The mTOR signaling pathway in cardiac aging

Dao-Fu Dai , Ping Kang , Hua Bai

The Journal of Cardiovascular Aging ›› 2023, Vol. 3 ›› Issue (3) : 24

PDF
The Journal of Cardiovascular Aging ›› 2023, Vol. 3 ›› Issue (3) :24 DOI: 10.20517/jca.2023.10
Review

The mTOR signaling pathway in cardiac aging

Author information +
History +
PDF

Abstract

The mammalian target of rapamycin (mTOR) is one of the most important signaling pathways that regulate nutrient sensing, cell growth, metabolism, and aging. The mTOR pathway, particularly mTOR complex 1 (mTORC1), has been shown to control aging, lifespan, and healthspan through the regulation of protein synthesis, autophagy, mitochondrial function, and metabolic health. The mTOR pathway also plays critical roles in the heart, from cardiac development, growth and maturation, and maintenance of cardiac homeostasis. Hyperactivation of mTORC1 signaling is well documented in aging and many age-related pathologies, including age-related cardiac dysfunction and heart failure. Suppression of mTORC1 by calorie restriction or rapamycin not only extends lifespan but also restores youthful phenotypes in the heart. In this article, we review model organisms of cardiac aging and highlight recent advances in the impact of the mTORC1 pathway on organismal and cardiac aging, particularly in Drosophila and mice. We focus on the downstream signaling pathways S6 kinase and 4EBP1, which regulates protein synthesis, as well as ULK1 and its related pathway that regulates autophagy. The interaction with mTOR complex 2 (mTORC2) and its potential role in cardiac aging are also discussed.

Keywords

mTOR / aging / cardiac aging / heart failure / rapamycin / caloric restriction

Cite this article

Download citation ▾
Dao-Fu Dai, Ping Kang, Hua Bai. The mTOR signaling pathway in cardiac aging. The Journal of Cardiovascular Aging, 2023, 3(3): 24 DOI:10.20517/jca.2023.10

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Heitman J,Hall MN.Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast.Science1991;253:905-9

[2]

Wang L,Lawrence JC Jr.Activation of mammalian target of rapamycin (mTOR) by insulin is associated with stimulation of 4EBP1 binding to dimeric mTOR complex I.J Biol Chem2006;281:24293-303

[3]

Yip CK,Walz T,Kang SA.Structure of the human mTOR complex I and its implications for rapamycin inhibition.Mol Cell2010;38:768-74 PMCID:PMC2887672

[4]

Johnson SC,Kaeberlein M.mTOR is a key modulator of ageing and age-related disease.Nature2013;493:338-45 PMCID:PMC3687363

[5]

Long X,Ortiz-Vega S,Avruch J.Rheb binds and regulates the mTOR kinase.Curr Biol2005;15:702-13

[6]

Inoki K,Guan KL.TSC2 mediates cellular energy response to control cell growth and survival.Cell2003;115:577-90

[7]

Gwinn DM,Egan DF.AMPK phosphorylation of raptor mediates a metabolic checkpoint.Mol Cell2008;30:214-26 PMCID:PMC2674027

[8]

Efeyan A,Chang S.Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival.Nature2013;493:679-83 PMCID:PMC4000705

[9]

Kalender A,Kim SY.Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner.Cell Metab2010;11:390-401 PMCID:PMC3081779

[10]

Saxton RA.mTOR signaling in growth, metabolism, and disease.Cell2017;168:960-76

[11]

Kim E,Li L,Guan KL.Regulation of TORC1 by rag GTPases in nutrient response.Nat Cell Biol2008;10:935-45 PMCID:PMC2711503

[12]

Sancak Y,Shaul YD.The rag GTPases bind raptor and mediate amino acid signaling to mTORC1.Science2008;320:1496-501 PMCID:PMC2475333

[13]

Bar-Peled L,Cherniack AD.A tumor suppressor complex with GAP activity for the rag GTPases that signal amino acid sufficiency to mTORC1.Science2013;340:1100-6 PMCID:PMC3728654

[14]

Zhenyukh O,Ruiz-Ortega M.High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation.Free Radic Biol Med2017;104:165-77

[15]

Brugarolas J,Hurley RL.Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex.Genes Dev2004;18:2893-904 PMCID:PMC534650

[16]

Ma Y,Dokudovskaya S.mTORC1 pathway in DNA damage response.Biochim Biophys Acta Mol Cell Res2018;1865:1293-311

[17]

