Hypertrophic cardiomyopathy in MYBPC3 carriers in aging

Kalyani Ananthamohan , Julian E. Stelzer , Sakthivel Sadayappan

The Journal of Cardiovascular Aging ›› 2024, Vol. 4 ›› Issue (1) : 9

PDF
The Journal of Cardiovascular Aging ›› 2024, Vol. 4 ›› Issue (1) :9 DOI: 10.20517/jca.2023.29
Review

Hypertrophic cardiomyopathy in MYBPC3 carriers in aging

Author information +
History +
PDF

Abstract

Hypertrophic cardiomyopathy (HCM) is characterized by abnormal thickening of the myocardium, leading to arrhythmias, heart failure, and elevated risk of sudden cardiac death, particularly among the young. This inherited disease is predominantly caused by mutations in sarcomeric genes, among which those in the cardiac myosin binding protein-C3 (MYBPC3) gene are major contributors. HCM associated with MYBPC3 mutations usually presents in the elderly and ranges from asymptomatic to symptomatic forms, affecting numerous cardiac functions and presenting significant health risks with a spectrum of clinical manifestations. Regulation of MYBPC3 expression involves various transcriptional and translational mechanisms, yet the destiny of mutant MYBPC3 mRNA and protein in late-onset HCM remains unclear. Pathogenesis related to MYBPC3 mutations includes nonsense-mediated decay, alternative splicing, and ubiquitin-proteasome system events, leading to allelic imbalance and haploinsufficiency. Aging further exacerbates the severity of HCM in carriers of MYBPC3 mutations. Advancements in high-throughput omics techniques have identified crucial molecular events and regulatory disruptions in cardiomyocytes expressing MYBPC3 variants. This review assesses the pathogenic mechanisms that promote late-onset HCM through the lens of transcriptional, post-transcriptional, and post-translational modulation of MYBPC3, underscoring its significance in HCM across carriers. The review also evaluates the influence of aging on these processes and MYBPC3 levels during HCM pathogenesis in the elderly. While pinpointing targets for novel medical interventions to conserve cardiac function remains challenging, the emergence of personalized omics offers promising avenues for future HCM treatments, particularly for late-onset cases.

Keywords

Age-related HCM / MYBPC3 / alternative splicing / nonsense-mediated decay / ubiquitin-proteosome system / chaperone-mediated autophagy

Cite this article

Download citation ▾
Kalyani Ananthamohan, Julian E. Stelzer, Sakthivel Sadayappan. Hypertrophic cardiomyopathy in MYBPC3 carriers in aging. The Journal of Cardiovascular Aging, 2024, 4(1): 9 DOI:10.20517/jca.2023.29

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Semsarian C,Maron MS.New perspectives on the prevalence of hypertrophic cardiomyopathy.J Am Coll Cardiol2015;65:1249-54

[2]

Kramer CM,Desai MY.Hypertrophic cardiomyopathy registry: the rationale and design of an international, observational study of hypertrophic cardiomyopathy.Am Heart J2015;170:223-30 PMCID:PMC4548277

[3]

Wolf CM.Hypertrophic cardiomyopathy: genetics and clinical perspectives.Cardiovasc Diagn Ther2019;9:S388-415 PMCID:PMC6837941

[4]

American College of Cardiology Foundation/American Heart Association Task Force on Practice, American Association for Thoracic Surgery, American Society of Echocardiography, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.J Thorac Cardiovasc Surg2011;142:e153-203

[5]

Marian AJ.Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy.Circ Res2017;121:749-70 PMCID:PMC5654557

[6]

Ramchand J,Chetrit M.Advanced imaging for risk stratification of sudden death in hypertrophic cardiomyopathy.Heart2020;106:793-801

[7]

Lai EJ.Physiologic or pathologic hypertrophy: how can we know?.Expert Rev Cardiovasc Ther2014;12:919-22

[8]

Li Q,Chan RH.Genotype-positive status in patients with hypertrophic cardiomyopathy is associated with higher rates of heart failure events.Circ Cardiovasc Genet2014;7:416-22

[9]

Kaplinsky E.Significance of left ventricular hypertrophy in cardiovascular morbidity and mortality.Cardiovasc Drugs Ther1994;8 Suppl 3:549-56

[10]

Maron BJ,Semsarian C,Olivotto I.Hypertrophic cardiomyopathy: present and future, with translation into contemporary cardiovascular medicine.J Am Coll Cardiol2014;64:83-99

[11]

Olivotto I,Poggesi C.Patterns of disease progression in hypertrophic cardiomyopathy: an individualized approach to clinical staging.Circ Heart Fail2012;5:535-46

[12]

Marsiglia JD.Hypertrophic cardiomyopathy: how do mutations lead to disease?.Arq Bras Cardiol2014;102:295-304 PMCID:PMC3987320

[13]

McNally EM,Puckelwartz MJ.The genetic landscape of cardiomyopathy and its role in heart failure.Cell Metab2015;21:174-82 PMCID:PMC4331062

[14]

Carrier L,Stathopoulou K.Cardiac myosin-binding protein C (MYBPC3) in cardiac pathophysiology.Gene2015;573:188-97 PMCID:PMC6660134

[15]

Mamidi R,Doh CY,Stelzer JE.Impact of the myosin modulator mavacamten on force generation and cross-bridge behavior in a murine model of hypercontractility.J Am Heart Assoc2018;7:e009627 PMCID:PMC6201428

[16]

Mamidi R,Gresham KS.Dose-dependent effects of the myosin activator omecamtiv mecarbil on cross-bridge behavior and force generation in failing human myocardium.Circ Heart Fail2017;10:e004257. PMCID:PMC5685665

[17]

Harris SP,Van Sciver RE,Galkin VE.C0 and C1 N-terminal Ig domains of myosin binding protein C exert different effects on thin filament activation.Proc Natl Acad Sci USA2016;113:1558-63 PMCID:PMC4760775

[18]

van Dijk SJ, Bezold KL, Harris SP. Earning stripes: myosin binding protein-C interactions with actin.Pflugers Arch2014;466:445-50 PMCID:PMC4306388

[19]

Moss RL.Cardiac myosin-binding protein C: a protein once at loose ends finds its regulatory groove.Proc Natl Acad Sci USA2016;113:3133-5 PMCID:PMC4812763

[20]

Tong CW,Liu Y.Phosphoregulation of cardiac inotropy via myosin binding protein-C during increased pacing frequency or β1-adrenergic stimulation.Circ Heart Fail2015;8:595-604 PMCID:PMC4439328

[21]

Rosas PC,Abdalla MI.Phosphorylation of cardiac Myosin-binding protein-C is a critical mediator of diastolic function.Circ Heart Fail2015;8:582-94 PMCID:PMC4447128

[22]

Kubo T,Okawa M,Doi YL.Hypertrophic cardiomyopathy in the elderly.Geriatr Gerontol Int2010;10:9-16

[23]

Baxi AJ,Vargas D,Ocazionez D.Hypertrophic cardiomyopathy from A to Z: genetics, pathophysiology, imaging, and management.Radiographics2016;36:335-54

[24]

Maron BJ,Flack JM,Kurosaki TT.Prevalence of hypertrophic cardiomyopathy in a general population of young adults.Circulation1995;92:785-9

[25]

Elliott PM,Borger MA.Authors/Task Force members2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC).Eur Heart J2014;35:2733-79

[26]

Bogaert J.MR Imaging in Hypertrophic cardiomyopathy: from magnet to bedside.Radiology2014;273:329-48

[27]

Soler R,Rodríguez E,Ochoa JP.Phenotypes of hypertrophic cardiomyopathy. An illustrative review of MRI findings.Insights Imaging2018;9:1007-20 PMCID:PMC6269344

[28]

Ommen SR,Burke MA.2020 AHA/ACC Guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines.J Am Coll Cardiol2020;76:3022-55

[29]

Maron BJ,Epstein SE.Intramural ("small vessel") coronary artery disease in hypertrophic cardiomyopathy.J Am Coll Cardiol1986;8:545-57

[30]

van der Velden J, Stienen GJM. Cardiac disorders and pathophysiology of sarcomeric proteins.Physiol Rev2019;99:381-426

