Metabolic targets in cardiac aging and rejuvenation

Chang Liu , Xiao Zhang , Meiyu Hu , Yi Lu , Priyanka Gokulnath , Gururaja Vulugundam , Junjie Xiao

The Journal of Cardiovascular Aging ›› 2022, Vol. 2 ›› Issue (4) : 46

PDF
The Journal of Cardiovascular Aging ›› 2022, Vol. 2 ›› Issue (4) :46 DOI: 10.20517/jca.2022.31
Review

Metabolic targets in cardiac aging and rejuvenation

Author information +
History +
PDF

Abstract

Cardiac aging is accompanied by progressive loss of cellular function, leading to impaired heart function and heart failure. There is an urgent need for efficient strategies to combat this age-related cardiac dysfunction. A growing number of events suggest that age-related cardiac diseases are tightly related to metabolic imbalance. This review summarizes recent findings concerning metabolic changes during cardiac aging and highlights the therapeutic approaches that target metabolic pathways in cardiac aging.

Keywords

Cardiac aging / metabolic imbalance / mitochondria dysfunction / anti-aging therapy

Cite this article

Download citation ▾
Chang Liu, Xiao Zhang, Meiyu Hu, Yi Lu, Priyanka Gokulnath, Gururaja Vulugundam, Junjie Xiao. Metabolic targets in cardiac aging and rejuvenation. The Journal of Cardiovascular Aging, 2022, 2(4): 46 DOI:10.20517/jca.2022.31

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Moturi S,Finkel T.Cardiovascular disease and the biology of aging.J Mol Cell Cardiol2022;167:109-17

[2]

Yazdanyar A.The burden of cardiovascular disease in the elderly: morbidity, mortality, and costs.Clin Geriatr Med2009;25:563-77,vii PMCID:PMC2797320

[3]

Gude NA,Firouzi F.Cardiac ageing: extrinsic and intrinsic factors in cellular renewal and senescence.Nat Rev Cardiol2018;15:523-42

[4]

Borlaug BA,Lam CS.Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction.J Am Coll Cardiol2010;56:845-54 PMCID:PMC2950645

[5]

Li H,Rhee J,Roh JD.Targeting age-related pathways in heart failure.Circ Res2020;126:533-51 PMCID:PMC7041880

[6]

Lesnefsky EJ,Hoppel CL.Mitochondrial metabolism in aging heart.Circ Res2016;118:1593-611 PMCID:PMC5009371

[7]

López-Otín C,Partridge L,Kroemer G.The hallmarks of aging.Cell2013;153:1194-217 PMCID:PMC3836174

[8]

Picca A,Burman JL.Mitochondrial quality control mechanisms as molecular targets in cardiac ageing.Nat Rev Cardiol2018;15:543-54 PMCID:PMC6283278

[9]

Hernandez-Segura A,Demaria M.Hallmarks of cellular senescence.Trends Cell Biol2018;28:436-53

[10]

Sahin E,Liesa M.Telomere dysfunction induces metabolic and mitochondrial compromise.Nature2011;470:359-65 PMCID:PMC3741661

[11]

Marzetti E,Anton SD,Carter CS.Cellular mechanisms of cardioprotection by calorie restriction: state of the science and future perspectives.Clin Geriatr Med2009;25:715-32, ix PMCID:PMC2786899

[12]

HARMAN D.Aging: a theory based on free radical and radiation chemistry.J Gerontol1956;11:298-300

[13]

Duicu OM,Gheorgheosu DE,Fira-Mladinescu O.Ageing-induced decrease in cardiac mitochondrial function in healthy rats.Can J Physiol Pharmacol2013;91:593-600

[14]

Phaneuf S.Cytochrome c release from mitochondria in the aging heart: a possible mechanism for apoptosis with age.Am J Physiol Regul Integr Comp Physiol2002;282:R423-30

[15]

Logan A,Prime TA.In vivo levels of mitochondrial hydrogen peroxide increase with age in mtDNA mutator mice.Aging Cell2014;13:765-8 PMCID:PMC4326952

[16]

Tang X,Chen HZ.Cardiomyocyte senescence and cellular communications within myocardial microenvironments.Front Endocrinol (Lausanne)2020;11:280 PMCID:PMC7253644

[17]

Shah MS.Molecular and cellular mechanisms of cardiovascular disorders in diabetes.Circ Res2016;118:1808-29 PMCID:PMC4888901