Deldicque L,Francaux M.Regulation of mTOR by amino acids and resistance exercise in skeletal muscle.Eur J Appl Physiol2005;94:1-10

[18]

Kim M,Namkoong S.Sestrins are evolutionarily conserved mediators of exercise benefits.Nat Commun2020;11:190 PMCID:PMC6955242

[19]

Sujkowski A.Exercise and sestrin mediate speed and lysosomal activity in drosophila by partially overlapping mechanisms.Cells2021;10:2479 PMCID:PMC8466685

[20]

Lee JH,Park EJ.Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies.Science2010;327:1223-8 PMCID:PMC2866632

[21]

Chen CC,Bhaskar PT.FoxOs inhibit mTORC1 and activate akt by inducing the expression of Sestrin3 and Rictor.Dev Cell2010;18:592-604 PMCID:PMC3031984

[22]

Liu P,Chin YR.PtdIns(3,4,5)P3-Dependent activation of the mTORC2 kinase complex.Cancer Discov2015;5:1194-209 PMCID:PMC4631654

[23]

Hsu PP,Rameseder J.The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling.Science2011;332:1317-22 PMCID:PMC3177140

[24]

Harrington LS,Gray A.The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins.J Cell Biol2004;166:213-23 PMCID:PMC2172316

[25]

Shah OJ,Hunter T.Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies.Curr Biol2004;14:1650-6

[26]

Wullschleger S,Hall MN.TOR signaling in growth and metabolism.Cell2006;124:471-84

[27]

López-Maury L,Bähler J.Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation.Nat Rev Genet2008;9:583-93

[28]

Hannan KM,Jenkins A.mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF.Mol Cell Biol2003;23:8862-77 PMCID:PMC262650

[29]

Mayer C.Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases.Oncogene2006;25:6384-91

[30]

Candiracci J,Chionh YH.Reciprocal regulation of TORC signaling and tRNA modifications by Elongator enforces nutrient-dependent cell fate.Sci Adv2019;5:eaav0184 PMCID:PMC6584457

[31]

Lee J,McIntosh KB.TOR signaling regulates ribosome and tRNA synthesis via LAMMER/Clk and GSK-3 family kinases.Mol Cell2012;45:836-43 PMCID:PMC3319249

[32]

Guertin DA.Defining the role of mTOR in cancer.Cancer Cell2007;12:9-22

[33]

Dorrello NV,Guardavaccaro D,Sherman NE.S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth.Science2006;314:467-71

[34]

Dennis PB,Saitoh M,Kozma SC.Mammalian TOR: a homeostatic ATP sensor.Science2001;294:1102-5

[35]

Um SH,Thomas G.Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1.Cell Metab2006;3:393-402

[36]

Aguilar V,Sotiropoulos A.S6 kinase deletion suppresses muscle growth adaptations to nutrient availability by activating AMP kinase.Cell Metab2007;5:476-87

[37]

Zid BM,Katewa SD.4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila.Cell2009;139:149-60 PMCID:PMC2759400

[38]

Richter JD.Regulation of cap-dependent translation by eIF4E inhibitory proteins.Nature2005;433:477-80

[39]

Hansen M,Walker DW.Autophagy as a promoter of longevity: insights from model organisms.Nat Rev Mol Cell Biol2018;19:579-93

[40]

He C.Regulation mechanisms and signaling pathways of autophagy.Annu Rev Genet2009;43:67-93 PMCID:PMC2831538

[41]

Chang JT,Hellman AB,Hansen M.Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging.Elife2017;6:e18459 PMCID:PMC5496740

[42]

Kaushik S,Kwon H.Loss of autophagy in hypothalamic POMC neurons impairs lipolysis.EMBO Rep2012;13:258-65 PMCID:PMC3323137

[43]

Del Roso A,Cavallini G.Ageing-related changes in the in vivo function of rat liver macroautophagy and proteolysis.Exp Gerontol2003;38:519-27

[44]

Demontis F.FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging.Cell2010;143:813-25 PMCID:PMC3066043

[45]

Chang K,Liu Y.TGFB-INHB/activin signaling regulates age-dependent autophagy and cardiac health through inhibition of MTORC2.Autophagy2020;16:1807-22 PMCID:PMC8386626

[46]

Taneike M,Nakai A.Inhibition of autophagy in the heart induces age-related cardiomyopathy.Autophagy2010;6:600-6

[47]

Meléndez A,Seaman M,Hall DH.Autophagy genes are essential for dauer development and life-span extension in C. elegans.Science2003;301:1387-91