[31]

Tian T,Zhou X.Progress in the molecular genetics of hypertrophic cardiomyopathy: a mini-review.Gerontology2013;59:199-205

[32]

Tsao CW,Almarzooq ZI.Heart disease and stroke statistics-2022 update: a report from the American Heart Association.Circulation2022;145:e153-639

[33]

Hershberger RE,Ho CY.Genetic evaluation of cardiomyopathy-a heart failure society of America Practice Guideline.J Card Fail2018;24:281-302 PMCID:PMC9903357

[34]

Ho CY,Ashley EA.Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: insights from the sarcomeric human cardiomyopathy registry (SHaRe).Circulation2018;138:1387-98

[35]

Glazier AA,Day SM.Allelic imbalance and haploinsufficiency in MYBPC3-linked hypertrophic cardiomyopathy.Pflugers Arch2019;471:781-93 PMCID:PMC6476680

[36]

Walsh R,Ware JS.Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples.Genet Med2017;19:192-203 PMCID:PMC5116235

[37]

Alfares AA,McDermott G.Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity.Genet Med2015;17:880-8

[38]

Haas J,Peil B.Atlas of the clinical genetics of human dilated cardiomyopathy.Eur Heart J2015;36:1123-35a

[39]

Pérez-Sánchez I,García-Molina Sáez E.Factors influencing the phenotypic expression of hypertrophic cardiomyopathy in genetic carriers.Rev Esp Cardiol2018;71:146-54

[40]

Maron BJ,Hauser RG.Clinical course of hypertrophic cardiomyopathy with survival to advanced age.J Am Coll Cardiol2003;42:882-8

[41]

Minhas AMK,Ariss RW.Demographic and regional trends of hypertrophic cardiomyopathy-related mortality in the United States, 1999 to 2019.Circ Heart Fail2022;15:e009292

[42]

Olivotto I,Adabag AS.Gender-related differences in the clinical presentation and outcome of hypertrophic cardiomyopathy.J Am Coll Cardiol2005;46:480-7

[43]

Rowin EJ,Wells S,Koethe BC.Impact of sex on clinical course and survival in the contemporary treatment era for hypertrophic cardiomyopathy.J Am Heart Assoc2019;8:e012041 PMCID:PMC6898820

[44]

Preveden A,Bjelobrk M.Gender related differences in the clinical presentation of hypertrophic cardiomyopathy-an analysis from the silicofcm database.Medicina2022;58:314 PMCID:PMC8879033

[45]

Wang Y,Zou Y.Female sex is associated with worse prognosis in patients with hypertrophic cardiomyopathy in China.PLoS One2014;9:e102969 PMCID:PMC4105411

[46]

Butters A,Ingles J.Sex differences in hypertrophic cardiomyopathy: interaction with genetics and environment.Curr Heart Fail Rep2021;18:264-73 PMCID:PMC8484093

[47]

Binder J,Gersh BJ.Echocardiography-guided genetic testing in hypertrophic cardiomyopathy: septal morphological features predict the presence of myofilament mutations.Mayo Clin Proc2006;81:459-67

[48]

Girolami F,Passerini I.A molecular screening strategy based on beta-myosin heavy chain, cardiac myosin binding protein C and troponin T genes in Italian patients with hypertrophic cardiomyopathy.J Cardiovasc Med2006;7:601-7

[49]

Marian AJ.Molecular genetic basis of hypertrophic cardiomyopathy.Circ Res2021;128:1533-53 PMCID:PMC8127615

[50]

Vakka A,Drosatos K.Cardiovascular aging: from cellular and molecular changes to therapeutic interventions.J Cardiovasc Aging2023;3:23 PMCID:PMC10238104

[51]

Gude NA,Firouzi F.Cardiac ageing: extrinsic and intrinsic factors in cellular renewal and senescence.Nat Rev Cardiol2018;15:523-42

[52]

Dong Y,Liu J.Non-coding RNA-linked epigenetic regulation in cardiac hypertrophy.Int J Biol Sci2018;14:1133-41 PMCID:PMC6036733

[53]

Popa-Fotea NM,Bataila V.Exploring the continuum of hypertrophic cardiomyopathy-from DNA to clinical expression.Medicina2019;55:299 PMCID:PMC6630598

[54]

Kuno A,Hosoda R.Resveratrol improves cardiomyopathy in dystrophin-deficient mice through SIRT1 protein-mediated modulation of p300 protein.J Biol Chem2013;288:5963-72 PMCID:PMC3581415

[55]

Eom GH.Role of histone deacetylase 2 and its posttranslational modifications in cardiac hypertrophy.BMB Rep2015;48:131-8 PMCID:PMC4453031

[56]

Vaquero A,Lee D,Tempst P.Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin.Mol Cell2004;16:93-105

[57]

Cheung P,Warsinske HC.Single-cell chromatin modification profiling reveals increased epigenetic variations with aging.Cell2018;173:1385-97.e14 PMCID:PMC5984186

[58]

Sun D,Jeong M.Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal.Cell Stem Cell2014;14:673-88 PMCID:PMC4070311

[59]

Bell CG,Adams PD.DNA methylation aging clocks: challenges and recommendations.Genome Biol2019;20:249 PMCID:PMC6876109

[60]

Field AE,Wang T,Ideker T.DNA methylation clocks in aging: categories, causes, and consequences.Mol Cell2018;71:882-95 PMCID:PMC6520108

[61]

Koohy H,Matheson LS.Genome organization and chromatin analysis identify transcriptional downregulation of insulin-like growth factor signaling as a hallmark of aging in developing B cells.Genome Biol2018;19:126 PMCID:PMC6124017

[62]

Inuzuka Y,Kawashima T.Suppression of phosphoinositide 3-kinase prevents cardiac aging in mice.Circulation2009;120:1695-703

[63]

Costantino S,Cosentino F.Ageing, metabolism and cardiovascular disease.J Physiol2016;594:2061-73 PMCID:PMC4933114

[64]

Lakatta EG.Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part III: cellular and molecular clues to heart and arterial aging.Circulation2003;107:490-7

[65]

Gerdes Gyuricza I,Keele GR.Genome-wide transcript and protein analysis highlights the role of protein homeostasis in the aging mouse heart.Genome Res2022;32:838-52 PMCID:PMC9104701

[66]

Shioi T.Aging as a substrate of heart failure.J Cardiol2012;60:423-8

[67]

Gupta MK.Making the connections: autophagy and post-translational modifications in cardiomyocytes.Autophagy2016;12:2252-3 PMCID:PMC5103357

[68]

Sharifi-Sanjani M,Tichy ED.Cardiomyocyte-specific telomere shortening is a distinct signature of heart failure in humans.J Am Heart Assoc2017;6:e005086 PMCID:PMC5634248

[69]

Chang ACY,Kirillova A.Telomere shortening is a hallmark of genetic cardiomyopathies.Proc Natl Acad Sci USA2018;115:9276-81 PMCID:PMC6140486

[70]

Nakada Y,Xiao F.DNA Damage response mediates pressure overload-induced cardiomyocyte hypertrophy.Circulation2019;139:1237-9 PMCID:PMC6467068

[71]

Wu L,Zhang Y.Targeting DNA damage response in cardiovascular diseases: from pathophysiology to therapeutic implications.Cardiovasc Res2023;119:691-709

[72]

Aman Y,Hansen M.Autophagy in healthy aging and disease.Nat Aging2021;1:634-50 PMCID:PMC8659158

[73]

Nakai A,Takeda T.The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress.Nat Med2007;13:619-24

[74]

Morimoto S.Sarcomeric proteins and inherited cardiomyopathies.Cardiovasc Res2008;77:659-66

[75]

Stenson PD,Ball EV,Phillips A.The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine.Hum Genet2014;133:1-9 PMCID:PMC3898141

[76]

Viswanathan SK,McNamara JW.Hypertrophic cardiomyopathy clinical phenotype is independent of gene mutation and mutation dosage.PLoS One2017;12:e0187948 PMCID:PMC5679632

[77]

Fourey D,Siminovitch KA.Prevalence and clinical implication of double mutations in hypertrophic cardiomyopathy: revisiting the gene-dose effect.Circ Cardiovasc Genet2017;10:e001685

