Gut microbiota in sarcopenia and heart failure

Chia-Feng Liu , W. H. Wilson Tang

The Journal of Cardiovascular Aging ›› 2022, Vol. 2 ›› Issue (3) : 35

PDF
The Journal of Cardiovascular Aging ›› 2022, Vol. 2 ›› Issue (3) :35 DOI: 10.20517/jca.2022.07
Review

Gut microbiota in sarcopenia and heart failure

Author information +
History +
PDF

Abstract

Sarcopenia is common in aging and in patients with heart failure (HF) who may experience worse outcomes. Patients with muscle wasting are more likely to experience falls and can have serious complications when undergoing cardiac procedures. While intensive nutritional support and exercise rehabilitation can help reverse some of these changes, they are often under-prescribed in a timely manner, and we have limited insights into who would benefit. Mechanistic links between gut microbial metabolites (GMM) have been identified and may contribute to adverse clinical outcomes in patients with cardio-renal diseases and aging. This review will examine the emerging evidence for the influence of the gut microbiome-derived metabolites and notable signaling pathways involved in both sarcopenia and HF, especially those linked to dietary intake and mitochondrial metabolism. This provides a unique opportunity to gain mechanistic and clinical insights into developing novel therapeutic strategies that target these GMM pathways or through tailored nutritional modulation to prevent progressive muscle wasting in elderly patients with heart failure.

Keywords

Gut microbiota / sarcopenia / heart failure / aging

Cite this article

Download citation ▾
Chia-Feng Liu, W. H. Wilson Tang. Gut microbiota in sarcopenia and heart failure. The Journal of Cardiovascular Aging, 2022, 2(3): 35 DOI:10.20517/jca.2022.07

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Virani SS,Aparicio HJ.Heart disease and stroke statistics-2021 update: a report from the american heart association.Circulation2021;143:e254-743

[2]

Tsao CW,Almarzooq ZI.Heart disease and stroke statistics-2022 update: a report from the american heart association.Circulation2022;145:e153-639

[3]

Jousilahti P,Tuomilehto J.Sex, age, cardiovascular risk factors, and coronary heart disease: a prospective follow-up study of 14 786 middle-aged men and women in Finland.Circulation1999;99:1165-72

[4]

Chiao YA.The aging heart.Cold Spring Harb Perspect Med2015;5:a025148 PMCID:PMC4561390

[5]

Steenman M.Cardiac aging and heart disease in humans.Biophys Rev2017;9:131-7 PMCID:PMC5418492

[6]

Rosenberg IH.Sarcopenia: origins and clinical relevance.J Nutr1997;127:990S-1S

[7]

Cruz-Jentoft AJ.Sarcopenia: revised European consensus on definition and diagnosis.Age Ageing2019;48:16-31

[8]

Bekfani T,Morris DA.Sarcopenia in patients with heart failure with preserved ejection fraction: Impact on muscle strength, exercise capacity and quality of life.Int J Cardiol2016;222:41-6

[9]

Emami A,Valentova M.Comparison of sarcopenia and cachexia in men with chronic heart failure: results from the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF).Eur J Heart Fail2018;20:1580-7

[10]

Streng KW,Hillege HL.Non-cardiac comorbidities in heart failure with reduced, mid-range and preserved ejection fraction.Int J Cardiol2018;271:132-9

[11]

Tucker WJ,Seo Y,Forman DE.Impaired exercise tolerance in heart failure: role of skeletal muscle morphology and function.Curr Heart Fail Rep2018;15:323-31 PMCID:PMC6250583

[12]

Berry C.Catabolism in chronic heart failure.Eur Heart J2000;21:521-32

[13]

Haehling S, Ebner N, Dos Santos MR, Springer J, Anker SD. Muscle wasting and cachexia in heart failure: mechanisms and therapies.Nat Rev Cardiol2017;14:323-41

[14]

Biagi E,Rampelli S.Gut microbiota and extreme longevity.Curr Biol2016;26:1480-5

[15]

Coats AJ,Piepoli M,Poole-Wilson PA.Symptoms and quality of life in heart failure: the muscle hypothesis.Br Heart J1994;72:S36-9 PMCID:PMC1025572

[16]

Murphy KT.The pathogenesis and treatment of cardiac atrophy in cancer cachexia.Am J Physiol Heart Circ Physiol2016;310:H466-77