[48]

Hansen M,Mitic LL,Driscoll M.A role for autophagy in the extension of lifespan by dietary restriction in C. elegans.PLoS Genet2008;4:e24 PMCID:PMC2242811

[49]

Bjedov I,Kerr F.Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster.Cell Metab2010;11:35-46 PMCID:PMC2824086

[50]

Fernández ÁF,Wei Y.Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice.Nature2018;558:136-40

[51]

Laplante M.mTOR signaling in growth control and disease.Cell2012;149:274-93 PMCID:PMC3331679

[52]

Morselli E,Markaki M.Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy.Cell Death Dis2010;1:e10 PMCID:PMC3032517

[53]

Hosokawa N,Kaizuka T.Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy.Mol Biol Cell2009;20:1981-91 PMCID:PMC2663915

[54]

Martina JA,Gucek M.MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB.Autophagy2012;8:903-14 PMCID:PMC3427256

[55]

Roczniak-Ferguson A,Froehlich F.The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis.Sci Signal2012;5:ra42 PMCID:PMC3437338

[56]

Ho TT,Adelman ER.Autophagy maintains the metabolism and function of young and old stem cells.Nature2017;543:205-10 PMCID:PMC5344718

[57]

Baar EL,Ong IM.Sex- and tissue-specific changes in mTOR signaling with age in C57BL/6J mice.Aging Cell2016;15:155-66 PMCID:PMC4717274

[58]

Lapierre LR,Meléndez A.Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans.Curr Biol2011;21:1507-14 PMCID:PMC3191188

[59]

Lapierre LR,McQuary PR.The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans.Nat Commun2013;4:2267 PMCID:PMC3866206

[60]

Wang RC,An Z.Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation.Science2012;338:956-9 PMCID:PMC3507442

[61]

Ozturk DG,Akcay A.MITF-MIR211 axis is a novel autophagy amplifier system during cellular stress.Autophagy2019;15:375-90 PMCID:PMC6351134

[62]

Bartolomé A,Asahara SI.MTORC1 regulates both general autophagy and mitophagy induction after oxidative phosphorylation uncoupling.Mol Cell Biol2017;37:e00441-17 PMCID:PMC5686580

[63]

Wende AR.Lipotoxicity in the heart.Biochim Biophys Acta2010;1801:311-9 PMCID:PMC2823976

[64]

Ouwens DM,Fodor M.Cardiac dysfunction induced by high-fat diet is associated with altered myocardial insulin signalling in rats.Diabetologia2005;48:1229-37

[65]

Ritchie RH.Basic mechanisms of diabetic heart disease.Circ Res2020;126:1501-25 PMCID:PMC7251974

[66]

Bugger H.Rodent models of diabetic cardiomyopathy.Dis Model Mech2009;2:454-66

[67]

Birse RT,Reardon K.High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila.Cell Metab2010;12:533-44 PMCID:PMC3026640

[68]

Diop SB,Birse RT,Ocorr K.PGC-1/Spargel counteracts high-fat-diet-induced obesity and cardiac lipotoxicity downstream of TOR and brummer ATGL lipase.Cell Rep2015;10:1572-84 PMCID:PMC4560688

[69]

Caron A,Laplante M.The roles of mTOR complexes in lipid metabolism.Annu Rev Nutr2015;35:321-48

[70]

Lamming DW.A central role for mTOR in lipid homeostasis.Cell Metab2013;18:465-9 PMCID:PMC3818790

[71]

Szwed A,Jacinto E.Regulation and metabolic functions of mTORC1 and mTORC2.Physiol Rev2021;101:1371-426 PMCID:PMC8424549

[72]

Sengupta S,Laplante M,Sabatini DM.mTORC1 controls fasting-induced ketogenesis and its modulation by ageing.Nature2010;468:1100-4

[73]

Zhang HH,Düvel K.Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway.PLoS One2009;4:e6189 PMCID:PMC2703782

[74]

Carnevalli LS,Frigerio F.S6K1 plays a critical role in early adipocyte differentiation.Dev Cell2010;18:763-74 PMCID:PMC2918254

[75]

Porstmann T,Griffiths B.SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth.Cell Metab2008;8:224-36 PMCID:PMC2593919

[76]

Owen JL,Bae SH.Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase.Proc Natl Acad Sci USA2012;109:16184-9 PMCID:PMC3479583

[77]

Peterson TR,Harris TE.mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway.Cell2011;146:408-20 PMCID:PMC3336367

[78]