[78]

Gruen M,Gautel M.cAPK-phosphorylation controls the interaction of the regulatory domain of cardiac myosin binding protein C with myosin-S2 in an on-off fashion.FEBS Lett1999;453:254-9

[79]

Pfuhl M.Structure, interactions and function of the N-terminus of cardiac myosin binding protein C (MyBP-C): who does what, with what, and to whom?.J Muscle Res Cell Motil2012;33:83-94

[80]

Witt CC,Davies MJ,Linke WA.Hypercontractile properties of cardiac muscle fibers in a knock-in mouse model of cardiac myosin-binding protein-C.J Biol Chem2001;276:5353-9

[81]

Moos C,Starr R.Interaction of C-protein with myosin, myosin rod and light meromyosin.J Mol Biol1975;97:1-9

[82]

Freiburg A.A molecular map of the interactions between titin and myosin-binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy.Eur J Biochem1996;235:317-23

[83]

James J,Krenz M.Forced expression of alpha-myosin heavy chain in the rabbit ventricle results in cardioprotection under cardiomyopathic conditions.Circulation2005;111:2339-46 PMCID:PMC1314981

[84]

Sadayappan S,Klevitsky R.Cardiac myosin binding protein C phosphorylation is cardioprotective.Proc Natl Acad Sci USA2006;103:16918-23 PMCID:PMC1636554

[85]

Barefield D.Phosphorylation and function of cardiac myosin binding protein-C in health and disease.J Mol Cell Cardiol2010;48:866-75 PMCID:PMC6800196

[86]

Sadayappan S,Klevitsky R.Cardiac myosin binding protein-C phosphorylation in a β-myosin heavy chain background.Circulation2009;119:1253-62 PMCID:PMC2656413

[87]

Moss RL,Ralphe JC.Cardiac MyBP-C regulates the rate and force of contraction in mammalian myocardium.Circ Res2015;116:183-92 PMCID:PMC4283578

[88]

Desai DA,Jegga AG,Sadayappan S.Heterogeneous distribution of genetic mutations in myosin binding protein-C paralogs.Front Genet2022;13:896117 PMCID:PMC9272480

[89]

Carrier L.Targeting the population for gene therapy with MYBPC3.J Mol Cell Cardiol2021;150:101-8

[90]

Dhandapany PS,Xue Y.A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia.Nat Genet2009;41:187-91 PMCID:PMC2697598

[91]

Jääskeläinen P,Kärkkäinen P,Laakso M.Genetics of hypertrophic cardiomyopathy in eastern Finland: few founder mutations with benign or intermediary phenotypes.Ann Med2004;36:23-32

[92]

Kubo T,Okawa M.Lifelong left ventricular remodeling of hypertrophic cardiomyopathy caused by a founder frameshift deletion mutation in the cardiac Myosin-binding protein C gene among Japanese.J Am Coll Cardiol2005;46:1737-43

[93]

Michels M,Kofflard MJ.Diastolic abnormalities as the first feature of hypertrophic cardiomyopathy in Dutch myosin-binding protein C founder mutations.JACC Cardiovasc Imaging2009;2:58-64

[94]

Niimura H,Sangwatanaroj S.Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy.N Engl J Med1998;338:1248-57

[95]

Suay-Corredera C,Herrero-Galán E.Protein haploinsufficiency drivers identify MYBPC3 variants that cause hypertrophic cardiomyopathy.J Biol Chem2021;297:100854 PMCID:PMC8260873

[96]

Mazzarotto F,Boschi B.Contemporary insights into the genetics of hypertrophic cardiomyopathy: toward a new era in clinical testing?.J Am Heart Assoc2020;9:e015473 PMCID:PMC7428545

[97]

Torrado M,Lamounier Junior A.Identification of an elusive spliceogenic MYBPC3 variant in an otherwise genotype-negative hypertrophic cardiomyopathy pedigree.Sci Rep2022;12:7284 PMCID:PMC9068804

[98]

Lopes LR,Torrado M.Cryptic splice-altering variants in MYBPC3 are a prevalent cause of hypertrophic cardiomyopathy.Circ Genom Precis Med2020;13:e002905

[99]

Niimura H,McKenna WJ.Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly.Circulation2002;105:446-51

[100]

Maron BJ,Casey SA.Development of left ventricular hypertrophy in adults in hypertrophic cardiomyopathy caused by cardiac myosin-binding protein C gene mutations.J Am Coll Cardiol2001;38:315-21

[101]

Hirota T,Kubo T,Furuno T.Morphologic characteristics of hypertrophic cardiomyopathy of the elderly with cardiac myosin-binding protein C gene mutations.Circ J2006;70:875-9

[102]

McConnell BK,Semsarian C.Comparison of two murine models of familial hypertrophic cardiomyopathy.Circ Res2001;88:383-9

[103]

Sato N,Nakayama A,Kasahara H.A novel variant of cardiac myosin-binding protein-C that is unable to assemble into sarcomeres is expressed in the aged mouse atrium.Mol Biol Cell2003;14:3180-91 PMCID:PMC181559

[104]

Vignier N,Fraysse B.Nonsense-mediated mRNA decay and ubiquitin-proteasome system regulate cardiac myosin-binding protein C mutant levels in cardiomyopathic mice.Circ Res2009;105:239-48

[105]

van Dijk SJ,dos Remedios C.Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction.Circulation2009;119:1473-83

[106]

Nakamura M.Mechanisms of physiological and pathological cardiac hypertrophy.Nat Rev Cardiol2018;15:387-407

[107]

Ren X,Brady MB.The genetic and molecular bases for hypertrophic cardiomyopathy: the role for calcium sensitization.J Cardiothorac Vasc Anesth2018;32:478-87

[108]

Parbhudayal RY,Götte MJW.Variable cardiac myosin binding protein-C expression in the myofilaments due to MYBPC3 mutations in hypertrophic cardiomyopathy.J Mol Cell Cardiol2018;123:59-63

[109]

Lin B,Lee K.Cardiac myosin binding protein-C plays no regulatory role in skeletal muscle structure and function.PLoS One2013;8:e69671 PMCID:PMC3729691

[110]

Akazawa H.Roles of cardiac transcription factors in cardiac hypertrophy.Circ Res2003;92:1079-88

[111]

Charron F.GATA transcription factors and cardiac development.Semin Cell Dev Biol1999;10:85-91

[112]

Dodou E,Black BL.mef2c is activated directly by myogenic basic helix-loop-helix proteins during skeletal muscle development in vivo.Mech Dev2003;120:1021-32

[113]

Farrell E,Grimes AC,de Lange WJ.Transcriptome analysis of cardiac hypertrophic growth in MYBPC3-null mice suggests early responders in hypertrophic remodeling.Front Physiol2018;9:1442 PMCID:PMC6210548

[114]

Pei J,Nagyova E.Multi-omics integration identifies key upstream regulators of pathomechanisms in hypertrophic cardiomyopathy due to truncating MYBPC3 mutations.Clin Epigenetics2021;13:61 PMCID:PMC7989210

[115]

Meurs KM.Differential methylation of CpG sites in two isoforms of myosin binding protein C, an important hypertrophic cardiomyopathy gene.Environ Mol Mutagen2011;52:161-4

[116]

Keene JD.RNA regulons: coordination of post-transcriptional events.Nat Rev Genet2007;8:533-43

[117]

Mata J,Bähler J.Post-transcriptional control of gene expression: a genome-wide perspective.Trends Biochem Sci2005;30:506-14

[118]

Gehring NH.Anything but ordinary - emerging splicing mechanisms in eukaryotic gene regulation.Trends Genet2021;37:355-72

[119]

Sciabica KS.The splicing regulators Tra and Tra2 are unusually potent activators of pre-mRNA splicing.Nucleic Acids Res2006;34:6612-20 PMCID:PMC1747189

[120]

Han J.Identification of CELF splicing activation and repression domains in vivo.Nucleic Acids Res2005;33:2769-80 PMCID:PMC1126903

[121]

Hasimbegovic E,Kastner N.Alternative splicing in cardiovascular disease-a survey of recent findings.Genes2021;12:1457 PMCID:PMC8469243