[17]

Sweeney M,Lyon AR.Cardiac atrophy and heart failure in cancer.Cardiac Failure Rev2017;03:62 PMCID:PMC5494154

[18]

Brand JS,Yeap BB.Testosterone, sex hormone-binding globulin and the metabolic syndrome in men: an individual participant data meta-analysis of observational studies.PLoS One2014;9:e100409 PMCID:PMC4096400

[19]

Jankowska EA,Ponikowska B.Reduction in circulating testosterone relates to exercise capacity in men with chronic heart failure.J Card Fail2009;15:442-50

[20]

Pugh P.Acute haemodynamic effects of testosterone in men with chronic heart failure.Eur Heart J2003;24:909-15

[21]

Pugh PJ,West JN,Channer KS.Testosterone treatment for men with chronic heart failure.Heart2004;90:446-7 PMCID:PMC1768161

[22]

Malkin CJ,West JN,Jones TH.Testosterone therapy in men with moderate severity heart failure: a double-blind randomized placebo controlled trial.Eur Heart J2006;27:57-64

[23]

Caminiti G,Iellamo F.Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study.J Am Coll Cardiol2009;54:919-27

[24]

Iellamo F,Caminiti G.Testosterone therapy in women with chronic heart failure: a pilot double-blind, randomized, placebo-controlled study.J Am Coll Cardiol2010;56:1310-6

[25]

Wilson C,Venegas N.Testosterone increases GLUT4-dependent glucose uptake in cardiomyocytes.J Cell Physiol2013;228:2399-407

[26]

Wu Y,Blitzer RD.Testosterone-induced hypertrophy of L6 myoblasts is dependent upon Erk and mTOR.Biochem Biophys Res Commun2010;400:679-83

[27]

Basualto-Alarcón C,Altamirano F,Estrada M.Testosterone signals through mTOR and androgen receptor to induce muscle hypertrophy.Med Sci Sports Exerc2013;45:1712-20

[28]

Egerman MA.Signaling pathways controlling skeletal muscle mass.Crit Rev Biochem Mol Biol2014;49:59-68 PMCID:PMC3913083

[29]

Rommel C,Clarke BA.Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways.Nat Cell Biol2001;3:1009-13

[30]

Sacheck JM,McLary SC.IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1.Am J Physiol Endocrinol Metab2004;287:E591-601

[31]

Haddad F.Inhibition of MAP/ERK kinase prevents IGF-I-induced hypertrophy in rat muscles.J Appl Physiol (1985)2004;96:203-10

[32]

Stitt TN,Clarke BA.The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors.Molecular Cell2004;14:395-403

[33]

Lee SJ.Regulation of myostatin activity and muscle growth.Proc Natl Acad Sci USA2001;98:9306-11 PMCID:PMC55416

[34]

McPherron AC,Lee SJ.Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member.Nature1997;387:83-90

[35]

George I,Kamalakkannan G.Myostatin activation in patients with advanced heart failure and after mechanical unloading.Eur J Heart Fail2010;12:444-53 PMCID:PMC2857990

[36]

Gruson D,Ketelslegers JM.Increased plasma myostatin in heart failure.Eur J Heart Fail2011;13:734-6

[37]

Lima AR,Okoshi K.Myostatin and follistatin expression in skeletal muscles of rats with chronic heart failure.Int J Exp Pathol2010;91:54-62 PMCID:PMC2812728

[38]

Rock KL,Rothstein L.Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules.Cell1994;78:761-71

[39]

Gumucio JP.Atrogin-1, MuRF-1, and sarcopenia.Endocrine2013;43:12-21 PMCID:PMC3586538

[40]

Bonaldo P.Cellular and molecular mechanisms of muscle atrophy.Dis Model Mech2013;6:25-39 PMCID:PMC3529336

[41]

Schiaffino S.Studies on the effect of denervation in developing muscle. II. The lysosomal system.J Ultrastruct Res1972;39:1-14

[42]

Furuno K,Goldberg AL.Role of different proteolytic systems in the degradation of muscle proteins during denervation atrophy.J Biol Chem1990;265:8550-7

[43]

García-Prat L,Perdiguero E.Autophagy maintains stemness by preventing senescence.Nature2016;529:37-42

