coen PM,Hinkley JM.Mitochondria as a target for mitigating sarcopenia.Front Physiol2019;9:01883 PMCID:PMC6335344

[85]

Mau T,Cawthon PM. Muscle mitochondrial bioenergetic capacities is associated with multimorbidity burden in older adults: the study of muscle, mobility and aging (SOMMA). 2023. Available from: https://www.x-mol.net/paper/detail/1721994890604990464 [Last accessed on 21 Dec 2023]

[86]

Min K,Kwon OS,Szeto HH.Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy.J Appl Physiol2011;111:1459-66 PMCID:PMC3220313

[87]

McDonagh B,Vasilaki A,McArdle A.Ageing-induced changes in the redox status of peripheral motor nerves imply an effect on redox signalling rather than oxidative damage.Free Radic Biol Med2016;94:27-35 PMCID:PMC4851218

[88]

Lv J,Shi S.Skeletal muscle mitochondrial remodeling in heart failure: an update on mechanisms and therapeutic opportunities.Biomed Pharmacother2022;155:113833

[89]

Neubauer S.The failing heart-an engine out of fuel.N Engl J Med2007;356:1140-51

[90]

Rosca MG.Mitochondrial dysfunction in heart failure.Heart Fail Rev2013;18:607-22 PMCID:PMC3855291

[91]

van der Ent M, Jeneson JA, Remme WJ, Berger R, Ciampricotti R, Visser F. A non-invasive selective assessment of type I fibre mitochondrial function using 31PNMR spectroscopy: evidence for impaired oxidative phosphorylation rate in skeletal muscle in patients with chronic heart failure.Eur Heart J1998;19:124-31

[92]

Doenst T,Schrepper A.Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload.Cardiovasc Res2010;86:461-70

[93]

Knapp F,Li L.Differential effects of right and left heart failure on skeletal muscle in rats.J Cachexia Sarcopenia Muscle2020;11:1830-49 PMCID:PMC7749622

[94]

Schrepper A,Schöpe M,Doenst T.Biphasic response of skeletal muscle mitochondria to chronic cardiac pressure overload - role of respiratory chain complex activity.J Mol Cell Cardiol2012;52:125-35

[95]

Acin-Perez R,Shabane B,Stiles L.Utilization of human samples for assessment of mitochondrial bioenergetics: gold standards, limitations, and future perspectives.Life2021;11:949 PMCID:PMC8467772

[96]

Guzmán Mentesana G,Lo Presti MS.Functional and structural alterations of cardiac and skeletal muscle mitochondria in heart failure patients.Arch Med Res2014;45:237-46

[97]

Chen YR.Cardiac mitochondria and reactive oxygen species generation.Circ Res2014;114:524-37 PMCID:PMC4118662

[98]

Powers SK,Kavazis AN.Reactive oxygen species: impact on skeletal muscle.Compr Physiol2011;1:941-69 PMCID:PMC3893116

[99]

Jang JY,Liu J.The role of mitochondria in aging.J Clin Invest2018;128:3662-70 PMCID:PMC6118639

[100]

Pinti M,Nasi M.Circulating mitochondrial DNA increases with age and is a familiar trait: implications for “inflamm-aging”.Eur J Immunol2014;44:1552-62

[101]

Cai X,Chen ZJ.The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling.Mol Cell2014;54:289-96

[102]

West AP.Mitochondrial DNA in innate immune responses and inflammatory pathology.Nat Rev Immunol2017;17:363-75 PMCID:PMC7289178

[103]

Shadel GS.Mitochondrial DNA maintenance in vertebrates.Annu Rev Biochem1997;66:409-35

[104]

Ide T,Hayashidani S.Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction.Circ Res2001;88:529-35

[105]

Karamanlidis G,Couper GS,del Monte F.Defective DNA replication impairs mitochondrial biogenesis in human failing hearts.Circ Res2010;106:1541-8 PMCID:PMC2880225

[106]

Hiona A.The role of mitochondrial DNA mutations in aging and sarcopenia: implications for the mitochondrial vicious cycle theory of aging.Exp Gerontol2008;43:24-33 PMCID:PMC2225597

[107]

Mettauer B,Garnier A.Heart failure: a model of cardiac and skeletal muscle energetic failure.Pflugers Arch2006;452:653-66