[122]

Beqqali A.Alternative splicing in cardiomyopathy.Biophys Rev2018;10:1061-71 PMCID:PMC6082314

[123]

Dai J,Huang W.RBM20 is a candidate gene for hypertrophic cardiomyopathy.Can J Cardiol2021;37:1751-9

[124]

Guo W,Greaser ML.RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing.Nat Med2012;18:766-73 PMCID:PMC3569865

[125]

Akerberg AA,Butty V.RBPMS2 is a myocardial-enriched splicing regulator required for cardiac function.Circ Res2022;131:980-1000 PMCID:PMC9770155

[126]

Lu SH,Hsu PW.Alternative splicing mediated by RNA-binding protein RBM24 facilitates cardiac myofibrillogenesis in a differentiation stage-specific manner.Circ Res2022;130:112-29

[127]

Bhuvanagiri M,Hentze MW.NMD: RNA biology meets human genetic medicine.Biochem J2010;430:365-77

[128]

Helms AS,Glazier AA.Spatial and functional distribution of MYBPC3 pathogenic variants and clinical outcomes in patients with hypertrophic cardiomyopathy.Circ Genom Precis Med2020;13:396-405 PMCID:PMC7676622

[129]

Herron TJ,Kunst G,Gautel M.Activation of myocardial contraction by the N-terminal domains of myosin binding protein-C.Circ Res2006;98:1290-8

[130]

Govindan S,Ji X.Pathogenic properties of the N-terminal region of cardiac myosin binding protein-C in vitro.J Muscle Res Cell Motil2012;33:17-30 PMCID:PMC3368277

[131]

Yang Q,Osinska H,Klevitsky R.A mouse model of myosin binding protein C human familial hypertrophic cardiomyopathy.J Clin Invest1998;102:1292-300 PMCID:PMC508976

[132]

Yang Q,Osinska H,Klevitsky R.In vivo modeling of myosin binding protein C familial hypertrophic cardiomyopathy.Circ Res1999;85:841-7

[133]

Kuster DWD,Barefield DY.Altered C10 domain in cardiac myosin binding protein-C results in hypertrophic cardiomyopathy.Cardiovasc Res2019;115:1986-97 PMCID:PMC6872972

[134]

Razzaque MA,Osinska H,Blaxall BC.An endogenously produced fragment of cardiac myosin-binding protein C is pathogenic and can lead to heart failure.Circ Res2013;113:553-61 PMCID:PMC3835189

[135]

Li J,Doh CY.AAV9 gene transfer of cMyBPC N-terminal domains ameliorates cardiomyopathy in cMyBPC-deficient mice.JCI Insight2020;5:130182 PMCID:PMC7526450

[136]

Rottbauer W,Zehelein J.Novel splice donor site mutation in the cardiac myosin-binding protein-C gene in familial hypertrophic cardiomyopathy. Characterization of cardiac transcript and protein.J Clin Invest1997;100:475-82 PMCID:PMC508212

[137]

Moolman JA,Uhl K.A newly created splice donor site in exon 25 of the MyBP-C gene is responsible for inherited hypertrophic cardiomyopathy with incomplete disease penetrance.Circulation2000;101:1396-402

[138]

Marston S,Jacques A.Evidence from human myectomy samples that MYBPC3 mutations cause hypertrophic cardiomyopathy through haploinsufficiency.Circ Res2009;105:219-22

[139]

Seeger T,Lam CK.A Premature termination codon mutation in MYBPC3 causes hypertrophic cardiomyopathy via chronic activation of nonsense-mediated decay.Circulation2019;139:799-811 PMCID:PMC6443405

[140]

Burkart V,Disch A.Nonsense mediated decay factor UPF3B is associated with cMyBP-C haploinsufficiency in hypertrophic cardiomyopathy patients.J Mol Cell Cardiol2023;185:26-37

[141]

Iwakawa HO.Life of RISC: formation, action, and degradation of RNA-induced silencing complex.Mol Cell2022;82:30-43

[142]

Kuster DW,Ten Cate FJ.MicroRNA transcriptome profiling in cardiac tissue of hypertrophic cardiomyopathy patients with MYBPC3 mutations.J Mol Cell Cardiol2013;65:59-66

[143]

Lin LR,Lu LH.MicroRNA expression profiles in familial hypertrophic cardiomyopathy with myosin-binding protein C3 (MYBPC3) gene mutations.BMC Cardiovasc Disord2022;22:278 PMCID:PMC9206743

[144]

Walsh CT,Gatto GJ Jr.Protein posttranslational modifications: the chemistry of proteome diversifications.Angew Chem Int Ed2005;44:7342-72

[145]

Yan K,Li P.The role of post-translational modifications in cardiac hypertrophy.J Cell Mol Med2019;23:3795-807 PMCID:PMC6533522

[146]

Sadayappan S,Osinska H.Cardiac myosin-binding protein-C phosphorylation and cardiac function.Circ Res2005;97:1156-63 PMCID:PMC1343494

[147]

El-Armouche A,Schlossarek S.Decreased phosphorylation levels of cardiac myosin-binding protein-C in human and experimental heart failure.J Mol Cell Cardiol2007;43:223-9

[148]

Copeland ON,Messer AE,van der Velden J.Analysis of cardiac myosin binding protein-C phosphorylation in human heart muscle.J Mol Cell Cardiol2010;49:1003-11

[149]

Stelzer JE,Moss RL.Protein kinase A-mediated acceleration of the stretch activation response in murine skinned myocardium is eliminated by ablation of cMyBP-C.Circ Res2006;99:884-90

[150]

Stelzer JE,Walker JW.Differential roles of cardiac myosin-binding protein C and cardiac troponin I in the myofibrillar force responses to protein kinase A phosphorylation.Circ Res2007;101:503-11

[151]

Lynch TL 4th,McNamara JW.Amino terminus of cardiac myosin binding protein-C regulates cardiac contractility.J Mol Cell Cardiol2021;156:33-44 PMCID:PMC8217138

[152]

Lim MS,Walsh MP.Phosphorylation of bovine cardiac C-protein by protein kinase C.Biochem Biophys Res Commun1985;132:1187-95

[153]

Venema RC.Protein kinase C-mediated phosphorylation of troponin I and C-protein in isolated myocardial cells is associated with inhibition of myofibrillar actomyosin MgATPase.J Biol Chem1993;268:2705-11

[154]

Mohamed AS,Schlender KK.Cardiac myosin-binding protein C (MyBP-C): identification of protein kinase A and protein kinase C phosphorylation sites.Arch Biochem Biophys1998;358:313-9

[155]

Sadayappan S,Osinska H.A critical function for Ser-282 in cardiac Myosin binding protein-C phosphorylation and cardiac function.Circ Res2011;109:141-50 PMCID:PMC3132348

[156]

Tong CW,Zawieja DC.Roles of phosphorylation of myosin binding protein-C and troponin I in mouse cardiac muscle twitch dynamics.J Physiol2004;558:927-41 PMCID:PMC1665013

[157]

Kooij V,Murphy AM.Characterization of the cardiac myosin binding protein-C phosphoproteome in healthy and failing human hearts.J Mol Cell Cardiol2013;60:116-20 PMCID:PMC3710717

[158]

Kuster DW,Najafi A.GSK3β phosphorylates newly identified site in the proline-alanine-rich region of cardiac myosin-binding protein C and alters cross-bridge cycling kinetics in human: short communication.Circ Res2013;112:633-9 PMCID:PMC3595322

[159]

Barefield D,de Tombe PP.Contractile dysfunction in a mouse model expressing a heterozygous MYBPC3 mutation associated with hypertrophic cardiomyopathy.Am J Physiol Heart Circ Physiol2014;306:H807-15 PMCID:PMC3949045

[160]

Lovelock JD,Jeong EM.Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity.Circ Res2012;110:841-50 PMCID:PMC3314887

[161]

Patel BG,Solaro RJ.Novel control of cardiac myofilament response to calcium by S-glutathionylation at specific sites of myosin binding protein C.Front Physiol2013;4:336 PMCID:PMC3834529

[162]