Viscarra JA,Nguyen HP,Sul HS.Histone demethylase JMJD1C is phosphorylated by mTOR to activate de novo lipogenesis.Nat Commun2020;11:796 PMCID:PMC7005700

[79]

Lee G,Cho S.Post-transcriptional regulation of de novo lipogenesis by mTORC1-S6K1-SRPK2 signaling.Cell2017;171:1545-58.e18

[80]

Hagiwara A,Cybulski N.Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c.Cell Metab2012;15:725-38

[81]

Kumar A,Jung DY.Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism.Diabetes2010;59:1397-406

[82]

Sciarretta S,Shao D.Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome.Circulation2012;125:1134-46 PMCID:PMC3337789

[83]

Guo R,Turdi S.Adiponectin knockout accentuates high fat diet-induced obesity and cardiac dysfunction: role of autophagy.Biochim Biophys Acta2013;1832:1136-48 PMCID:PMC3796200

[84]

Das A,Koka S,Xi L.Mammalian target of rapamycin (mTOR) inhibition with rapamycin improves cardiac function in type 2 diabetic mice: potential role of attenuated oxidative stress and altered contractile protein expression.J Biol Chem2014;289:4145-60 PMCID:PMC3924280

[85]

Völkers M,Nguyen N.PRAS40 prevents development of diabetic cardiomyopathy and improves hepatic insulin sensitivity in obesity.EMBO Mol Med2014;6:57-65 PMCID:PMC3936489

[86]

Lakatta EG.Myocardial aging: functional alterations and related cellular mechanisms.Am J Physiol1982;242:H927-41

[87]

Liu P,Requejo G.mTORC2 protects the heart from high-fat diet-induced cardiomyopathy through mitochondrial fission in Drosophila.Front Cell Dev Biol2022;10:866210 PMCID:PMC9334792

[88]

Vellai T,Zhang Y,Orosz L.Genetics: influence of TOR kinase on lifespan in C. elegans.Nature2003;426:620

[89]

Jia K,Riddle DL.The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span.Development2004;131:3897-906

[90]

Kaeberlein M,Steffen KK.Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients.Science2005;310:1193-6

[91]

Kapahi P,Harper T,Sapin V.Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway.Curr Biol2004;14:885-90 PMCID:PMC2754830

[92]

Lamming DW,Katajisto P.Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity.Science2012;335:1638-43 PMCID:PMC3324089

[93]

Wu JJ,Chen EB.Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression.Cell Rep2013;4:913-20 PMCID:PMC3784301

[94]

Henderson ST,Johnson TE.daf-16 protects the nematode Caenorhabditis elegans during food deprivation.J Gerontol A Biol Sci Med Sci2006;61:444-60

[95]

Selman C,Wieser D.Ribosomal protein S6 kinase 1 signaling regulates mammalian life span.Science2009;326:140-4 PMCID:PMC4954603

[96]

Speakman JR.Caloric restriction.Mol Aspects Med2011;32:159-221

[97]

Dai DF,Chiao YA.Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart.Aging Cell2014;13:529-39

[98]

Hursting SD,Ford NA,Lashinger LM.Calorie restriction and cancer prevention: a mechanistic perspective.Cancer Metab2013;1:10 PMCID:PMC4178215

[99]

Obin M,Halbleib M,Taylor A.Calorie restriction modulates age-dependent changes in the retinas of brown norway rats.Mech Ageing Dev2000;114:133-47

[100]

Izuta Y,Hisamura R.Ketone body 3-hydroxybutyrate mimics calorie restriction via the Nrf2 activator, fumarate, in the retina.Aging Cell2018;17:e12699 PMCID:PMC5770878

[101]

Someya S,Weindruch R,Tanokura M.Caloric restriction suppresses apoptotic cell death in the mammalian cochlea and leads to prevention of presbycusis.Neurobiol Aging2007;28:1613-22

[102]

Colman RJ,Johnson SC.Caloric restriction delays disease onset and mortality in rhesus monkeys.Science2009;325:201-4 PMCID:PMC2812811

[103]

Hansen M,Crawford D,Lee SJ.Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans.Aging Cell2007;6:95-110

[104]

Harrison DE,Sharp ZD.Rapamycin fed late in life extends lifespan in genetically heterogeneous mice.Nature2009;460:392-5 PMCID:PMC2786175

[105]

Robida-Stubbs S,Lamming DW.TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO.Cell Metab2012;15:713-24 PMCID:PMC3348514

[106]