[108]

Bețiu AM,Hâncu IM.Mitochondrial effects of common cardiovascular medications: the good, the bad and the mixed.Int J Mol Sci2022;23:13653 PMCID:PMC9656474

[109]

Zoll J,Garnier A.ACE inhibition prevents myocardial infarction-induced skeletal muscle mitochondrial dysfunction.J Appl Physiol2006;101:385-91

[110]

Bacurau AV,Souza RW,Gabriel-Costa D.Aerobic exercise and pharmacological therapies for skeletal myopathy in heart failure: similarities and differences.Oxid Med Cell Longev2016;2016:4374671 PMCID:PMC4745416

[111]

Casuso RA.The emerging role of skeletal muscle mitochondrial dynamics in exercise and ageing.Ageing Res Rev2020;58:101025

[112]

Niemann B,Issa H,Rohrbach S.Caloric restriction delays cardiac ageing in rats: role of mitochondria.Cardiovasc Res2010;88:267-76

[113]

No MH,Yoo SZ.Effects of aging and exercise training on mitochondrial function and apoptosis in the rat heart.Pflugers Arch2020;472:179-93

[114]

Peoples JN,Ghazal N,Kwong JQ.Mitochondrial dysfunction and oxidative stress in heart disease.Exp Mol Med2019;51:1-13 PMCID:PMC6923355

[115]

Ussher JR,Lopaschuk GD.Pyridine nucleotide regulation of cardiac intermediary metabolism.Circ Res2012;111:628-41

[116]

Walker MA.Raising NAD in heart failure: time to translate?.Circulation2018;137:2274-7 PMCID:PMC5967641

[117]

Prolla TA.NAD+ deficiency in age-related mitochondrial dysfunction.Cell Metab2014;19:178-80

[118]

Henning RH.Proteostasis in cardiac health and disease.Nat Rev Cardiol2017;14:637-53

[119]

Hipp MS,Hartl FU.The proteostasis network and its decline in ageing.Nat Rev Mol Cell Biol2019;20:421-35

[120]

Hetz C,Oakes SA.Proteostasis control by the unfolded protein response.Nat Cell Biol2015;17:829-38

[121]

Rutledge CA,Chiba T.Metformin preconditioning protects against myocardial stunning and preserves protein translation in a mouse model of cardiac arrest.J Mol Cell Cardiol Plus2023;4:100034 PMCID:PMC10327679

[122]

Meijering RAM,Hoogstra-Berends F,Brundel BJJM.Loss of proteostatic control as a substrate for atrial fibrillation: a novel target for upstream therapy by heat shock proteins.Front Physiol2012;3:36Available from: https://www.frontiersin.org/articles/10.3389/fphys.2012.00036 [Last accessed on 21 Dec 2023].

[123]

Christians ES.Proteostasis and REDOX state in the heart.Am J Physiol Heart Circ Physiol2012;302:H24-37 PMCID:PMC3334238

[124]

Mainali N,Ganne A,Mehta JL.Protein homeostasis in the aged and diseased heart.J Cardiovasc Aging2023;3:16

[125]

Paez HG,Alway SE.Age-related dysfunction in proteostasis and cellular quality control in the development of sarcopenia.Cells2023;12:249 PMCID:PMC9856405

[126]

Wu M,Blough ER.Akt/protein kinase B in skeletal muscle physiology and pathology.J Cell Physiol2011;226:29-36

[127]

Steinberg GR.New insights into activation and function of the AMPK.Nat Rev Mol Cell Biol2023;24:255-72

[128]

Calvert JW,Jha S.Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling.Diabetes2008;57:696-705

[129]

Bujak AL,Lally JS.AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging.Cell Metab2015;21:883-90 PMCID:PMC5233441

[130]

O’Neill HM.AMPK and exercise: glucose uptake and insulin sensitivity.Diabetes Metab J2013;37:1-21 PMCID:PMC3579147

[131]

Cao Y,Kim M.Activation of γ2-AMPK suppresses ribosome biogenesis and protects against myocardial ischemia/reperfusion injury.Circ Res2017;121:1182-91 PMCID:PMC5659937

[132]