[18]

Himelman E,Nouet J.Prevention of connexin-43 remodeling protects against Duchenne muscular dystrophy cardiomyopathy.J Clin Invest2020;130:1713-27 PMCID:PMC7108916

[19]

Segovia-Roldan M,Pueyo E.Melatonin to rescue the aged heart: antiarrhythmic and antioxidant benefits.Oxid Med Cell Longev2021;2021:8876792 PMCID:PMC7984894

[20]

Makino N,Oyama J.Antioxidant therapy attenuates myocardial telomerase activity reduction in superoxide dismutase-deficient mice.J Mol Cell Cardiol2011;50:670-7

[21]

Calvani M,Arrigoni-Martelli E.Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and pathological conditions.Basic Res Cardiol2000;95:75-83

[22]

Moreau R,Doneanu CE,Hagen TM.Age-related compensatory activation of pyruvate dehydrogenase complex in rat heart.Biochem Biophys Res Commun2004;325:48-58

[23]

Kolwicz SC Jr,Marney LC,Synovec RE.Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy.Circ Res2012;111:728-38 PMCID:PMC3434870

[24]

Ritterhoff J,Villet O.Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis.Circ Res2020;126:182-96 PMCID:PMC8448129

[25]

Sack MN,Park S,McCune SA.Fatty acid oxidation enzyme gene expression is downregulated in the failing heart.Circulation1996;94:2837-42

[26]

Karbowska J,Smolenski RT.Peroxisome proliferator-activated receptor alpha is downregulated in the failing human heart.Cell Mol Biol Lett2003:8:49-53

[27]

Abdellatif M,Kroemer G.NAD+ metabolism in cardiac health, aging, and disease.Circulation2021;144:1795-817

[28]

Nikiforov A,Niere M.Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation.J Biol Chem2011;286:21767-78 PMCID:PMC3122232

[29]

Kropotov A,Nerinovski K.Equilibrative nucleoside transporters mediate the import of nicotinamide riboside and nicotinic acid riboside into human cells.Int J Mol Sci2021;22:1391 PMCID:PMC7866510

[30]

Grozio A,Yoshino J.Slc12a8 is a nicotinamide mononucleotide transporter.Nat Metab2019;1:47-57

[31]

Luongo TS,Lu MJ.SLC25A51 is a mammalian mitochondrial NAD+ transporter.Nature2020;588:174-9 PMCID:PMC7718333

[32]

McReynolds MR,Baur JA.Age-related NAD+ decline.Exp Gerontol2020;134:110888 PMCID:PMC7442590

[33]

Yoshida M,Lin JB.Extracellular vesicle-contained eNAMPT delays aging and extends lifespan in mice.Cell Metab2019;30:329-342.e5 PMCID:PMC6687560

[34]

Camacho-Pereira J,Chini CCS.CD38 dictates age-related NAD Decline and mitochondrial dysfunction through an SIRT3-dependent mechanism.Cell Metab2016;23:1127-39 PMCID:PMC4911708

[35]

Covarrubias AJ,Perrone R.Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages.Nat Metab2020;2:1265-83 PMCID:PMC7908681

[36]

Tarragó MG,Kanamori KS.A potent and specific CD38 Inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD+ decline.Cell Metab2018;27:1081-1095.e10 PMCID:PMC5935140

[37]

Malavasi F,Funaro A.Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology.Physiol Rev2008;88:841-86

[38]

Chini CCS,Warner GM.CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD+ and NMN levels.Nat Metab2020;2:1284-304 PMCID:PMC8752031

[39]

Chini CCS,Chini EN.NAD and the aging process: role in life, death and everything in between.Mol Cell Endocrinol2017;455:62-74 PMCID:PMC5419884

[40]

Braidy N,Mansour H,Poljak A.Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats.PLoS One2011;6:e19194 PMCID:PMC3082551

[41]

Covarrubias AJ,Grozio A.NAD+ metabolism and its roles in cellular processes during ageing.Nat Rev Mol Cell Biol2021;22:119-41 PMCID:PMC7963035

[42]

Lee JS,Lee SH.Beta-lapachone, a modulator of NAD metabolism, prevents health declines in aged mice.PLoS One2012;7:e47122 PMCID:PMC3469505

[43]

Morales J,Fattah FJ.Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases.Crit Rev Eukaryot Gene Expr2014;24:15-28 PMCID:PMC4806654