Quarles EK.Transient and late-life rapamycin for healthspan extension.Aging2020;12:4050-1 PMCID:PMC7093168

[107]

Miller RA,Astle CM.Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction.Aging Cell2014;13:468-77 PMCID:PMC4032600

[108]

Fok WC,Gelfond J.Combined treatment of rapamycin and dietary restriction has a larger effect on the transcriptome and metabolome of liver.Aging Cell2014;13:311-9 PMCID:PMC3989927

[109]

Yu Z,Fok WC,Salmon AB.Rapamycin and dietary restriction induce metabolically distinctive changes in mouse liver.J Gerontol A Biol Sci Med Sci2015;70:410-20 PMCID:PMC4447794

[110]

Fok WC,Salmon AB.Short-term treatment with rapamycin and dietary restriction have overlapping and distinctive effects in young mice.J Gerontol A Biol Sci Med Sci2013;68:108-16 PMCID:PMC3598360

[111]

Karunadharma PP,Dai DF.Subacute calorie restriction and rapamycin discordantly alter mouse liver proteome homeostasis and reverse aging effects.Aging Cell2015;14:547-57 PMCID:PMC4531069

[112]

Bier E.Drosophila, an emerging model for cardiac disease.Gene2004;342:1-11

[113]

Blice-Baum AC,Hartley PS,Bodmer R.As time flies by: investigating cardiac aging in the short-lived Drosophila model.Biochim Biophys Acta Mol Basis Dis2019;1865:1831-44 PMCID:PMC6527462

[114]

Lints TJ,Hartley L,Harvey RP.Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants.Development1993;119:419-31

[115]

Komuro I.Csx: a murine homeobox-containing gene specifically expressed in the developing heart.Proc Natl Acad Sci USA1993;90:8145-9 PMCID:PMC47305

[116]

Rotstein B.On the morphology of the drosophila heart.J Cardiovasc Dev Dis2016;3:15 PMCID:PMC5715677

[117]

Bodmer R.The gene tinman is required for specification of the heart and visceral muscles in Drosophila.Development1993;118:719-29

[118]

Tonissen KF,Lints TJ,Krieg PA.XNkx-2.5, a Xenopus gene related to Nkx-2.5 and tinman: evidence for a conserved role in cardiac development.Dev Biol1994;162:325-8

[119]

Evans SM,Murillo MP,Papalopulu N.Tinman, a drosophila homeobox gene required for heart and visceral mesoderm specification, may be represented by a family of genes in vertebrates: XNkx-2.3, a second vertebrate homologue of tinman.Development1995;121:3889-99

[120]

Fink M,Chu A.A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts.Biotechniques2009;46:101-13 PMCID:PMC2855226

[121]

Ocorr K,Cammarato A,Bodmer R.Semi-automated optical heartbeat analysis of small hearts.J Vis Exp2009:1435 PMCID:PMC3150057

[122]

Lalevée N,Sénatore S,Sémériva M.Control of cardiac rhythm by ORK1, a Drosophila two-pore domain potassium channel.Curr Biol2006;16:1502-8

[123]

Monnier V,Rera M.dJun and Vri/dNFIL3 are major regulators of cardiac aging in Drosophila.PLoS Genet2012;8:e1003081 PMCID:PMC3510041

[124]

Klassen MP,Zhou S,Jan LY.Age-dependent diastolic heart failure in an in vivo Drosophila model.Elife2017;6:e20851

[125]

Wolf MJ,Izatt JA,Reedy MC.Drosophila as a model for the identification of genes causing adult human heart disease.Proc Natl Acad Sci USA2006;103:1394-9 PMCID:PMC1360529

[126]

Viswanathan MC,Engler AJ,Cammarato A.A Drosophila melanogaster model of diastolic dysfunction and cardiomyopathy based on impaired troponin-T function.Circ Res2014;114:e6-17 PMCID:PMC4526186

[127]

Kaushik G,Cammarato A.In situ mechanical analysis of myofibrillar perturbation and aging on soft, bilayered Drosophila myocardium.Biophys J2011;101:2629-37 PMCID:PMC3297788

[128]

Kaushik G,Fuhrmann A.Measuring passive myocardial stiffness in Drosophila melanogaster to investigate diastolic dysfunction.J Cell Mol Med2012;16:1656-62 PMCID:PMC3326184

[129]

Wessells RJ,Cypser JR,Bodmer R.Insulin regulation of heart function in aging fruit flies.Nat Genet2004;36:1275-81

[130]