Fert-Bober J.Proteomics of citrullination in cardiovascular disease.Proteomics Clin Appl2014;8:522-33

[163]

Barefield DY,Lynch TL.Ablation of the calpain-targeted site in cardiac myosin binding protein-C is cardioprotective during ischemia-reperfusion injury.J Mol Cell Cardiol2019;129:236-46 PMCID:PMC7222036

[164]

Braten O,Ziv T.Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination.Proc Natl Acad Sci USA2016;113:E4639-47 PMCID:PMC4987823

[165]

Oh E,Rape M.Principles of ubiquitin-dependent signaling.Annu Rev Cell Dev Biol2018;34:137-62

[166]

Dikic I.Proteasomal and autophagic degradation systems.Annu Rev Biochem2017;86:193-224

[167]

Park J,Song EJ.Ubiquitin-proteasome system (UPS) as a target for anticancer treatment.Arch Pharm Res2020;43:1144-61 PMCID:PMC7651821

[168]

Pohl C.Cellular quality control by the ubiquitin-proteasome system and autophagy.Science2019;366:818-22

[169]

Helms AS,O'Leary TS.Effects of MYBPC3 loss-of-function mutations preceding hypertrophic cardiomyopathy.JCI Insight2020;5:133782 PMCID:PMC7098724

[170]

Sarikas A,Schenke C.Impairment of the ubiquitin-proteasome system by truncated cardiac myosin binding protein C mutants.Cardiovasc Res2005;66:33-44

[171]

Mearini G,Willis MS.The ubiquitin-proteasome system in cardiac dysfunction.Biochim Biophys Acta2008;1782:749-63

[172]

Mearini G,Schlossarek S.Atrogin-1 and MuRF1 regulate cardiac MyBP-C levels via different mechanisms.Cardiovasc Res2010;85:357-66 PMCID:PMC4023316

[173]

Thottakara T,Reischmann S.The E3 ubiquitin ligase Asb2β is downregulated in a mouse model of hypertrophic cardiomyopathy and targets desmin for proteasomal degradation.J Mol Cell Cardiol2015;87:214-24

[174]

Galluzzi L,Ballabio A.Molecular definitions of autophagy and related processes.EMBO J2017;36:1811-36 PMCID:PMC5494474

[175]

Glazier AA,Mellacheruvu D.HSC70 is a chaperone for wild-type and mutant cardiac myosin binding protein C.JCI Insight2018;3:99319 PMCID:PMC6124431

[176]

Kaushik S.The coming of age of chaperone-mediated autophagy.Nat Rev Mol Cell Biol2018;19:365-81 PMCID:PMC6399518

[177]

Martin TG,Dubey P.Cardiomyocyte contractile impairment in heart failure results from reduced BAG3-mediated sarcomeric protein turnover.Nat Commun2021;12:2942 PMCID:PMC8134551

[178]

Hishiya A,Takayama S.BAG3 and Hsc70 interact with actin capping protein CapZ to maintain myofibrillar integrity under mechanical stress.Circ Res2010;107:1220-31 PMCID:PMC2980587

[179]

Bhadra M,Dutta S,Mair WB.Alternative splicing in aging and longevity.Hum Genet2020;139:357-69.

[180]

Harries LW,Henley W.Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing.Aging Cell2011;10:868-78 PMCID:PMC3173580

[181]

Angarola BL.Splicing alterations in healthy aging and disease.Wiley Interdiscip Rev RNA2021;12:e1643 PMCID:PMC8195850

[182]

Yao J,Li X.Prevalent intron retention fine-tunes gene expression and contributes to cellular senescence.Aging Cell2020;19:e13276 PMCID:PMC7744961

[183]

Wang K,Zhang H.Comprehensive map of age-associated splicing changes across human tissues and their contributions to age-associated diseases.Sci Rep2018;8:10929 PMCID:PMC6053367

[184]

Rodríguez SA,McKenna T.Global genome splicing analysis reveals an increased number of alternatively spliced genes with aging.Aging Cell2016;15:267-78 PMCID:PMC4783335

[185]

Heintz C,Lanjuin A.Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans.Nature2017;541:102-6 PMCID:PMC5361225

[186]

Mazin P,Liu X.Widespread splicing changes in human brain development and aging.Mol Syst Biol2013;9:633 PMCID:PMC3564255

[187]

Pagani F,Vergani C,Sidoli A.Tissue-specific splicing pattern of fibronectin messenger RNA precursor during development and aging in rat.J Cell Biol1991;113:1223-9 PMCID:PMC2289010

[188]

Debès C,Grönke S.Ageing-associated changes in transcriptional elongation influence longevity.Nature2023;616:814-21 PMCID:PMC10132977

[189]

Blanco FJ.The splicing factor SRSF1 as a marker for endothelial senescence.Front Physiol2012;3:54 PMCID:PMC3314196

[190]

Fregoso OI,Akerman M.Splicing-factor oncoprotein SRSF1 stabilizes p53 via RPL5 and induces cellular senescence.Mol Cell2013;50:56-66 PMCID:PMC3628402

[191]

Tang Y,Ajiro M.Downregulation of splicing factor SRSF3 induces p53β, an alternatively spliced isoform of p53 that promotes cellular senescence.Oncogene2013;32:2792-8 PMCID:PMC6503963

[192]

Han Y,Wright JM,Lau E.Proteogenomics reveals sex-biased aging genes and coordinated splicing in cardiac aging.Am J Physiol Heart Circ Physiol2022;323:H538-58 PMCID:PMC9448281

[193]

Kadota Y,Yukiue H.Srsf7 establishes the juvenile transcriptome through age-dependent alternative splicing in mice.iScience2020;23:100929 PMCID:PMC7063262

[194]

Zhang M,Xu E.Rbm24, a target of p53, is necessary for proper expression of p53 and heart development.Cell Death Differ2018;25:1118-30 PMCID:PMC5988652

[195]

Morita H.Heart failure as an aging-related phenotype.Int Heart J2018;59:6-13

[196]

Cheng M,Xu Y.DNA methylation of RNA-binding protein for multiple splicing 2 functions as diagnosis biomarker in gastric cancer pathogenesis and its potential clinical significance.Bioengineered2022;13:4347-60 PMCID:PMC8973754

[197]

Waldera-Lupa DM,Florea AM.Proteome-wide analysis reveals an age-associated cellular phenotype of in situ aged human fibroblasts.Aging2014;6:856-78 PMCID:PMC4247387

[198]

Kalfalah F,Bornholz B.Inadequate mito-biogenesis in primary dermal fibroblasts from old humans is associated with impairment of PGC1A-independent stimulation.Exp Gerontol2014;56:59-68

[199]

Son HG,Ham S.RNA surveillance via nonsense-mediated mRNA decay is crucial for longevity in daf-2/insulin/IGF-1 mutant C. elegans.Nat Commun2017;8:14749 PMCID:PMC5347137

[200]

Masse I,Mouchiroud L.A novel role for the SMG-1 kinase in lifespan and oxidative stress resistance in Caenorhabditis elegans.PLoS One2008;3:e3354 PMCID:PMC2556085

[201]

Huth M,Galimberti E.NMD is required for timely cell fate transitions by fine-tuning gene expression and regulating translation.Genes Dev2022;36:348-67 PMCID:PMC8973849

[202]

Boehm M.A developmental timing microRNA and its target regulate life span in C. elegans.Science2005;310:1954-7

[203]

Hooten N, Abdelmohsen K, Gorospe M, Ejiogu N, Zonderman AB, Evans MK. microRNA expression patterns reveal differential expression of target genes with age.PLoS One2010;5:e10724 PMCID:PMC2873959

[204]

Pincus Z,Slack FJ.MicroRNA predictors of longevity in Caenorhabditis elegans.PLoS Genet2011;7:e1002306 PMCID:PMC3183074

[205]

Smith-Vikos T.MicroRNAs and their roles in aging.J Cell Sci2012;125:7-17 PMCID:PMC3269020

[206]

ElSharawy A,Flachsbart F.Genome-wide miRNA signatures of human longevity.Aging Cell2012;11:607-16

[207]

