Rail track condition monitoring: a review on deep learning approaches
Albert Ji , Wai Lok Woo , Eugene Wai Leong Wong , Yang Thee Quek
Intelligence & Robotics ›› 2021, Vol. 1 ›› Issue (2) : 151 -75.
Rail track condition monitoring: a review on deep learning approaches
Rail track is a critical component of rail systems. Accidents or interruptions caused by rail track anomalies usually possess severe outcomes. Therefore, rail track condition monitoring is an important task. Over the past decade, deep learning techniques have been rapidly developed and deployed. In the paper, we review the existing literature on applying deep learning to rail track condition monitoring. Potential challenges and opportunities are discussed for the research community to decide on possible directions. Two application cases are presented to illustrate the implementation of deep learning to rail track condition monitoring in practice before we conclude the paper.
Rail track maintenance / condition monitoring / anomaly detection and classification / deep learning
| [1] |
|
| [2] |
Track circuit monitoring tool: standardization and deployment at CTA. Available from: http://www.trb.org/Main/Blurbs/177054.aspx [Last accessed on 5 Jan 2022] |
| [3] |
Rail Defects Handbook. Available from: https://extranet.artc.com.au/docs/eng/track-civil/guidelines/rail/RC2400.pdf [Last accessed on 5 Jan 2022] |
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
Bruin T, Verbert K, Babuska R. Railway track circuit fault diagnosis using recurrent neural networks.IEEE Trans Neural Netw Learn Syst2017;28:523-33 |
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
Bukhsh Z, Saeed A, Stipanovic I, Doree AG. Predictive maintenance using tree-based classification techniques: a case of railway switches.Transp Res Part C Emerg Technol2019;101:35-54 |
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
/
| 〈 |
|
〉 |