[44]

Sousa-Victor P,García-Prat L.Geriatric muscle stem cells switch reversible quiescence into senescence.Nature2014;506:316-21

[45]

Deval C,Obled C.Identification of cathepsin L as a differentially expressed message associated with skeletal muscle wasting.Biochem J2001;360:143 PMCID:PMC1222211

[46]

Mammucari C,Romanello V.FoxO3 controls autophagy in skeletal muscle in vivo.Cell Metab2007;6:458-71

[47]

Dobrowolny G,Rizzuto E.Skeletal muscle is a primary target of SOD1G93A-mediated toxicity.Cell Metab2008;8:425-36

[48]

Lecker SH,Gilbert A.Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression.FASEB J2004;18:39-51

[49]

Adams V,Yu J.Apoptosis in skeletal myocytes of patients with chronic heart failure is associated with exercise intolerance.J Am College Cardiol1999;33:959-65

[50]

Vescovo G,Zennaro R.Apoptosis in the skeletal muscle of patients with heart failure: investigation of clinical and biochemical changes.Heart2000;84:431-7 PMCID:PMC1729437

[51]

Libera LD,Sandri M,Vescovo G.Apoptosis and atrophy in rat slow skeletal muscles in chronic heart failure.Am J Physiol1999;277:C982-6

[52]

Mitchell RG,Robbins JL.Increased levels of apoptosis in gastrocnemius skeletal muscle in patients with peripheral arterial disease.Vasc Med2007;12:285-90

[53]

Schaap LA,Deeg DJ.Higher inflammatory marker levels in older persons: associations with 5-year change in muscle mass and muscle strength.J Gerontol A Biol Sci Med Sci2009;64:1183-9 PMCID:PMC2759573

[54]

Tuttle CSL,Maier AB.Markers of inflammation and their association with muscle strength and mass: a systematic review and meta-analysis.Ageing Res Rev2020;64:101185

[55]

Dalla Libera L,Renken C.Apoptosis in the skeletal muscle of rats with heart failure is associated with increased serum levels of TNF-alpha and sphingosine.J Mol Cell Cardiol2001;33:1871-8

[56]

Okutsu M,Lira VA.Extracellular superoxide dismutase ameliorates skeletal muscle abnormalities, cachexia, and exercise intolerance in mice with congestive heart failure.Circ Heart Fail2014;7:519-30 PMCID:PMC4080303

[57]

Allard MF,Henning SL,Lopaschuk GD.Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts.Am J Physiol1994;267:H742-50

[58]

Zhu Q,Zhang Y.Dysbiosis signatures of gut microbiota in coronary artery disease.Physiol Genomics2018;50:893-903

[59]

Fan Y.Gut microbiota in human metabolic health and disease.Nat Rev Microbiol2021;19:55-71

[60]

Tang WH,Levison BS.Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk.N Engl J Med2013;368:1575-84 PMCID:PMC3701945

[61]

Luedde M,Heinsen FA.Heart failure is associated with depletion of core intestinal microbiota.ESC Heart Fail2017;4:282-90 PMCID:PMC5542738

[62]

Beale AL,Nakai ME.The gut microbiome of heart failure with preserved ejection fraction.J Am Heart Assoc2021;10:e020654 PMCID:PMC8403331

[63]

Tang WHW,Hazen SL.Dietary metabolism, the gut microbiome, and heart failure.Nat Rev Cardiol2019;16:137-54 PMCID:PMC6377322

[64]

Niebauer J,Kemp M.Endotoxin and immune activation in chronic heart failure: a prospective cohort study.Lancet1999;353:1838-42

[65]

Buffa JA,Copeland MF.The microbial gbu gene cluster links cardiovascular disease risk associated with red meat consumption to microbiota L-carnitine catabolism.Nat Microbiol2022;7:73-86 PMCID:PMC8732312

[66]

Koeth RA,Levison BS.Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis.Nat Med2013;19:576-85 PMCID:PMC3650111

[67]

Wang Z,Bennett BJ.Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.Nature2011;472:57-63 PMCID:PMC3086762

[68]

Zhu W,Org E.Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk.Cell2016;165:111-24 PMCID:PMC4862743

[69]