Tudurachi BS,Leonte A.An update on MYBPC3 gene mutation in hypertrophic cardiomyopathy.Int J Mol Sci2023;24:10510 PMCID:PMC10341819

[208]

Jung HJ.MicroRNA in aging: from discovery to biology.Curr Genomics2012;13:548-57 PMCID:PMC3468887

[209]

Kinser HE.MicroRNAs as modulators of longevity and the aging process.Hum Genet2020;139:291-308 PMCID:PMC6954352

[210]

de Lucia C,Borghetti G.microRNA in cardiovascular aging and age-related cardiovascular diseases.Front Med2017;4:74 PMCID:PMC5466994

[211]

Lefkowitz RJ,Koch WJ.Catecholamines, cardiac beta-adrenergic receptors, and heart failure.Circulation2000;101:1634-7

[212]

Malik FI.Cardiac myosin activation part 1: from concept to clinic.J Mol Cell Cardiol2011;51:454-61

[213]

Malik FI,Elias KA.Cardiac myosin activation: a potential therapeutic approach for systolic heart failure.Science2011;331:1439-43

[214]

Zhao X,Abarzúa P.Inhibition of smooth muscle myosin as a novel therapeutic target for hypertension.J Pharmacol Exp Ther2011;339:307-12 PMCID:PMC3186291

[215]

Bergonzo C,Rao VA.Divalent ions as mediators of carbonylation in cardiac myosin binding protein C.J Mol Graph Model2023;124:108576

[216]

Rosas PC.Implications of S-glutathionylation of sarcomere proteins in cardiac disorders, therapies, and diagnosis.Front Cardiovasc Med2022;9:1060716 PMCID:PMC9902711

[217]

Suay-Corredera C.The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP-C.FEBS Lett2022;596:703-46

[218]

Main A,Baillie GS.Post-translational regulation of cardiac myosin binding protein-C: a graphical review.Cell Signal2020;76:109788

[219]

Heling LWHJ,Kad NM.MyBP-C: one protein to govern them all.J Muscle Res Cell Motil2020;41:91-101 PMCID:PMC7109175

[220]

Enns LC,Ladiges W.Protein kinase A is a target for aging and the aging heart.Aging2010;2:238-43 PMCID:PMC2881512

[221]

Enns LC.Protein kinase A signaling as an anti-aging target.Ageing Res Rev2010;9:269-72

[222]

Nattel S.Aging and protein kinase activation: is it the missing link between age and atrial fibrillation?.Circ Res2018;122:799-801

[223]

Wang HY,Tran ZV.Age-related decreases in lymphocyte protein kinase C activity and translocation are reduced by aerobic fitness.J Gerontol A Biol Sci Med Sci2000;55:B545-51

[224]

Battaini F,Bergamaschi S.Protein kinase C activity, translocation, and conventional isoforms in aging rat brain.Neurobiol Aging1995;16:137-48

[225]

Kane AE,Keller KM,Pyle WG.Age, sex and overall health, measured as frailty, modify myofilament proteins in hearts from naturally aging mice.Sci Rep2020;10:10052 PMCID:PMC7308399

[226]

Yuan C,Tang H,Zeng R.Quantitative comparison of sarcomeric phosphoproteomes of neonatal and adult rat hearts.Am J Physiol Heart Circ Physiol2008;295:H647-56 PMCID:PMC2519213

[227]

Rosas PC,Creed HA,Solaro RJ.Cardiac myosin binding protein-C phosphorylation mitigates age-related cardiac dysfunction: hope for better aging?.JACC Basic Transl Sci2019;4:817-30 PMCID:PMC6978553

[228]

McNamara JW,Lal S.MYBPC3 mutations are associated with a reduced super-relaxed state in patients with hypertrophic cardiomyopathy.PLoS One2017;12:e0180064 PMCID:PMC5489194

[229]

Nakayama H,Otsu K.Macromolecular degradation systems and cardiovascular aging.Circ Res2016;118:1577-92

[230]

Powell SR.The ubiquitin-proteasome system in cardiac physiology and pathology.Am J Physiol Heart Circ Physiol2006;291:H1-19

[231]

Salcan S,Monteiro Barbosa D.Elastic titin properties and protein quality control in the aging heart.Biochim Biophys Acta Mol Cell Res2020;1867:118532

[232]

Li F,Craddock J.Aging and dietary restriction effects on ubiquitination, sumoylation, and the proteasome in the heart.Mech Ageing Dev2008;129:515-21 PMCID:PMC2546525

[233]

Bulteau AL,Friguet B.Age-dependent declines in proteasome activity in the heart.Arch Biochem Biophys2002;397:298-304

[234]

Sosnowska D,Sonntag WE,Ungvari Z.A heart that beats for 500 years: age-related changes in cardiac proteasome activity, oxidative protein damage and expression of heat shock proteins, inflammatory factors, and mitochondrial complexes in Arctica islandica, the longest-living noncolonial animal.J Gerontol A Biol Sci Med Sci2014;69:1448-61 PMCID:PMC4271020

[235]

Hofmann C,Doroudgar S.Protein misfolding in cardiac disease.Circulation2019;139:2085-8

[236]

Schlossarek S,Sultan KR,Eschenhagen T.Defective proteolytic systems in Mybpc3-targeted mice with cardiac hypertrophy.Basic Res Cardiol2012;107:235

[237]

Behl C.Breaking BAG: The Co-chaperone BAG3 in health and disease.Trends Pharmacol Sci2016;37:672-88

[238]

Crum TS,Posimo JM.Heat shock protein responses to aging and proteotoxicity in the olfactory bulb.J Neurochem2015;133:780-94 PMCID:PMC4464935

[239]

Gamerdinger M,Kaya AM,Hartl FU.Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3.EMBO J2009;28:889-901 PMCID:PMC2647772

[240]

Zhou J,Lim A.Changes in macroautophagy, chaperone-mediated autophagy, and mitochondrial metabolism in murine skeletal and cardiac muscle during aging.Aging2017;9:583-99 PMCID:PMC5361683

[241]

Cheng H,Cannell MB.Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle.Science1993;262:740-4

[242]

Molkentin JD,Antos CL.A calcineurin-dependent transcriptional pathway for cardiac hypertrophy.Cell1998;93:215-28 PMCID:PMC4459646

[243]

Coppini R,Mugelli A,Cerbai E.Altered Ca2+ and Na+ homeostasis in human hypertrophic cardiomyopathy: implications for arrhythmogenesis.Front Physiol2018;9:1391 PMCID:PMC6215954

[244]

Louch WE,Heinzel FR.Reduced synchrony of Ca2+ release with loss of T-tubules-a comparison to Ca2+ release in human failing cardiomyocytes.Cardiovasc Res2004;62:63-73

[245]

Gilbert G,Dries E.Calcium signaling in cardiomyocyte function.Cold Spring Harb Perspect Biol2020;12:a035428 PMCID:PMC7050587

[246]

Kresin N,Krämer E.Analysis of contractile function of permeabilized human hypertrophic cardiomyopathy multicellular heart tissue.Front Physiol2019;10:239 PMCID:PMC6447666

[247]

Song Q,Hahn HS.Rescue of cardiomyocyte dysfunction by phospholamban ablation does not prevent ventricular failure in genetic hypertrophy.J Clin Invest2003;111:859-67

[248]

Helms AS,Yob J.Genotype-dependent and -independent calcium signaling dysregulation in human hypertrophic cardiomyopathy.Circulation2016;134:1738-48 PMCID:PMC5127749

[249]

Knöll R.Myosin binding protein C: implications for signal-transduction.J Muscle Res Cell Motil2012;33:31-42 PMCID:PMC3351598

[250]

Fraysse B,Bardswell SC.Increased myofilament Ca2+ sensitivity and diastolic dysfunction as early consequences of Mybpc3 mutation in heterozygous knock-in mice.J Mol Cell Cardiol2012;52:1299-307 PMCID:PMC3370652

[251]

Hamilton S.Altered intracellular calcium homeostasis and arrhythmogenesis in the aged heart.Int J Mol Sci2019;20:2386 PMCID:PMC6566636

[252]

Cooper LL,Lu Y.Redox modification of ryanodine receptors by mitochondria-derived reactive oxygen species contributes to aberrant Ca2+ handling in ageing rabbit hearts.J Physiol2013;591:5895-911 PMCID:PMC3872760