[44]

Denu JM.The Sir 2 family of protein deacetylases.Curr Opin Chem Biol2005;9:431-40

[45]

Du J,Su X.Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase.Science2011;334:806-9 PMCID:PMC3217313

[46]

Tan M,Anderson KA.Lysine glutarylation is a protein posttranslational modification regulated by SIRT5.Cell Metab2014;19:605-17 PMCID:PMC4108075

[47]

Hirschey MD,Goetzman E.SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation.Nature2010;464:121-5 PMCID:PMC2841477

[48]

Jeong SM,Finley LW.SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism.Cancer Cell2013;23:450-63 PMCID:PMC3650305

[49]

Sinclair DA.Small-molecule allosteric activators of sirtuins.Annu Rev Pharmacol Toxicol2014;54:363-80 PMCID:PMC4018738

[50]

Imai S.NAD+ and sirtuins in aging and disease.Trends Cell Biol2014;24:464-71 PMCID:PMC4112140

[51]

Ma L.SIRT1: role in cardiovascular biology.Clin Chim Acta2015;440:8-15

[52]

Winnik S,Sinclair DA.Protective effects of sirtuins in cardiovascular diseases: from bench to bedside.Eur Heart J2015;36:3404-12 PMCID:PMC4685177

[53]

Yeung F,Ramsey CS.Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase.EMBO J2004;23:2369-80 PMCID:PMC423286

[54]

Lan F,Ruderman N.SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation.J Biol Chem2008;283:27628-35 PMCID:PMC2562073

[55]

Sugden MC,Holness MJ.PPAR control: it’s SIRTainly as easy as PGC.J Endocrinol2010;204:93-104

[56]

Fernandez-Marcos PJ.Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis.Am J Clin Nutr2011;93:884S-90 PMCID:PMC3057551

[57]

Sadhukhan S,Ryu D.Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function.Proc Natl Acad Sci USA2016;113:4320-5 PMCID:PMC4843474

[58]

Yang H,Koos JD,Yang HJ.mTOR kinase structure, mechanism and regulation.Nature2013;497:217-23 PMCID:PMC4512754

[59]

Chen C,Liu Y.mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells.Sci Signal2009;2:ra75 PMCID:PMC4020596

[60]

Liu GY.mTOR at the nexus of nutrition, growth, ageing and disease.Nat Rev Mol Cell Biol2020;21:183-203

[61]

Kaeberlein M,Steffen KK.Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients.Science2005;310:1193-6

[62]

Sancak Y,Shaul YD.The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1.Science2008;320:1496-501 PMCID:PMC2475333

[63]

Gwinn DM,Egan DF.AMPK phosphorylation of raptor mediates a metabolic checkpoint.Mol Cell2008;30:214-26 PMCID:PMC2674027

[64]

Hansen M,Walker DW.Autophagy as a promoter of longevity: insights from model organisms.Nat Rev Mol Cell Biol2018;19:579-93

[65]

Yan M,Xu K.Cardiac aging: from basic research to therapeutics.Oxid Med Cell Longev2021;2021:9570325 PMCID:PMC7969106

[66]

Tang X,Wang NY.SIRT2 acts as a cardioprotective deacetylase in pathological cardiac hypertrophy.Circulation2017;136:2051-67 PMCID:PMC5698109

[67]

Dadson K,Wannaiampikul S,Xu A.Adiponectin mediated APPL1-AMPK signaling induces cell migration, MMP activation, and collagen remodeling in cardiac fibroblasts.J Cell Biochem2014;115:785-93

[68]

Cieslik KA,Crawford JR,Mejia Osuna P.AICAR-dependent AMPK activation improves scar formation in the aged heart in a murine model of reperfused myocardial infarction.J Mol Cell Cardiol2013;63:26-36 PMCID:PMC3820161

[69]

Steinberg GR.AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: implications for diabetes and cardiovascular disease.Immunol Cell Biol2014;92:340-5

[70]

Zhang R,Liu JJ.SIRT1 suppresses activator protein-1 transcriptional activity and cyclooxygenase-2 expression in macrophages.J Biol Chem2010;285:7097-110 PMCID:PMC2844159

[71]

Pearce EL,Cejas PJ.Enhancing CD8 T-cell memory by modulating fatty acid metabolism.Nature2009;460:103-7 PMCID:PMC2803086