Wessells R,Piazza N.d4eBP acts downstream of both dTOR and dFoxo to modulate cardiac functional aging in Drosophila.Aging Cell2009;8:542-52 PMCID:PMC2832479

[131]

Cannon L,Cammarato A.Expression patterns of cardiac aging in Drosophila.Aging Cell2017;16:82-92 PMCID:PMC5242310

[132]

Zheng F,Potier M.Resistance to glomerulosclerosis in B6 mice disappears after menopause. Am J Pathol 2003;162:1339-48. PMCID:PMC1851217

[133]

Dai DF,Vermulst M.Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging.Circulation2009;119:2789-97 PMCID:PMC2858759

[134]

Lakatta EG.Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease.Circulation2003;107:139-46

[135]

Lakatta EG.Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease.Circulation2003;107:346-54

[136]

Dai DF,Johnson SC,Rabinovitch PS.Cardiac aging: from molecular mechanisms to significance in human health and disease.Antioxid Redox Signal2012;16:1492-526 PMCID:PMC3329953

[137]

Treuting PM,Knoblaugh SE.Reduction of age-associated pathology in old mice by overexpression of catalase in mitochondria.J Gerontol A Biol Sci Med Sci2008;63:813-22

[138]

Yan L,O'Connor JP.Type 5 adenylyl cyclase disruption increases longevity and protects against stress.Cell2007;130:247-58

[139]

Mohammed SF,Edwards WD.Left ventricular amyloid deposition in patients with heart failure and preserved ejection fraction.JACC Heart Fail2014;2:113-22 PMCID:PMC3984539

[140]

Westermark P,Natvig JB.Senile cardiac amyloidosis: evidence of two different amyloid substances in the ageing heart.Scand J Immunol1979;10:303-8

[141]

Ng B,Davidoff R,Falk RH.Senile systemic amyloidosis presenting with heart failure: a comparison with light chain-associated amyloidosis.Arch Intern Med2005;165:1425-9

[142]

Flynn JM,Zambataro CA.Late-life rapamycin treatment reverses age-related heart dysfunction.Aging Cell2013;12:851-62 PMCID:PMC4098908

[143]

Dai DF,Liu Y.Mitochondrial proteome remodelling in pressure overload-induced heart failure: the role of mitochondrial oxidative stress.Cardiovasc Res2012;93:79-88 PMCID:PMC3243039

[144]

Dai DF,Villarin JJ.Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure.Circ Res2011;108:837-46

[145]

Dai DF,Szeto H.Mitochondrial targeted antioxidant Peptide ameliorates hypertensive cardiomyopathy.J Am Coll Cardiol2011;58:73-82 PMCID:PMC3742010

[146]

Dai DF,Chen T.Global proteomics and pathway analysis of pressure-overload-induced heart failure and its attenuation by mitochondrial-targeted peptides.Circ Heart Fail2013;6:1067-76 PMCID:PMC3856238

[147]

Triplett JC,Swomley A.Age-related changes in the proteostasis network in the brain of the naked mole-rat: Implications promoting healthy longevity.Biochim Biophys Acta2015;1852:2213-24 PMCID:PMC4845741

[148]

Azpurua J,Chen IX.Naked mole-rat has increased translational fidelity compared with the mouse, as well as a unique 28S ribosomal RNA cleavage.Proc Natl Acad Sci USA2013;110:17350-5 PMCID:PMC3808608

[149]

Faulkes CG,Aksentijevic D.Cardiac metabolomic profile of the naked mole-rat-glycogen to the rescue.Biol Lett2019;15:20190710 PMCID:PMC6892520

[150]

Hilton HG,Janki P.Single-cell transcriptomics of the naked mole-rat reveals unexpected features of mammalian immunity.PLoS Biol2019;17:e3000528

[151]

Can E,Boukens BJ,Buffenstein R.Naked mole-rats maintain cardiac function and body composition well into their fourth decade of life.Geroscience2022;44:731-46 PMCID:PMC9135933

[152]

Eichelberg H.Life expectancy and cause of death in dogs. I. The situation in mixed breeds and various dog breeds.Berl Munch Tierarztl Wochenschr1996;109:292-303

[153]

Van Vleet JF. Age-related non-neoplastic lesions of the heart. In: Mohr U, Patholbiology of the ageing dog; 2001. pp. 101-7.

