Autonomous navigation in unknown environment using sliding mode SLAM and genetic algorithm

Salvador Ortiz , Wen Yu

Intelligence & Robotics ›› 2021, Vol. 1 ›› Issue (2) : 131 -50.

PDF
Intelligence & Robotics ›› 2021, Vol. 1 ›› Issue (2) :131 -50. DOI: 10.20517/ir.2021.09
Research Article
Research Article

Autonomous navigation in unknown environment using sliding mode SLAM and genetic algorithm

Author information +
History +
PDF

Abstract

In this paper, sliding mode control is combined with the classical simultaneous localization and mapping (SLAM) method. This combination can overcome the problem of bounded uncertainties in SLAM. With the help of genetic algorithm, our novel path planning method shows many advantages compared with other popular methods.

Keywords

Autonomous navigation / sliding mode / SLAM / genetic algorithm

Cite this article

Download citation ▾
Salvador Ortiz, Wen Yu. Autonomous navigation in unknown environment using sliding mode SLAM and genetic algorithm. Intelligence & Robotics, 2021, 1(2): 131-50 DOI:10.20517/ir.2021.09

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Luettel T,Wuensche HJ.Autonomous ground vehicles—concepts and a path to the future..Proceedings of the IEEE2012;100:1831-39

[2]

Galceran E.A survey on coverage path planning for robotics..Rob Auton Syst2013;61:1258-76

[3]

Lowe DG.Distinctive image features from scale-invariant keypoints..Int J Comput Vis2004;60:91-110

[4]

Arel I,Karnowski TP.Deep machine learning-a new frontier in artificial intelligence research..IEEE Comput Intell Mag2010;5:13-8

[5]

Scheirer WJ,Sapkota A.Toward open set recognition..IEEE Trans Pattern Anal Mach Intell2012;35:1757-72

[6]

Ramos FT,Upcroft B.A natural feature representation for unstructured environments..IEEE Trans Robot2008;24:1329-40

[7]

Lillywhite K,Tippetts B.A feature construction method for general object recognition..Pattern Recognition2013;46:3300-14

[8]

Chabini I.Adaptation of the A* algorithm for the computation of fastest paths in deterministic discrete-time dynamic networks..IEEE trans Intell Transp Syst2002;3:60-74

[9]

LaValle SM.Randomized kinodynamic planning..Int J Rob Res2001;20:378-400

[10]

Valencia R.Mapping, planning and exploration with Pose SLAM.2018;BerlinSpringer60-84

[11]

Wang X,Ding D.Double global optimum genetic algorithm–particle swarm optimization-based welding robot path planning..Eng Optim2016;48:299-316

[12]

Jones M.A generalization of Bellman’s equation with application to path planning, obstacle avoidance and invariant set estimation..Automatica2021;127:109510

[13]

Rehman NU,Abro GeM.2018;2018 Feb 22-23Lahore, Pakistan. IEEE1-5

[14]

de Moura Souza G.Genetic algorithm applied in UAV’s path planning. 2020 IEEE Congress on Evolutionary Computation (CEC)2020;2020 Jul 19-24Glasgow, UK. IEEE1-8

[15]

Zhang X,Deng N.Dynamic path planning algorithm for a mobile robot based on visible space and an improved genetic algorithm..Int J Adv Robot Syst2016;13:91

[16]

Clemens J,Kluth T.An evidential approach to SLAM, path planning, and active exploration..Int J Approx Reason2016;73:1-26

[17]

Chen Y,Fitch R.Active SLAM for mobile robots with area coverage and obstacle avoidance..IEEE ASME Trans Mechatron2020;25:1182-92

[18]

da Silva Arantes M,Williams B C.Collision-free encoding for chance-constrained nonconvex path planning..IEEE Trans Robot2019;35:433-48

[19]

Yu W,Soria A.Ellipsoid SLAM: a novel set membership method for simultaneous localization and mapping..Autonomous Robots2016;40:125-37

[20]

Williams H,Carnegie DA.Learned action slam: sharing slam through learned path planning information between heterogeneous robotic platforms..Appl Soft Comput2017;50:313-26

[21]

Dissanayake MWMG,Clark S.A solution to the simultaneous localization and map building (SLAM) problem..IEEE Trans Rob Autom2001;17:229-41

[22]

Thrun S,Koller D.Simultaneous localization and mapping with sparse extended information filters..Int J Robot Res2004;23:693-716

[23]

Folkesson J.Closing the loop with graphical SLAM..IEEE Trans Robot2007;23:731-41

[24]