Sorrenti V,Buriani A.Immunomodulatory and antiaging mechanisms of resveratrol, rapamycin, and metformin: focus on mTOR and AMPK signaling networks.Pharmaceuticals2022;15:912 PMCID:PMC9394378

[133]

Ziaaldini MM,Picca A.Biochemical pathways of sarcopenia and their modulation by physical exercise: a narrative review.Front Med2017;4:167. PMCID:PMC5632757

[134]

Pearson G,Beers Gibson T.Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions.Endocr Rev2001;22:153-83

[135]

Basualto-Alarcón C,Altamirano F,Estrada M.Testosterone signals through mTOR and androgen receptor to induce muscle hypertrophy.Med Sci Sports Exerc2013;45:1712-20

[136]

Cabello-Verrugio C,Salas JD.Angiotensin II: role in skeletal muscle atrophy.Curr Protein Pept Sci2012;13:560-9

[137]

Bossola M,Costelli P,Rosa F.Proteasome activities in the rectus abdominis muscle of young and older individuals.Biogerontology2008;9:261-8

[138]

Whitman SA,Richmond SR.Contributions of the ubiquitin-proteasome pathway and apoptosis to human skeletal muscle wasting with age.Pflugers Arch2005;450:437-46

[139]

Centner T,Kimura E.Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain.J Mol Biol2001;306:717-26

[140]

Chen SN,Tan Y.Human molecular genetic and functional studies identify TRIM63, encoding muscle RING finger protein 1, as a novel gene for human hypertrophic cardiomyopathy.Circ Res2012;111:907-19 PMCID:PMC3482312

[141]

Bodine SC,Baumhueter S.Identification of ubiquitin ligases required for skeletal muscle atrophy.Science2001;294:1704-8

[142]

Altun M,Overkleeft HS.Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway.J Biol Chem2010;285:39597-608 PMCID:PMC3000941

[143]

Maejima Y,Zhai P.Muscle-specific RING finger 1 negatively regulates pathological cardiac hypertrophy through downregulation of calcineurin A.Circ Heart Fail2014;7:479-90 PMCID:PMC4031295

[144]

Patterson C,Portbury A.Rise above: muscle ring-finger-1 (MURF1) regulation of cardiomyocyte size and energy metabolism.Trans Am Clin Climatol Assoc2011;122:70-81 PMCID:PMC3116371

[145]

Willis MS,Li L.Cardiac muscle ring finger-1 increases susceptibility to heart failure in vivo.Circ Res2009;105:80-8 PMCID:PMC2737442

[146]

Mangner N,Bowen TS.Skeletal muscle alterations in chronic heart failure: differential effects on quadriceps and diaphragm.J Cachexia Sarcopenia Muscle2015;6:381-90 PMCID:PMC4670747

[147]

Gielen S,Kozarez I.Exercise training attenuates MuRF-1 expression in the skeletal muscle of patients with chronic heart failure independent of age: the randomized Leipzig Exercise Intervention in Chronic Heart Failure and Aging catabolism study.Circulation2012;125:2716-27

[148]

Souza RWA,Soares LC.Aerobic exercise training prevents heart failure-induced skeletal muscle atrophy by anti-catabolic, but not anabolic actions.PLoS One2014;9:e110020 PMCID:PMC4201522

[149]

Gomes MD,Jagoe RT,Goldberg AL.Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy.Proc Natl Acad Sci USA2001;98:14440-5 PMCID:PMC64700

[150]

Dehoux MJM,Fernández-Celemín L,Thissen JPM.Induction of MafBx and Murf ubiquitin ligase mRNAs in rat skeletal muscle after LPS injection.FEBS Lett2003;544:214-7

[151]

Adams V,Wisloff U.Myocardial expression of Murf-1 and MAFbx after induction of chronic heart failure: effect on myocardial contractility.Cardiovasc Res2007;73:120-9

[152]

Razeghi P,Sharma S.Atrophy, hypertrophy, and hypoxemia induce transcriptional regulators of the ubiquitin proteasome system in the rat heart.Biochem Biophys Res Commun2006;342:361-4

[153]

Carvalho RF,Coelho CA.Heart failure increases atrogin-1 and MuRF1 gene expression in skeletal muscle with fiber type-specific atrophy.J Mol Histol2010;41:81-7

[154]