Tan Y,Liu C.Association between plasma trimethylamine n-oxide and neoatherosclerosis in patients with very late stent thrombosis.Can J Cardiol2020;36:1252-60

[70]

Tan Y,Zhou P.Plasma trimethylamine N-oxide as a novel biomarker for plaque rupture in patients with ST-segment-elevation myocardial infarction.Circ Cardiovasc Interv2019;12:e007281

[71]

Li XS,Klingenberg R.Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors.Eur Heart J2017;38:814-24 PMCID:PMC5837488

[72]

Li XS,Cajka T.Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk.JCI Insight2018;3:99096 PMCID:PMC5926943

[73]

Al-Obaide MAI,Datta P.Gut microbiota-dependent trimethylamine-N-oxide and serum biomarkers in patients with T2DM and advanced CKD.J Clin Med2017;6:86 PMCID:PMC5615279

[74]

Chen S,Petriello MC.Trimethylamine N-oxide binds and activates perk to promote metabolic dysfunction.Cell Metab2019;30:1141-1151.e5

[75]

Ufnal M,Dadlez M,Sikora M.Trimethylamine-N-oxide: a carnitine-derived metabolite that prolongs the hypertensive effect of angiotensin II in rats.Can J Cardiol2014;30:1700-5

[76]

Li T,Gua C.Elevated circulating trimethylamine N-oxide levels contribute to endothelial dysfunction in aged rats through vascular inflammation and oxidative stress.Front Physiol2017;8:350 PMCID:PMC5447752

[77]

Brunt VE,Casso AG.Trimethylamine-N-Oxide promotes age-related vascular oxidative stress and endothelial dysfunction in mice and healthy humans.Hypertension2020;76:101-12 PMCID:PMC7295014

[78]

Krauss RM,Howard B.AHA dietary guidelines: revision 2000: a statement for healthcare professionals from the nutrition committee of the american heart association.Circulation2000;102:2284-99

[79]

Topping DL.Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides.Physiol Rev2001;81:1031-64

[80]

Yang T.Gut dysbiosis is linked to hypertension.Hypertension2015;65:1331-1340 PMCID:PMC4433416

[81]

Brown AJ,Barnes AA.The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids.J Biol Chem2003;278:11312-9

[82]

Kaisar MMM,van der Ham AJ,Everts B.Butyrate conditions human dendritic cells to prime type 1 regulatory t cells via both histone deacetylase inhibition and g protein-coupled receptor 109a signaling.Front Immunol2017;8:1429 PMCID:PMC5670331

[83]

Pluznick JL,Gevorgyan H.Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation.Proc Natl Acad Sci USA2013;110:4410-5 PMCID:PMC3600440

[84]

Ang Z,Tan NS.Human and mouse monocytes display distinct signalling and cytokine profiles upon stimulation with FFAR2/FFAR3 short-chain fatty acid receptor agonists.Sci Rep2016;6:34145 PMCID:PMC5036191

[85]

Masui R,Funaki Y.G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells.Inflamm Bowel Dis2013;19:2848-56

[86]

Huang W,Gao C.Short-chain fatty acids ameliorate diabetic nephropathy via GPR43-mediated inhibition of oxidative stress and NF-.κ2020:4074832 PMCID:PMC7422068

[87]

Lee SU,Kwon MS.β-Arrestin 2 mediates G protein-coupled receptor 43 signals to nuclear factor-κB.Biol Pharm Bull2013;36:1754-9

[88]

Marques FZ,Chu PY.High-Fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice.Circulation2017;135:964-77

[89]

Zhang L,Lu A.Sodium butyrate attenuates angiotensin II-induced cardiac hypertrophy by inhibiting COX2/PGE2 pathway via a HDAC5/HDAC6-dependent mechanism.J Cell Mol Med2019;23:8139-50 PMCID:PMC6850921

[90]

Liu CF.Epigenetics in cardiac hypertrophy and heart failure.JACC Basic Transl Sci2019;4:976-93 PMCID:PMC6938823

[91]

Li M,Henricks PAJ,Garssen J.The Anti-inflammatory Effects of short chain fatty acids on lipopolysaccharide- or tumor necrosis factor α-stimulated endothelial cells via activation of GPR41/43 and Inhibition of HDACs.Front Pharmacol2018;9:533 PMCID:PMC5974203

[92]