[72]

Tang X,Chen HZ.Mitochondria, endothelial cell function, and vascular diseases.Front Physiol2014;5:175 PMCID:PMC4018556

[73]

Herzig S.AMPK: guardian of metabolism and mitochondrial homeostasis.Nat Rev Mol Cell Biol2018;19:121-35 PMCID:PMC5780224

[74]

Zhang W,Wu Y.Endothelial cell-specific liver kinase B1 deletion causes endothelial dysfunction and hypertension in mice in vivo.Circulation2014;129:1428-39 PMCID:PMC3972325

[75]

Hirschi KK,Yoder MC.Assessing identity, phenotype, and fate of endothelial progenitor cells.Arterioscler Thromb Vasc Biol2008;28:1584-95 PMCID:PMC5244813

[76]

Wang C,Li Z,Cao Q.MeCP2 mediated dysfunction in senescent EPCs.Oncotarget2017;8:78289-99 PMCID:PMC5667962

[77]

Zha S,Cao Q,Liu F.PARP1 inhibitor (PJ34) improves the function of aging-induced endothelial progenitor cells by preserving intracellular NAD+ levels and increasing SIRT1 activity.Stem Cell Res Ther2018;9:224

[78]

Bots SH,Woodward M.Sex differences in coronary heart disease and stroke mortality: a global assessment of the effect of ageing between 1980 and 2010.BMJ Glob Health2017;2:e000298 PMCID:PMC5435266

[79]

Ghali JK,Gottlieb SS,Wikstrand JC.Metoprolol CR/XL in female patients with heart failure: analysis of the experience in Metoprolol Extended-Release Randomized Intervention Trial in Heart Failure (MERIT-HF).Circulation2002;105:1585-91

[80]

Pang L,Lian X.Caloric restriction-mimetics for the reduction of heart failure risk in aging heart: with consideration of gender-related differences.Mil Med Res2022;9:33 PMCID:PMC9252041

[81]

de Arellano ML, Pozdniakova S, Kühl AA, Baczko I, Ladilov Y, Regitz-Zagrosek V. Sex differences in the aging human heart: decreased sirtuins, pro-inflammatory shift and reduced anti-oxidative defense.Aging (Albany NY)2019;11:1918-33 PMCID:PMC6503880

[82]

Widder J,von Poser-Klein C.Improvement of endothelial dysfunction by selective estrogen receptor-alpha stimulation in ovariectomized SHR.Hypertension2003;42:991-6

[83]

Konhilas JP.The effects of biological sex and diet on the development of heart failure.Circulation2007;116:2747-59

[84]

Liu Z,Zhang H.Estradiol improves cardiovascular function through up-regulation of SOD2 on vascular wall.Redox Biol2014;3:88-99 PMCID:PMC4297935

[85]

Arad M,Seidman JG.AMP-activated protein kinase in the heart: role during health and disease.Circ Res2007;100:474-88

[86]

Feng W,Wang S.Alginate oligosaccharide alleviates D-galactose-induced cardiac ageing via regulating myocardial mitochondria function and integrity in mice.J Cell Mol Med2021;25:7157-68 PMCID:PMC8335675

[87]

James AM,Manas AR.Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases.J Biol Chem2007;282:14708-18

[88]

Mao G,Kim I.A mitochondria-targeted vitamin E derivative decreases hepatic oxidative stress and inhibits fat deposition in mice.J Nutr2010;140:1425-31

[89]

Tao R,DePinho RA,Dong XC.FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression.J Biol Chem2013;288:29252-9 PMCID:PMC3795227

[90]

Vasan RS,Lyass A.Epidemiology of left ventricular systolic dysfunction and heart failure in the framingham study: an echocardiographic study over 3 decades.JACC Cardiovasc Imaging2018;11:1-11 PMCID:PMC5756128

[91]

Chiao YA,Sweetwyne M.Late-life restoration of mitochondrial function reverses cardiac dysfunction in old mice.Elife2020;9:e55513 PMCID:PMC7377906

[92]

Dai DF,Wanagat J.Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria.Aging Cell2010;9:536-44 PMCID:PMC3265170

[93]

Deng Y,Li Q.Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF.Circ Res2021;128:232-45

[94]

Costantino S,Cosentino F.Ageing, metabolism and cardiovascular disease.J Physiol2016;594:2061-73 PMCID:PMC4933114