Santoyo-Suarez MG,Padilla-Rivas GR.The involvement of krüppel-like factors in cardiovascular diseases.Life2023;13:420 PMCID:PMC9962890

[155]

Xu M,Chen D,Huang Z.FoxO1: a novel insight into its molecular mechanisms in the regulation of skeletal muscle differentiation and fiber type specification.Oncotarget2017;8:10662-74 PMCID:PMC5354690

[156]

Hirata Y,Kato D.A piezo1/KLF15/IL-6 axis mediates immobilization-induced muscle atrophy.J Clin Invest2022;132:1-13 PMCID:PMC9159676

[157]

Gan Z,Kelly DP.Skeletal muscle mitochondrial remodeling in exercise and diseases.Cell Res2018;28:969-80 PMCID:PMC6170448

[158]

Prosdocimo DA,Jain MK.Kruppel-like factors in muscle health and disease.Trends Cardiovasc Med2015;25:278-87 PMCID:PMC4422160

[159]

Pollak NM,Goldberg IJ.Krüppel-like factors: crippling and un-crippling metabolic pathways.JACC Basic Transl Sci2018;3:132-56 PMCID:PMC5985828

[160]

Sweet DR,Hsieh PN.Krüppel-like factors in vascular inflammation: mechanistic insights and therapeutic potential.Front Cardiovasc Med2018;5:6 PMCID:PMC5807683

[161]

He C,Levine B.Exercise induces autophagy in peripheral tissues and in the brain.Autophagy2012;8:1548-51 PMCID:PMC3463459

[162]

Grumati P,Schiavinato A.Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles.Autophagy2011;7:1415-23 PMCID:PMC3288016

[163]

Sanchez AMJ,Raibon A.AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1.J Cell Biochem2012;113:695-710

[164]

Grumati P,Sabatelli P.Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration.Nat Med2010;16:1313-20

[165]

Fujita N,Sakamoto H,Deie M.Time course of ubiquitin-proteasome and macroautophagy-lysosome pathways in skeletal muscle in rats with heart failure.Biomed Res2015;36:383-92

[166]

Jannig PR,Bechara LRG.Autophagy signaling in skeletal muscle of infarcted rats.PLoS One2014;9:e85820 PMCID:PMC3888434

[167]

Adams V,Yu J.Apoptosis in skeletal myocytes of patients with chronic heart failure is associated with exercise intolerance.J Am Coll Cardiol1999;33:959-65

[168]

Gumucio JP.Atrogin-1, MuRF-1, and sarcopenia.Endocrine2013;43:12-21 PMCID:PMC3586538

[169]

Xie G,Mikhail H.Autophagy in sarcopenia: possible mechanisms and novel therapies.Biomed Pharmacother2023;165:115147

[170]

Conraads VM,Vrints CJ.Chronic heart failure: an example of a systemic chronic inflammatory disease resulting in cachexia.Int J Cardiol2002;85:33-49

[171]

Krysztofiak H,Migaj J.Cardiac cachexia: a well-known but challenging complication of heart failure.Clin Interv Aging2020;15:2041-51 PMCID:PMC7646468

[172]

Levine B,Mayer L,Packer M.Elevated circulating levels of tumor necrosis factor in severe chronic heart failure.N Engl J Med1990;323:236-41

[173]

Clark DJ,Pfau SE.Serum complement activation in congestive heart failure.Am Heart J2001;141:684-90

[174]

Rauchhaus M,Francis DP.Plasma cytokine parameters and mortality in patients with chronic heart failure.Circulation2000;102:3060-7

[175]

Tsutamoto T,Wada A.Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure.J Am Coll Cardiol1998;31:391-8

[176]

Goldstein DR.Immune mechanisms of cardiac aging.J Cardiovasc Aging2023;3:17 PMCID:PMC10121185

[177]

Bozkurt B,Clubb FJ Jr.Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats.Circulation1998;97:1382-91

[178]

Li X,Engel D.Cardiac-specific overexpression of tumor necrosis factor-alpha causes oxidative stress and contractile dysfunction in mouse diaphragm.Circulation2000;102:1690-6

[179]

Schaap LA,Deeg DJH.Higher inflammatory marker levels in older persons: associations with 5-year change in muscle mass and muscle strength.J Gerontol A Biol Sci Med Sci2009;64:1183-9 PMCID:PMC2759573