Chang PV,Offermanns S.The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition.Proc Natl Acad Sci USA2014;111:2247-52 PMCID:PMC3926023

[93]

Brown JM.The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases.Annu Rev Med2015;66:343-59 PMCID:PMC4456003

[94]

Astrup A,Bier DM.Saturated fats and health: a reassessment and proposal for food-based recommendations: JACC state-of-the-art review.J Am Coll Cardiol2020;76:844-57

[95]

Russell DW.The enzymes, regulation, and genetics of bile acid synthesis.Annu Rev Biochem2003;72:137-74

[96]

Ridlon JM,Hylemon PB.Bile salt biotransformations by human intestinal bacteria.J Lipid Res2006;47:241-59

[97]

Staels B.Bile acids and metabolic regulation: mechanisms and clinical responses to bile acid sequestration.Diabetes Care2009;32 Suppl 2:S237-45 PMCID:PMC2811459

[98]

Watanabe M,Mataki C.Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation.Nature2006;439:484-9

[99]

Binah O,Bomzon A.Effects of bile acids on ventricular muscle contraction and electrophysiological properties: studies in rat papillary muscle and isolated ventricular myocytes.Naunyn Schmiedebergs Arch Pharmacol1987;335:160-5

[100]

Bogin E,Harari I.The effect of jaundiced sera and bile salts on cultured beating rat heart cells.Experientia1983;39:1307-8

[101]

Sheikh Abdul Kadir SH,Abu-Hayyeh S.Bile acid-induced arrhythmia is mediated by muscarinic M2 receptors in neonatal rat cardiomyocytes.PLoS One2010;5:e9689 PMCID:PMC2837738

[102]

Williamson C,Eaton BM,Swiet MD.The bile acid taurocholate impairs rat cardiomyocyte function: a proposed mechanism for intra-uterine fetal death in obstetric cholestasis.Clin Sci2001;100:363-9

[103]

Gorelik J,Shevchuk AI.Taurocholate induces changes in rat cardiomyocyte contraction and calcium dynamics.Clin Sci (Lond)2002;103:191-200

[104]

Desai MS,Eblimit Z.Bile acid excess induces cardiomyopathy and metabolic dysfunctions in the heart.Hepatology2017;65:189-201 PMCID:PMC5299964

[105]

Mayerhofer CCK,Broch K.Increased secondary/primary bile acid ratio in chronic heart failure.J Card Fail2017;23:666-71

[106]

Ebner N,von Haehling S.Recent developments in the field of cachexia, sarcopenia, and muscle wasting: highlights from the 11th Cachexia Conference.J Cachexia Sarcopenia Muscle2019;10:218-25 PMCID:PMC6438336

[107]

Toney AM,Chaidez V,Chung S.Immunomodulatory role of urolithin a on metabolic diseases.Biomedicines2021;9:192 PMCID:PMC7918969

[108]

Zanotti I,Mena P.Atheroprotective effects of (poly)phenols: a focus on cell cholesterol metabolism.Food Funct2015;6:13-31

[109]

García-Mantrana I,Romo-Vaquero M,Selma MV.Urolithin metabotypes can determine the modulation of gut microbiota in healthy individuals by tracking walnuts consumption over three days.Nutrients2019;11:2483 PMCID:PMC6835957

[110]

Savi M,Mena P.In vivo administration of urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats.Cardiovasc Diabetol2017;16:80 PMCID:PMC5501434

[111]

Tang L,Li Y.Urolithin A alleviates myocardial ischemia/reperfusion injury via PI3K/Akt pathway.Biochem Biophys Res Commun2017;486:774-80

[112]

Ghosh N,Biswas N.Urolithin A augments angiogenic pathways in skeletal muscle by bolstering NAD+ and SIRT1.Sci Rep2020;10:20184 PMCID:PMC7678835

[113]

Nemet I,Gupta N.A Cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors.Cell2020;180:862-877.e22 PMCID:PMC7402401

[114]

Melamed ML,Shafi T.Retained organic solutes, patient characteristics and all-cause and cardiovascular mortality in hemodialysis: results from the retained organic solutes and clinical outcomes (ROSCO) investigators.BMC Nephrol2013;14:134 PMCID:PMC3698023

[115]