[154]

Templeton GH,Willerson JT.Influence of aging on left ventricular hemodynamics and stiffness in beagles.Circ Res1979;44:189-94

[155]

Templeton GH,Platt MR.Contraction duration and diastolic stiffness in aged canine left ventricle.Recent Adv Stud Cardiac Struct Metab1976;11:169-73

[156]

Guglielmini C.Cardiovascular diseases in the ageing dog: diagnostic and therapeutic problems.Vet Res Commun2003;27 Suppl 1:555-60

[157]

Kaeberlein M,Promislow DE.The dog aging project: translational geroscience in companion animals.Mamm Genome2016;27:279-88 PMCID:PMC4936929

[158]

Urfer SR,Mailheau S.A randomized controlled trial to establish effects of short-term rapamycin treatment in 24 middle-aged companion dogs.Geroscience2017;39:117-27 PMCID:PMC5411365

[159]

Chiao YA,Basisty N.Rapamycin transiently induces mitochondrial remodeling to reprogram energy metabolism in old hearts.Aging2016;8:314-27 PMCID:PMC4789585

[160]

Lowenstine LJ,Terio KA.Comparative pathology of aging great apes: bonobos, chimpanzees, gorillas, and orangutans.Vet Pathol2016;53:250-76

[161]

Lane MA,Roth GS.Calorie restriction in nonhuman primates: effects on diabetes and cardiovascular disease risk.Toxicol Sci1999;52:41-8

[162]

Lane MA,Ingram DK.Caloric restriction and aging in primates: relevance to humans and possible CR mimetics.Microsc Res Technol2002;59:335-8

[163]

Mattison JA,Roth GS.Calorie restriction in rhesus monkeys.Exp Gerontol2003;38:35-46

[164]

Roth GS,Ottinger MA,Lane MA.Aging in rhesus monkeys: relevance to human health interventions.Science2004;305:1423-6

[165]

Tardif SD,Ratnam R,Ziegler TE.The marmoset as a model of aging and age-related diseases.ILAR J2011;52:54-65 PMCID:PMC3775658

[166]

Ross CN,Dobek G.Aging phenotypes of common marmosets (Callithrix jacchus).J Aging Res2012;2012:567143 PMCID:PMC3312272

[167]

Mota-Martorell N,Pradas I.Gene expression and regulatory factors of the mechanistic target of rapamycin (mTOR) complex 1 predict mammalian longevity.Geroscience2020;42:1157-73 PMCID:PMC7434991

[168]

Luong N,Wessells RJ.Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity.Cell Metab2006;4:133-42

[169]

McMullen JR,Zhang L.Deletion of ribosomal S6 kinases does not attenuate pathological, physiological, or insulin-like growth factor 1 receptor-phosphoinositide 3-kinase-induced cardiac hypertrophy.Mol Cell Biol2004;24:6231-40 PMCID:PMC434247

[170]

Lachance PE,Raught B,Lasko P.Phosphorylation of eukaryotic translation initiation factor 4E is critical for growth.Mol Cell Biol2002;22:1656-63 PMCID:PMC135594

[171]

Lazaris-Karatzas A,Sonenberg N.Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap.Nature1990;345:544-7

[172]

Zhu Y,Whitehead KJ.Mechanistic target of rapamycin (Mtor) is essential for murine embryonic heart development and growth.PLoS One2013;8:e54221 PMCID:PMC3544830

[173]

Murakami M,Maeda M.mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells.Mol Cell Biol2004;24:6710-8 PMCID:PMC444840

[174]

Zhang D,Latronico MV.MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice.J Clin Invest2010;120:2805-16 PMCID:PMC2947233

[175]

Garbern JC,Sereda R.Inhibition of mTOR signaling enhances maturation of cardiomyocytes derived from human-induced pluripotent stem cells via p53-induced quiescence.Circulation2020;141:285-300 PMCID:PMC7009740

[176]

Shende P,Morandi C.Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice.Circulation2011;123:1073-82

[177]

Shen WH,Shi S.Cardiac restricted overexpression of kinase-dead mammalian target of rapamycin (mTOR) mutant impairs the mTOR-mediated signaling and cardiac function.J Biol Chem2008;283:13842-9 PMCID:PMC2376248

[178]

McMullen JR,Tarnavski O.Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload.Circulation2004;109:3050-5

[179]

Yu SY,Li P.Rapamycin inhibits the mTOR/p70S6K pathway and attenuates cardiac fibrosis in adriamycin-induced dilated cardiomyopathy.Thorac Cardiovasc Surg2013;61:223-8

[180]