[180]

Dirks AJ.Tumor necrosis factor alpha signaling in skeletal muscle: effects of age and caloric restriction.J Nutr Biochem2006;17:501-8

[181]

Costelli P,Tessitore L.Tumor necrosis factor-alpha mediates changes in tissue protein turnover in a rat cancer cachexia model.J Clin Invest1993;92:2783-9 PMCID:PMC288478

[182]

Nakamura K,Kouchi H.Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II.Circulation1998;98:794-9

[183]

Suematsu N,Wen J.Oxidative stress mediates tumor necrosis factor-alpha-induced mitochondrial DNA damage and dysfunction in cardiac myocytes.Circulation2003;107:1418-23

[184]

Morley JE,Wilson MMG.Cachexia: pathophysiology and clinical relevance.Am J Clin Nutr2006;83:735-43

[185]

Testa M,Lee P.Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension.J Am Coll Cardiol1996;28:964-71

[186]

Baeuerle PA.Function and activation of NF-kappa B in the immune system.Annu Rev Immunol1994;12:141-79

[187]

Sartori R,Sandri M.Mechanisms of muscle atrophy and hypertrophy: implications in health and disease.Nat Commun2021;12:330 PMCID:PMC7803748

[188]

Todorov P,McDevitt T,Fearon K.Characterization of a cancer cachectic factor.Nature1996;379:739-42

[189]

Tsujinaka T,Fujita J.Muscle undergoes atrophy in association with increase of lysosomal cathepsin activity in interleukin-6 transgenic mouse.Biochem Biophys Res Commun1995;207:168-74

[190]

Anker SD,Clark AL.Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure.Eur Heart J1999;20:683-93

[191]

Martins T,Moreira-Gonçalves D,Duarte JA.Recent insights on the molecular mechanisms and therapeutic approaches for cardiac cachexia.Clin Biochem2014;47:8-15

[192]

Ronnebaum SM.The FoxO family in cardiac function and dysfunction.Annu Rev Physiol2010;72:81-94 PMCID:PMC2908381

[193]

Moylan JS,Chambers MA,Reid MB.TNF induction of atrogin-1/MAFbx mRNA depends on Foxo4 expression but not AKT-Foxo1/3 signaling.Am J Physiol Cell Physiol2008;295:C986-93 PMCID:PMC2575831

[194]

Rodríguez-Nuevo A.The sensing of mitochondrial DAMPs by non-immune cells.Cell Stress2019;3:195-207 PMCID:PMC6558933

[195]

Zheng Y,Dong N.NLRP3 inflammasome: the rising star in cardiovascular diseases.Front Cardiovasc Med2022;9:927061 PMCID:PMC9530053

[196]

Anker SD,Volk HD,Poole-Wilson PA.Elevated soluble CD14 receptors and altered cytokines in chronic heart failure.Am J Cardiol1997;79:1426-30

[197]

Liu CF.Gut microbiota in sarcopenia and heart failure.J Cardiovasc Aging2022;2:35 PMCID:PMC9311382

[198]

Ferrari R,Agnoletti L,Curello S.Endothelial function and dysfunction in heart failure.Eur Heart J1998;19 Suppl G:G41-7

[199]

Dos Santos MR,Ebner N.Sarcopenia and endothelial function in patients with chronic heart failure: results from the studies investigating comorbidities aggravating heart failure (SICA-HF).J Am Med Dir Assoc2017;18:240-5

[200]

Wilson JR,Schwartz D.Exercise intolerance in patients with chronic heart failure: role of impaired nutritive flow to skeletal muscle.Circulation1984;69:1079-87

[201]

Pober JS.Evolving functions of endothelial cells in inflammation.Nat Rev Immunol2007;7:803-15

[202]

Mann DL,Packer M.Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL).Circulation2004;109:1594-602

[203]

Chung ES,Lo KH,Willerson JT.Anti-TNF Therapy Against Congestive Heart Failure InvestigatorsRandomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial.Circulation2003;107:3133-40

[204]

Szollosi DE,Aquilato A,Ghoneim OM.Current and novel anti-inflammatory drug targets for inhibition of cytokines and leucocyte recruitment in rheumatic diseases.J Pharm Pharmacol2018;70:18-26

AI Summary AI Mindmap
PDF

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/