Wu IW,Hsu HJ.Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients--a prospective cohort study.Nephrol Dial Transplant2012;27:1169-75

[116]

Lin CJ,Liu HL.The role of protein-bound uremic toxins on peripheral artery disease and vascular access failure in patients on hemodialysis.Atherosclerosis2012;225:173-9

[117]

Huang ST,Cheng CH.Serum total p-cresol and indoxyl sulfate correlated with stage of chronic kidney disease in renal transplant recipients.Transplant Proc2012;44:621-4

[118]

Lekawanvijit S,Kelly DJ,Wang BH.Does indoxyl sulfate, a uraemic toxin, have direct effects on cardiac fibroblasts and myocytes?.Eur Heart J2010;31:1771-9

[119]

Yisireyili M,Saito S,Nishijima F.Indoxyl sulfate promotes cardiac fibrosis with enhanced oxidative stress in hypertensive rats.Life Sci2013;92:1180-5

[120]

Peng YS,Lin YT,Chen Y.Uremic toxin p-cresol induces disassembly of gap junctions of cardiomyocytes.Toxicology2012;302:11-7

[121]

Han H,Zhu Z.p-Cresyl sulfate aggravates cardiac dysfunction associated with chronic kidney disease by enhancing apoptosis of cardiomyocytes.J Am Heart Assoc2015;4:e001852 PMCID:PMC4599533

[122]

Six I,Lenglet G.Uremic toxins and vascular dysfunction.Toxins (Basel)2020;12:404 PMCID:PMC7354618

[123]

Lv J,Wang M.Klotho alleviates indoxyl sulfate-induced heart failure and kidney damage by promoting M2 macrophage polarization.Aging (Albany NY)2020;12:9139-50 PMCID:PMC7288965

[124]

Chen K,Sun QW,Ullah M.Klotho deficiency causes heart aging via impairing the Nrf2-GR pathway.Circ Res2021;128:492-507 PMCID:PMC8782577

[125]

Siddharth J,Pannérec A.Aging and sarcopenia associate with specific interactions between gut microbes, serum biomarkers and host physiology in rats.Aging (Albany NY)2017;9:1698-720 PMCID:PMC5559170

[126]

Bindels LB,Schakman O.Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model.PLoS One2012;7:e37971 PMCID:PMC3384645

[127]

Munukka E,Toivonen R.Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice.ISME J2017;11:1667-79 PMCID:PMC5520144

[128]

Varian BJ,Poutahidis T.Beneficial bacteria inhibit cachexia.Oncotarget2016;7:11803-16

[129]

Walsh ME,Sataranatarajan K.The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging.Aging Cell2015;14:957-70 PMCID:PMC4693467

[130]

Wu CS,Wang H.Protective effects of ghrelin on fasting-induced muscle atrophy in aging mice.J Gerontol A Biol Sci Med Sci2020;75:621-30 PMCID:PMC7328200

[131]

Lustgarten MS.The Role of the gut microbiome on skeletal muscle mass and physical function: 2019 update.Front Physiol2019;10:1435 PMCID:PMC6933299

[132]

Abrigo J,Gonzalez F.Sarcopenia Induced by chronic liver disease in mice requires the expression of the bile acids membrane receptor TGR5.Int J Mol Sci2020;21:7922 PMCID:PMC7662491

[133]

Thibaut MM,Roumain M.Inflammation-induced cholestasis in cancer cachexia.J Cachexia Sarcopenia Muscle2021;12:70-90 PMCID:PMC7890151

[134]

He W,Liu J.Trimethylamine N-Oxide, a gut microbiota-dependent metabolite, is associated with frailty in older adults with cardiovascular disease.CIA2020;15:1809-20

[135]

Enoki Y,Arake R.Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1.Sci Rep2016;6:32084 PMCID:PMC4994088

[136]

Rodrigues GGC,Brito RBO.Indoxyl sulfate contributes to uremic sarcopenia by inducing apoptosis in myoblasts.Arch Med Res2020;51:21-9

[137]

Sato E,Mishima E.Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in chronic kidney disease.Sci Rep2016;6:36618 PMCID:PMC5103201

[138]

Picca A,Calvani R.Gut microbial, inflammatory and metabolic signatures in older people with physical frailty and sarcopenia: results from the biosphere study.Nutrients2019;12:65 PMCID:PMC7019826