[253]

Feridooni HA,Howlett SE.How cardiomyocyte excitation, calcium release and contraction become altered with age.J Mol Cell Cardiol2015;83:62-72

[254]

Cohn R,Lowe A.A contraction stress model of hypertrophic cardiomyopathy due to sarcomere mutations.Stem Cell Reports2019;12:71-83 PMCID:PMC6335568

[255]

Singh RR,Wang J.Distinct mechanisms for increased cardiac contraction through selective alteration of either myosin or troponin activity.JACC Basic Transl Sci2022;7:1021-37 PMCID:PMC9626889

[256]

Mearini G,Geertz B.Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice.Nat Commun2014;5:5515

[257]

Dutsch A,Schlossarek S.Phosphomimetic cardiac myosin-binding protein C partially rescues a cardiomyopathy phenotype in murine engineered heart tissue.Sci Rep2019;9:18152 PMCID:PMC6890639

[258]

Prondzynski M,Laufer SD.Evaluation of Mybpc3 trans-splicing and gene replacement as therapeutic options in human iPSC-derived cardiomyocytes.Mol Ther Nucleic Acids2017;7:475-86 PMCID:PMC5458066

[259]

Ma H,Park SW.Correction of a pathogenic gene mutation in human embryos.Nature2017;548:413-9

[260]

Ho CY,Jacoby D.Study Design and Rationale of EXPLORER-HCM: evaluation of mavacamten in adults with symptomatic obstructive hypertrophic cardiomyopathy.Circ Heart Fail2020;13:e006853

[261]

Sparrow AJ,Daniels MJ,Robinson P.Mavacamten rescues increased myofilament calcium sensitivity and dysregulation of Ca2+ flux caused by thin filament hypertrophic cardiomyopathy mutations.Am J Physiol Heart Circ Physiol2020;318:H715-22 PMCID:PMC7099453

[262]

Heitner SB,Lester SJ.Mavacamten treatment for obstructive hypertrophic cardiomyopathy: a clinical trial.Ann Intern Med2019;170:741-8

[263]

Zhao J,Puri R.Molecular profiling of individual FDA-approved clinical drugs identifies modulators of nonsense-mediated mRNA decay.Mol Ther Nucleic Acids2022;27:304-18 PMCID:PMC8718828

[264]

Foinquinos A,Genschel C.Preclinical development of a miR-132 inhibitor for heart failure treatment.Nat Commun2020;11:633 PMCID:PMC6994493

[265]

Täubel J,Rump S.Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study.Eur Heart J2021;42:178-88 PMCID:PMC7954267

[266]

Abplanalp WT,John D.Efficiency and target derepression of anti-miR-92a: results of a first in human study.Nucleic Acid Ther2020;30:335-45

[267]

Alcendor RR,Zhai P.Sirt1 regulates aging and resistance to oxidative stress in the heart.Circ Res2007;100:1512-21

[268]

Abdellatif M,Carmona-Gutierrez D,Kroemer G.Autophagy in cardiovascular aging.Circ Res2018;123:803-24

[269]

Alfaras I,Bernier M.Pharmacological strategies to retard cardiovascular aging.Circ Res2016;118:1626-42 PMCID:PMC4894351

[270]

Watson CJ,Neary R.Epigenetic Therapy for the treatment of hypertension-induced cardiac hypertrophy and fibrosis.J Cardiovasc Pharmacol Ther2016;21:127-37

[271]

Mohamed IA,Nasrallah GK.The role of cardiac myosin binding protein C3 in hypertrophic cardiomyopathy-progress and novel therapeutic opportunities.J Cell Physiol2017;232:1650-9

[272]

Xie HF,Du R.miR-377 induces senescence in human skin fibroblasts by targeting DNA methyltransferase 1.Cell Death Dis2017;8:e2663 PMCID:PMC5386568

[273]

Hua Z,Wu A,Luo S.miR-377 inhibition enhances the survival of trophoblast cells via upregulation of FNDC5 in gestational diabetes mellitus.Open Med2021;16:464-71 PMCID:PMC8005781

[274]

Bhaumik D,Schokrpur S.MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8.Aging2009;1:402-11 PMCID:PMC2818025

[275]

Ong J,Boudewijn IM.Age-related gene and miRNA expression changes in airways of healthy individuals.Sci Rep2019;9:3765 PMCID:PMC6403379

[276]

Santeford A,Sene A.Loss of Mir146b with aging contributes to inflammation and mitochondrial dysfunction in thioglycollate-elicited peritoneal macrophages.Elife2021;10:e66703 PMCID:PMC8412946

[277]

Pan XX,Cai F,Wu F.Loss of miR-146b-3p inhibits perivascular adipocyte browning with cold exposure during aging.Cardiovasc Drugs Ther2018;32:511-8

[278]

Zhang X,Wei JY.The expression of microRNA and microRNA clusters in the aging heart.PLoS One2012;7:e34688 PMCID:PMC3329493

[279]

Castanheira CIGD,Fang Y.Mouse microRNA signatures in joint ageing and post-traumatic osteoarthritis.Osteoarthr Cartil Open2021;3:100186 PMCID:PMC8683752

[280]

Capri M,Lanzarini C.Identification of miR-31-5p, miR-141-3p, miR-200c-3p, and GLT1 as human liver aging markers sensitive to donor-recipient age-mismatch in transplants.Aging Cell2017;16:262-72 PMCID:PMC5334540

[281]

Aunin E,Ahmed MI,Botchkareva NV.Exploring a role for regulatory miRNAs in wound healing during ageing:involvement of miR-200c in wound repair.Sci Rep2017;7:3257 PMCID:PMC5468284

[282]

Lu J,Li X.Declined miR-181a-5p expression is associated with impaired natural killer cell development and function with aging.Aging Cell2021;20:e13353 PMCID:PMC8135006

[283]

Kim C,Weyand CM.miR-181a-regulated pathways in T-cell differentiation and aging.Immun Ageing2021;18:28 PMCID:PMC8203492

[284]

Borja-Gonzalez M,McDonagh B.Aging science talks: the role of miR-181a in age-related loss of muscle mass and function.Transl Med Aging2020;4:81-5 PMCID:PMC7341035

[285]

Goljanek-Whysall K,McCormick R,McDonagh B.miR-181a regulates p62/SQSTM1, parkin, and protein DJ-1 promoting mitochondrial dynamics in skeletal muscle aging.Aging Cell2020;19:e13140 PMCID:PMC7189996

[286]

Huan T,Liu C.Age-associated microRNA expression in human peripheral blood is associated with all-cause mortality and age-related traits.Aging Cell2018;17:e12687 PMCID:PMC5770777

[287]

Ozorhan U,Cicekdal MB.Long-term chronic caloric restriction alters miRNA profiles in the brain of ageing mice.Br J Nutr2022;127:641-52

[288]

Mendes-Silva AP,Silva JRDC.Brain-enriched MicroRNA-184 is downregulated in older adults with major depressive disorder: a translational study.J Psychiatr Res2019;111:110-20

[289]

Vischioni C,De Chiara M.miRNAs copy number variations repertoire as hallmark indicator of cancer species predisposition.Genes2022;13:1046 PMCID:PMC9223155

[290]

Budzinska M,Pawlik-Pachucka E,Slusarczyk P.miR-96, miR-145 and miR-9 expression increases, and IGF-1R and FOXO1 expression decreases in peripheral blood mononuclear cells of aging humans.BMC Geriatr2016;16:200 PMCID:PMC5131432

[291]

Mohammed CP,Phee BK.miR-204 downregulates EphB2 in aging mouse hippocampal neurons.Aging Cell2016;15:380-8 PMCID:PMC4783348

[292]

Hoss AG,Beach TG,Myers RH.microRNA Profiles in Parkinson's disease prefrontal cortex.Front Aging Neurosci2016;8:36 PMCID:PMC4772525

[293]

Hoss AG,Latourelle JC.miR-10b-5p expression in Huntington's disease brain relates to age of onset and the extent of striatal involvement.BMC Med Genomics2015;8:10 PMCID:PMC4349621