[95]

Pillai JB,Imai S.Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity.J Biol Chem2005;280:43121-30

[96]

Abdellatif M,Koser F.Nicotinamide for the treatment of heart failure with preserved ejection fraction.Sci Transl Med2021;13:eabd7064 PMCID:PMC7611499

[97]

Bogan KL.Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition.Annu Rev Nutr2008;28:115-30

[98]

Reiten OK,Mitchell SJ,Fang EF.Preclinical and clinical evidence of NAD+ precursors in health, disease, and ageing.Mech Ageing Dev2021;199:111567

[99]

MacKay D,Guarneri E.Niacin: chemical forms, bioavailability, and health effects.Nutr Rev2012;70:357-66

[100]

Whitson JA,Zhang H.SS-31 and NMN: two paths to improve metabolism and function in aged hearts.Aging Cell2020;19:e13213 PMCID:PMC7576234

[101]

Yoshino J,Imai SI.NAD+ intermediates: the biology and therapeutic potential of NMN and NR.Cell Metab2018;27:513-28 PMCID:PMC5842119

[102]

Martens CR,Mazzo MR.Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults.Nat Commun2018;9:1286 PMCID:PMC5876407

[103]

Bieganowski P.Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a preiss-handler independent route to NAD+ in fungi and humans.Cell2004;117:495-502

[104]

Diguet N,Tannous C.Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy.Circulation2018;137:2256-73

[105]

Ratajczak J,Trammell SA.NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells.Nat Commun2016;7:13103 PMCID:PMC5476803

[106]

Mehmel M,Spitz U.Nicotinamide riboside-the current state of research and therapeutic uses.Nutrients2020;12:1616 PMCID:PMC7352172

[107]

Liu Z,Geng L.Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor.Cell Discov2022;8:6 PMCID:PMC8803930

[108]

Jeengar MK,Magnusson M,Uppugunduri S.Uridine ameliorates dextran sulfate sodium (DSS)-induced colitis in mice.Sci Rep2017;7:3924 PMCID:PMC5478663

[109]

Enot DP,Durand S.Metabolomic analyses reveal that anti-aging metabolites are depleted by palmitate but increased by oleate in vivo.Cell Cycle2015;14:2399-407 PMCID:PMC4615103

[110]

Zhang H,Li L.Spermine and spermidine reversed age-related cardiac deterioration in rats.Oncotarget2017;8:64793-808 PMCID:PMC5630292

[111]

Eisenberg T,Schroeder S.Cardioprotection and lifespan extension by the natural polyamine spermidine.Nat Med2016;22:1428-38 PMCID:PMC5806691

[112]

Baur JA,Price NL.Resveratrol improves health and survival of mice on a high-calorie diet.Nature2006;444:337-42 PMCID:PMC4990206

[113]

Park SJ,Philp A.Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases.Cell2012;148:421-33 PMCID:PMC3431801

[114]

Mitchell SJ,Mercken EM.The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet.Cell Rep2014;6:836-43 PMCID:PMC4010117

[115]

El-Far AH,Abdelfattah EA.Thymoquinone and curcumin defeat aging-associated oxidative alterations induced by D-galactose in rats’ brain and heart.Int J Mol Sci2021;22:6839 PMCID:PMC8268720

[116]

Ghorbanzadeh V,Dariushnejad H,Chodari L.Curcumin improves angiogenesis in the heart of aged rats: involvement of TSP1/NF-κB/VEGF-A signaling.Microvasc Res2022;139:104258

[117]

Yao Q,Guo S.Curcumin protects against diabetic cardiomyopathy by promoting autophagy and alleviating apoptosis.J Mol Cell Cardiol2018;124:26-34

[118]

Amorim JA,Rolo AP,Ross JM.Mitochondrial and metabolic dysfunction in ageing and age-related diseases.Nat Rev Endocrinol2022;18:243-58 PMCID:PMC9059418

[119]

Zemel MB.Modulation of energy sensing by leucine synergy with natural sirtuin activators: effects on health span.J Med Food2020;23:1129-35

[120]

Hershberger KA,Hirschey MD.Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases.Nat Rev Nephrol2017;13:213-25 PMCID:PMC5508210

[121]

Bielak-Zmijewska A,Ciolko A.The Role of curcumin in the modulation of ageing.Int J Mol Sci2019;20:1239 PMCID:PMC6429134

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/