[139]

Buigues C,Pruimboom L.Effect of a prebiotic formulation on frailty syndrome: a randomized, double-blind clinical trial.Int J Mol Sci2016;17:932 PMCID:PMC4926465

[140]

Aoyagi Y,Park S.Independent and interactive effects of habitually ingesting fermented milk products containing lactobacillus casei strain shirota and of engaging in moderate habitual daily physical activity on the intestinal health of older people.Front Microbiol2019;10:1477 PMCID:PMC6684969

[141]

Ferrari R,Ceconi C.Anti-ischaemic effect of ivabradine.Pharmacol Res2006;53:435-9

[142]

Griffiths EJ.Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells.Biochim Biophys Acta2009;1787:1324-33

[143]

Rizzuto R,Raffaello A.Mitochondria as sensors and regulators of calcium signalling.Nat Rev Mol Cell Biol2012;13:566-78

[144]

Coen PM,Hinkley JM.Mitochondria as a Target for Mitigating Sarcopenia.Front Physiol2018;9:1883 PMCID:PMC6335344

[145]

Chaudhary KR,Seubert JM.Mitochondria and the aging heart.J Geriatr Cardiol2011;8:159-67

[146]

Gonzalez-Freire M,D’Agostino J.Skeletal muscle ex vivo mitochondrial respiration parallels decline in vivo oxidative capacity, cardiorespiratory fitness, and muscle strength: The Baltimore Longitudinal Study of Aging.Aging Cell2018;17:e12725 PMCID:PMC5847858

[147]

Lai L,Keller MP.Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach.Circ Heart Fail2014;7:1022-31 PMCID:PMC4241130

[148]

Tezze C,Desbats MA.Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence.Cell Metab2017;25:1374-1389.e6 PMCID:PMC5462533

[149]

Sebastián D,Segalés J.Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway.EMBO J2016;35:1677-93 PMCID:PMC4969577

[150]

Leduc-Gaudet JP,Barreiro E.Mitochondrial dynamics and mitophagy in skeletal muscle health and aging.Int J Mol Sci2021;22:8179 PMCID:PMC8348122

[151]

Casuso RA.The emerging role of skeletal muscle mitochondrial dynamics in exercise and ageing.Ageing Res Rev2020;58:101025

[152]

Li YP,Li AS.Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes.Am J Physiol Cell Physiol2003;285:C806-12

[153]

Aucello M,Musaro A.Localized accumulation of oxidative stress causes muscle atrophy through activation of an autophagic pathway.Autophagy2009;5:527-9

[154]

Romanello V,Gomes L.Mitochondrial fission and remodelling contributes to muscle atrophy.EMBO J2010;29:1774-85 PMCID:PMC2876965

[155]

Salminen A,Kaarniranta K.Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases.Cell Mol Life Sci2012;69:2999-3013

[156]

Kelly DP.Transcriptional regulatory circuits controlling mitochondrial biogenesis and function.Genes Dev2004;18:357-68

[157]

Finck BN.PGC-1 coactivators: inducible regulators of energy metabolism in health and disease.J Clin Invest2006;116:615-22 PMCID:PMC1386111

[158]

Arany Z,Lin J.Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle.Cell Metab2005;1:259-71

[159]

Viña J,Borras C.Mitochondrial biogenesis in exercise and in ageing.Adv Drug Deliv Rev2009;61:1369-74

[160]

Dillon LM,Moraes CT.The role of PGC-1 coactivators in aging skeletal muscle and heart.IUBMB Life2012;64:231-41 PMCID:PMC4080206

[161]

Migliavacca E,Patel HP.Mitochondrial oxidative capacity and NAD+ biosynthesis are reduced in human sarcopenia across ethnicities.Nat Commun2019;10:5808 PMCID:PMC6925228

[162]

Kong X,Xue Y.Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis.PLoS One2010;5:e11707 PMCID:PMC2908542

[163]

Joseph AM,Buford TW.The impact of aging on mitochondrial function and biogenesis pathways in skeletal muscle of sedentary high- and low-functioning elderly individuals.Aging Cell2012;11:801-9 PMCID:PMC3444680

[164]

Liu HW,Chan YC,Liu MY.Dysregulations of mitochondrial quality control and autophagic flux at an early age lead to progression of sarcopenia in SAMP8 mice.Biogerontology2020;21:367-80