[294]

Nidadavolu LS,Khan SA.Identification of microRNAs dysregulated in cellular senescence driven by endogenous genotoxic stress.Aging2013;5:460-73 PMCID:PMC3824412

[295]

Ipson BR,Espinoza SE.Identifying exosome-derived microRNAs as candidate biomarkers of frailty.J Frailty Aging2018;7:100-3 PMCID:PMC6384524

[296]

Zhang C,Zhao L,Lai Y.Differential expression of microRNAs in hypertrophied myocardium and their relationship to late gadolinium enhancement, left ventricular hypertrophy and remodeling in hypertrophic cardiomyopathy.Diagnostics2022;12:1978 PMCID:PMC9406969

[297]

Shi H,Song Q.Systematic identification and analysis of dysregulated miRNA and transcription factor feed-forward loops in hypertrophic cardiomyopathy.J Cell Mol Med2019;23:306-16 PMCID:PMC6307764

[298]

Derda AA,Lorenzen JM.Blood-based microRNA signatures differentiate various forms of cardiac hypertrophy.Int J Cardiol2015;196:115-22 PMCID:PMC4936391

[299]

Roncarati R,Losi MA.Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy.J Am Coll Cardiol2014;63:920-7

[300]

Rusu-Nastase EG,Marinescu CI,Preda MB.MiR-29a Increase in aging may function as a compensatory mechanism against cardiac fibrosis through SERPINH1 downregulation.Front Cardiovasc Med2021;8:810241 PMCID:PMC8804242

[301]

Heid J,Ripa R.Age-dependent increase of oxidative stress regulates microRNA-29 family preserving cardiac health.Sci Rep2017;7:16839 PMCID:PMC5715159

[302]

Li M,Chen L,Zhou J.MiR-1-3p that correlates with left ventricular function of HCM can serve as a potential target and differentiate HCM from DCM.J Transl Med2018;16:161 PMCID:PMC5994246

[303]

Sun TY,Zhao FQ.MiR-1-3p and MiR-124-3p synergistically damage the intestinal barrier in the ageing colon.J Crohns Colitis2022;16:656-67 PMCID:PMC9089420

[304]

Hitomi N,Kitaoka H.A frameshift deletion mutation in the cardiac myosin-binding protein C gene associated with dilated phase of hypertrophic cardiomyopathy and dilated cardiomyopathy.J Cardiol2010;56:189-96

[305]

Konno T,Ino H.A novel missense mutation in the myosin binding protein-C gene is responsible for hypertrophic cardiomyopathy with left ventricular dysfunction and dilation in elderly patients.J Am Coll Cardiol2003;41:781-6

[306]

Yang QL,Ma ZL.Gender- and age-related differences in distinct phenotypes of hypertrophic cardiomyopathy-associated mutation MYBPC3-E334K.Heart Vessels2021;36:1525-35

[307]

Sabater-Molina M,García-Molina Sáez E.A novel founder mutation in MYBPC3: phenotypic comparison with the most prevalent MYBPC3 mutation in Spain.Rev Esp Cardiol2017;70:105-14

[308]

Kang C,Martin TD.The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4.Science2015;349:aaa5612 PMCID:PMC4942138

[309]

Jiao H,Lee MS,Li WJ.GATA6 regulates aging of human mesenchymal stem/stromal cells.Stem Cells2021;39:62-77 PMCID:PMC7772271

[310]

Deczkowska A,Tsitsou-Kampeli A.Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner.Nat Commun2017;8:717 PMCID:PMC5620041

[311]

Rogers NH,Park S.Aging leads to a programmed loss of brown adipocytes in murine subcutaneous white adipose tissue.Aging Cell2012;11:1074-83 PMCID:PMC3839316

[312]

Hsieh PN,Fan L.Aging and the Krüppel-like factors.Trends Cell Mol Biol2017;12:1-15 PMCID:PMC5798252

[313]

Sheydina A,Jiang L.Linkage of cardiac gene expression profiles and ETS2 with lifespan variability in rats.Aging Cell2012;11:350-9 PMCID:PMC3306452

[314]

Ma X,Raynard C.The nuclear receptor RXRA controls cellular senescence by regulating calcium signaling.Aging Cell2018;17:e12831 PMCID:PMC6260923

[315]

Martin N,Bernard D.Regulation of cellular senescence by retinoid X receptors and their partners.Mech Ageing Dev2019;183:111131

[316]

Natrajan MS,Crawford AH.Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination.Brain2015;138:3581-97 PMCID:PMC4668920

[317]

Grifone R,Saquet A.RNA-Binding protein Rbm24 as a multifaceted post-transcriptional regulator of embryonic lineage differentiation and cellular homeostasis.Cells2020;9:1891 PMCID:PMC7463526

[318]

Tabrez SS,Jain V,Mukhopadhyay A.Differential alternative splicing coupled to nonsense-mediated decay of mRNA ensures dietary restriction-induced longevity.Nat Commun2017;8:306 PMCID:PMC5563511

[319]

Matecic M,Pan X.A microarray-based genetic screen for yeast chronological aging factors.PLoS Genet2010;6:e1000921 PMCID:PMC2858703

[320]

Deka B,Singh KK.Functional roles of human Up-frameshift suppressor 3 (UPF3) proteins: from nonsense-mediated mRNA decay to neurodevelopmental disorders.Biochimie2021;180:10-22

[321]

Nixon RA.The calpains in aging and aging-related diseases.Ageing Res Rev2003;2:407-18

[322]

Ong SB,Shao NY.Calpain inhibition restores autophagy and prevents mitochondrial fragmentation in a human iPSC model of diabetic endotheliopathy.Stem Cell Reports2019;12:597-610 PMCID:PMC6411483

[323]

Thompson J,Chen Q.Targeting ER stress and calpain activation to reverse age-dependent mitochondrial damage in the heart.Mech Ageing Dev2020;192:111380 PMCID:PMC7686231

[324]

Altun M,Overkleeft HS.Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway.J Biol Chem2010;285:39597-608 PMCID:PMC3000941

[325]

Gumucio JP.Atrogin-1, MuRF-1, and sarcopenia.Endocrine2013;43:12-21 PMCID:PMC3586538

[326]

Clavel S,Kurkdjian E,Margaritis I.Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat tibialis anterior muscle.Mech Ageing Dev2006;127:794-801

[327]

Whitman SA,Richmond SR.Contributions of the ubiquitin-proteasome pathway and apoptosis to human skeletal muscle wasting with age.Pflugers Arch2005;450:437-46

[328]

Raue U,Jemiolo B,Trappe S.Proteolytic gene expression differs at rest and after resistance exercise between young and old women.J Gerontol A Biol Sci Med Sci2007;62:1407-12

[329]

Edström E,Hägglund M.Atrogin-1/MAFbx and MuRF1 are downregulated in aging-related loss of skeletal muscle.J Gerontol A Biol Sci Med Sci2006;61:663-74

[330]

Haddad F.Aging-sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy.J Appl Physiol2006;100:1188-203

[331]

Mota R,Yates CC.Increasing cardiomyocyte atrogin-1 reduces aging-associated fibrosis and regulates remodeling in vivo.Am J Pathol2018;188:1676-92 PMCID:PMC6026801

[332]

Zaglia T,Ruhs A.Atrogin-1 deficiency promotes cardiomyopathy and premature death via impaired autophagy.J Clin Invest2014;124:2410-24 PMCID:PMC4038560

[333]

Wang F,Gao Z.Atg5 knockdown induces age-dependent cardiomyopathy which can be rescued by repeated remote ischemic conditioning.Basic Res Cardiol2021;116:47 PMCID:PMC8316897

[334]

Hartleben B,Meyer-Schwesinger C.Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice.J Clin Invest2010;120:1084-96 PMCID:PMC2846040

[335]

Lipinski MM,Lu T.Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease.Proc Natl Acad Sci USA2010;107:14164-9 PMCID:PMC2922576

[336]

Pyo JO,Ahn HH.Overexpression of Atg5 in mice activates autophagy and extends lifespan.Nat Commun2013;4:2300 PMCID:PMC3753544

AI Summary AI Mindmap
PDF

56

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/