PDF
(2956KB)
Abstract
The failure of bone injury repair surgery is mostly due to the stress shielding effect caused by the difference of elastic modulus between the implant prosthesis and human bone, resulting in a great damage to patients. To solve this problem, in this study, the influencing factors of the elastic modulus of implant prosthesis were investigated, the relationship between the elastic modulus of the implanted prosthesis and the influencing factors was analyzed, and then a design method of the implant prosthesis to reduce the stress shielding effect by adjusting the unit module to control the elastic modulus was established. This method was used for the biomechanical simulation to simulate the displacement and stress distribution between the implant prosthesis and the surrounding bone tissue, and then the reliability of the method was verified. The implant prosthesis with an elastic modulus consistent with that of the experimental dog bone was made by this method, and used for the animal experiments. The effects of implant prosthesis with different modulus on the growth of surrounding bone tissue were observed, and at the same time, the reliability of the implant design method and the results of biomechanical simulation were verified. It is confirmed that this method can effectively reduce the stress concentration of implant prosthesis by more than 15.4% and increase the growth of bone tissue by more than 21%.
Keywords
stress shielding
/
bone model
/
biomechanical simulation
/
gradient assignment
Cite this article
Download citation ▾
null.
Design of Implant Prosthesis for Bone Injury Repair Considering Stress Shielding Effect.
Journal of Beijing Institute of Technology, 2022, 31(3): 259-274 DOI:10.15918/j.jbit1004-0579.2022.053