[165]

Lahiri S,Garcia-Perez I.The gut microbiota influences skeletal muscle mass and function in mice.Sci Transl Med2019;11:eaan5662 PMCID:PMC7501733

[166]

Ryu D,Andreux PA.Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents.Nat Med2016;22:879-88

[167]

Makrecka-Kuka M,Antone U.Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria.Toxicol Lett2017;267:32-8

[168]

Vaiserman AM,Marotta F.Gut microbiota: A player in aging and a target for anti-aging intervention.Ageing Res Rev2017;35:36-45

[169]

Buford TW.(Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease.Microbiome2017;5:80 PMCID:PMC5512975

[170]

Harber MP,Undem MK.Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men.J Appl Physiol (1985)2012;113:1495-504 PMCID:PMC3524668

[171]

Konopka AR.Skeletal muscle hypertrophy after aerobic exercise training.Exerc Sport Sci Rev2014;42:53-61 PMCID:PMC4523889

[172]

Bori Z,Koltai E.The effects of aging, physical training, and a single bout of exercise on mitochondrial protein expression in human skeletal muscle.Exp Gerontol2012;47:417-24 PMCID:PMC4915826

[173]

Johnston AP,Parise G.Resistance training, sarcopenia, and the mitochondrial theory of aging.Appl Physiol Nutr Metab2008;33:191-9

[174]

Clarke SF,O’Sullivan O.Exercise and associated dietary extremes impact on gut microbial diversity.Gut2014;63:1913-20

[175]

Taniguchi H,Sun X.Effects of short-term endurance exercise on gut microbiota in elderly men.Physiol Rep2018;6:e13935 PMCID:PMC6286434

[176]

Munukka E,Puigbó P.Six-week endurance exercise alters gut metagenome that is not reflected in systemic metabolism in over-weight women.Front Microbiol2018;9:2323

[177]

Šoltys K,Hric I.Strenuous physical training, physical fitness, body composition and bacteroides to prevotella ratio in the gut of elderly athletes.Front Physiol2021;12:670989 PMCID:PMC8257935

[178]

Perry CA.The role of calorie restriction in the prevention of cardiovascular disease.Curr Atheroscler Rep2022;24:235-42

[179]

Li L,Li F.The effects of daily fasting hours on shaping gut microbiota in mice.BMC Microbiol2020;20:65 PMCID:PMC7092480

[180]

van der Merwe M,Caldwell JL.Time of feeding alters obesity-associated parameters and gut bacterial communities, but not fungal populations, in C57BL/6 male mice.Curr Dev Nutr2020;4:nzz145

[181]

Beli E.Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db mice.Diabetes2018;67:1867-79 PMCID:PMC6110320

[182]

Cignarella F,Ghezzi L.Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota.Cell Metab2018;27:1222-1235.e6 PMCID:PMC6460288

[183]

Fraumene C.Caloric restriction promotes rapid expansion and long-lasting increase of Lactobacillus in the rat fecal microbiota.Gut Microbes2018;9:104-114 PMCID:PMC5989789

[184]

Nagata S,Ohta T.Effect of the continuous intake of probiotic-fermented milk containing Lactobacillus casei strain Shirota on fever in a mass outbreak of norovirus gastroenteritis and the faecal microflora in a health service facility for the aged.Br J Nutr2011;106:549-56

[185]

Akatsu H,Xiao JZ.Clinical effects of probiotic Bifidobacterium longum BB536 on immune function and intestinal microbiota in elderly patients receiving enteral tube feeding.JPEN J Parenter Enteral Nutr2013;37:631-40

[186]

Ostan R,Spazzafumo L.Impact of diet and nutraceutical supplementation on inflammation in elderly people. Results from the RISTOMED study, an open-label randomized control trial.Clin Nutr2016;35:812-8

[187]

Nagata S,Wang C.The Effectiveness of lactobacillus beverages in controlling infections among the residents of an aged care facility: a randomized placebo-controlled double-blind trial.Ann Nutr Metab2016;68:51-9

[188]

Inoue T,Mori N.Effect of combined bifidobacteria supplementation and resistance training on cognitive function, body composition and bowel habits of healthy elderly subjects.Benef Microbes2018;9:843-53

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/