Haller ST,Drummond CA.Rapamycin attenuates cardiac fibrosis in experimental uremic cardiomyopathy by reducing marinobufagenin levels and inhibiting downstream pro-fibrotic signaling.J Am Heart Assoc2016;5:e004106 PMCID:PMC5121507

[181]

Tu X,Ru X,Zhou L.Therapeutic effects of rapamycin on alcoholic cardiomyopathy.Exp Ther Med2017;14:2763-70

[182]

Gu S,Li Q.Downregulation of LAPTM4B contributes to the impairment of the autophagic flux via unopposed activation of mTORC1 signaling during myocardial ischemia/reperfusion injury.Circ Res2020;127:e148-65

[183]

Packer M.Longevity genes, cardiac ageing, and the pathogenesis of cardiomyopathy: implications for understanding the effects of current and future treatments for heart failure.Eur Heart J2020;41:3856-61 PMCID:PMC7599035

[184]

Gao XM,Wang B.Inhibition of mTOR reduces chronic pressure-overload cardiac hypertrophy and fibrosis.J Hypertens2006;24:1663-70

[185]

Dai DF,Basisty N.Differential effects of various genetic mouse models of the mechanistic target of rapamycin complex I inhibition on heart failure.Geroscience2019;41:847-60 PMCID:PMC6925086

[186]

Moreira-Gonçalves D,Fonseca H.Intermittent cardiac overload results in adaptive hypertrophy and provides protection against left ventricular acute pressure overload insult.J Physiol2015;593:3885-97 PMCID:PMC4575575

[187]

Shimizu I.Physiological and pathological cardiac hypertrophy.J Mol Cell Cardiol2016;97:245-62

[188]

Gangloff YG,Dann SG.Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development.Mol Cell Biol2004;24:9508-16 PMCID:PMC522282

[189]

Ranek MJ,Chen A.PKG1-modified TSC2 regulates mTORC1 activity to counter adverse cardiac stress.Nature2019;566:264-9 PMCID:PMC6426636

[190]

Oeing CU,Mishra S.MTORC1-regulated metabolism controlled by TSC2 limits cardiac reperfusion injury.Circ Res2021;128:639-51

[191]

Quarles E,Chiao YA.Rapamycin persistently improves cardiac function in aged, male and female mice, even following cessation of treatment.Aging Cell2020;19:e13086 PMCID:PMC6996961

[192]

Bitto A,Pineda VV.Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice.Elife2016;5:e16351

[193]

Juricic P,Leech T.Long-lasting geroprotection from brief rapamycin treatment in early adulthood by persistently increased intestinal autophagy.Nat Aging2022;2:824-36

[194]

Sciarretta S,Maejima Y.mTORC2 regulates cardiac response to stress by inhibiting MST1.Cell Rep2015;11:125-36 PMCID:PMC4417361

[195]

Shende P,Morandi C.Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy.Cardiovasc Res2016;109:103-14

[196]

Völkers M,Doroudgar S.Mechanistic target of rapamycin complex 2 protects the heart from ischemic damage.Circulation2013;128:2132-44 PMCID:PMC4131547

[197]

Jevtov I,van Oorschot MM.TORC2 mediates the heat stress response in Drosophila by promoting the formation of stress granules.J Cell Sci2015;128:2497-508 PMCID:PMC4510851

[198]

Cai W.mTORC2 is required for rit-mediated oxidative stress resistance.PLoS One2014;9:e115602 PMCID:PMC4274107

[199]

Chen CH,Peterson TR.ER stress inhibits mTORC2 and Akt signaling through GSK-3β-mediated phosphorylation of rictor.Sci Signal2011;4:ra10

[200]

Wu Z,Shiba K.Tricornered/NDR kinase signaling mediates PINK1-directed mitochondrial quality control and tissue maintenance.Genes Dev2013;27:157-62 PMCID:PMC3566308

[201]

Murata H,Jin Y.A new cytosolic pathway from a Parkinson disease-associated kinase, BRPK/PINK1: activation of AKT via mTORC2.J Biol Chem2011;286:7182-9 PMCID:PMC3044975

[202]

Ballesteros-Álvarez J.mTORC2: The other mTOR in autophagy regulation.Aging Cell2021;20:e13431 PMCID:PMC8373318

[203]

Lamming DW,Katajisto P.Depletion of rictor, an essential protein component of mTORC2, decreases male lifespan.Aging Cell2014;13:911-7

[204]

Soukas AA,Carr CE,Ruvkun G.Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans.Genes Dev2009;23:496-511 PMCID:PMC2648650

AI Summary AI Mindmap
PDF

210

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/