Ho KL.Loop closure detection in SLAM by combining visual and spatial appearance..Rob Auton Syst2006;54:740-9

[25]

Nieto J,Nebot E.Denseslam: simultaneous localization and dense mapping..Int J Robot Res2006;25:711-44

[26]

Chen SY.Kalman filter for robot vision: a survey..IEEE Trans Ind Electron2011;59:4409-20

[27]

Sibley G,Sukhatme G.Sliding window filter with application to planetary landing..J Field Robot2010;27:587-608

[28]

Kaess M,Roberts R.iSAM2: Incremental smoothing and mapping using the Bayes tree..Int J Robot Res2012;31:216-35

[29]

Yang S,Yi X.Multi-camera visual SLAM for autonomous navigation of micro aerial vehicles..Rob Auton Syst2017;93:116-34

[30]

Weiss S,Siegwart R.Monocular-SLAM–based navigation for autonomous micro helicopters in GPS-denied environments..J Field Robot2011;28:854-874

[31]

Zhu A.Neurofuzzy-based approach to mobile robot navigation in unknown environments..IEEE Trans Syst Man Cybern C Appl Rev2007;37:610-21

[32]

Juang CF.Evolutionary-group-based particle-swarm-optimized fuzzy controller with application to mobile-robot navigation in unknown environments..IEEE Trans Fuzzy Syst2011;19:379-92

[33]

Villacorta-Atienza JA.Neural network architecture for cognitive navigation in dynamic environments..IEEE Trans Neural Netw Learn Syst2013;24:2075-87

[34]

Song B,Sheng L.A new genetic algorithm approach to smooth path planning for mobile robots..Assem Autom2016;36:138-45

[35]

Zhang Y,Zhang J.Robot path planning in uncertain environment using multi-objective particle swarm optimization..Neurocomputing2013;103:172-85

[36]

Karami AH.An adaptive genetic algorithm for robot motion planning in 2D complex environments..Comput Electr Eng2015;43:317-29

[37]

Pereira AGC.On the genetic algorithm with adaptive mutation rate and selected statistical applications..Comput Stat2015;30:131-50

[38]

Tsai CC,Chan CK.Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigation..IEEE Trans Ind Electron2011;58:4813-21

[39]

Zhu Q,Cai W.A new robot navigation algorithm for dynamic unknown environments based ondynamic path re-computation and an improved scout ant algorithm..Appl Soft Comput2011;11:4667-76

[40]

Arantes MS,Toledo CFM.A hybrid multi-population genetic algorithm for uav path planning. Proceedings of the Genetic and Evolutionary Computation Conference. 20162016;2016 Jul 20New York, NY: Association for Computing Machinery853-60

[41]

Tuncer A.Dynamic path planning of mobile robots with improved genetic algorithm..Comput Electr Eng2012;38:1564-72

[42]

Raja R,Venkatesh KS.New potential field method for rough terrain path planning using genetic algorithm for a 6-wheel rover..Rob Auton Syst2015;72:295-306

[43]

Arora T,Arora V.Robotic path planning using genetic algorithm in dynamic environment..Int J Comput Appl2014;89:9-12

[44]

Roberge V,Labonté G.Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning..IEEE Trans Industr Inform2012;9:132-41

[45]

Bhandari D,Pal SK.Genetic algorithm with elitist model and its convergence..Intern J Pattern Recognit Artif Intell1996;10:731-47

[46]

Hu ZB,Su QH.Finite Markov chain analysis of classical differential evolution algorithm..J Comput Appl Math2014;268:121-34

[47]

K-Team Corporation. Available from: http://www.k-team.com/ [Last accessed on 10 Dec 2021]

[48]

Souahi A,Makhlouf AB.Discussion on Barbalat Lemma extensions for conformable fractional integrals..Int J Control2019;92:234-41

[49]

Erdman AG,Kota S.Mechanism design: analysis and synthesis.2001;Upper Saddle River, NJPrentice hall

[50]

Wilde N,Smith SL.Learning user preferences in robot motion planning through interaction. 2018 IEEE International Conference on Robotics and Automation (ICRA)2018;2018 May 21-25Brisbane, QLD, Australia. IEEE619-26

[51]

Farzan S.Path planning in dynamic environments using time-warped grids and a parallel implementation..arXiv.1903.074412019;

[52]

Saeedi S,Johns E.Application-oriented design space exploration for SLAM algorithms. 2017 IEEE International Conference on Robotics and Automation (ICRA)2017;2017 Jul 24Singapore. IEEE5716-23

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/