LC-MS/MS-guided profiling and network pharmacology analysis of bioactive compounds from Costus speciosus targeting type 2 diabetes: Insights from molecular docking and dynamics

Taufik Muhammad Fakih , Jajang Japar Sodik , Rifky Rahmadi Khaerulihsan , Ihsan Jaya Fathurohman , Livia Syafnir , La Ode Akbar Rasydy , Muchtaridi Muchtaridi

Intelligent Pharmacy ›› 2025, Vol. 3 ›› Issue (6) : 401 -419.

PDF (6828KB)
Intelligent Pharmacy ›› 2025, Vol. 3 ›› Issue (6) :401 -419. DOI: 10.1016/j.ipha.2025.07.002
Full length article

LC-MS/MS-guided profiling and network pharmacology analysis of bioactive compounds from Costus speciosus targeting type 2 diabetes: Insights from molecular docking and dynamics

Author information +
History +
PDF (6828KB)

Abstract

Background/objectives: Costus speciosus is a medicinal plant traditionally used in Southeast Asia for its metabolic and anti-inflammatory properties, yet the molecular mechanisms underlying its bioactivity remain underexplored. Among its phytoconstituents, various plant-derived lipophilic compounds have attracted attention due to their structural similarity to endogenous metabolites and their potential role in modulating metabolic pathways relevant to type 2 diabetes mellitus (T2DM). This study aimed to investigate the binding behavior and stability of Costus speciosus-derived metabolites against key molecular targets involved in insulin signaling and oncogenic transformation.

Methods: LC-MS/MS profiling was employed to identify major bioactive metabolites from the rhizome extract. Subsequently, a network pharmacology approach was used to filter relevant targets, followed by molecular docking and 200 ns molecular dynamics simulations to evaluate interaction stability. Binding free energy was computed using the MM-PBSA method to support thermodynamic relevance

Results: A total of 18 compounds were identified via LC-MS/MS, of which 15 were successfully linked to at least one protein target through bioinformatics databases and proceeded to molecular docking analysis. Among these, campestanol showing the highest docking affinity (-10.73 kcal/mol) and the lowest inhibition constant (13.60 nM) toward PIK3CA. Molecular dynamics simulations revealed that the PIK3CA-campestanol complex exhibited comparable or superior stability metrics (RMSD, RMSF, Rg, SASA, RDF, and hydrogen bonding) to the native ligand. MM-PBSA calculations confirmed robust van der Waals and hydrophobic contributions to binding, with total binding energy at -117.144 ±13.887 kJ/mol. These computational findings were further corroborated by prior experimental studies demonstrating campestanol's metabolic regulatory functions.

Conclusions: Campestanol demonstrates stable and favorable binding with PIK3CA, supporting its role as a promising candidate for further in vitro validation in metabolic and oncogenic pathway modulation. This study provides mechanistic insights into Costus speciosus bioactivity and strengthens the rationale for advancing campestanol as a lead compound in PI3K/AKT-targeted therapies for T2DM.

Keywords

Costus speciosus / Antidiabetic candidate / PI3K/AKT pathway / Metabolite profiling / Network pharmacology

Cite this article

Download citation ▾
Taufik Muhammad Fakih, Jajang Japar Sodik, Rifky Rahmadi Khaerulihsan, Ihsan Jaya Fathurohman, Livia Syafnir, La Ode Akbar Rasydy, Muchtaridi Muchtaridi. LC-MS/MS-guided profiling and network pharmacology analysis of bioactive compounds from Costus speciosus targeting type 2 diabetes: Insights from molecular docking and dynamics. Intelligent Pharmacy, 2025, 3(6): 401-419 DOI:10.1016/j.ipha.2025.07.002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hameed I , Masoodi SR , Mir SA , Nabi M , Ghazanfar K , Ganai BA . Type 2 diabetes mellitus:from a metabolic disorder to an inflammatory condition. World J Diabetes. 2015; 6.

[2]

Ong KL , Stafford LK , McLaughlin SA , et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023; 402.

[3]

Nugrahani ASD , Muharram FR , Novida H , Swannjo JB , Wibisono S , Wungu CDK . Trends and disability-attributable risk factors of type 2 diabetes mellitus in Southeast Asia (1990-2019): an in-depth 30-year analysis from the Global Burden of Disease study. Nutr Metabol Cardiovasc Dis. 2025; 35: 103750.

[4]

Sugandh F , Chandio M , Raveena F , et al. Advances in the management of diabetes mellitus: a focus on personalized medicine. Cureus. 2023

[5]

Chaudhury A , Duvoor C , Reddy Dendi VS , et al. Clinical review of antidiabetic drugs:implications for type 2 diabetes mellitus management. Front Endocrinol. 2017; 8.

[6]

Kooti W , Farokhipour M , Asadzadeh Z , Ashtary-Larky D , Asadi-Samani M . The role of medicinal plants in the treatment of diabetes: a systematic review. Electron Physician. 2016; 8.

[7]

Saraf A . Phytochemical and antimicrobial studies of medicinal plant costus speciosus (Koen). E J Chem. 2010; 7.

[8]

Shaikh SS , Bawazir AS , Yahya BA . Phytochemical, histochemical and in vitro antimicrobial study of various solvent extracts of Costus speciosus (J. Koenig) Sm. and Costus pictus D. Don. Turkish J Pharm Sci. 2022; 19.

[9]

Kala C , Ali SS , Chaudhary S . Comparative pharmacognostical evaluation of Costus speciosus (Wild ginger) and Zingiber officinale (Ginger) rhizome. Int J Current Pharm Rev Res. 2016; 8.

[10]

Marzook EA , Marzook FA , Abd El Moneim AE . Radioprotective and anti-diabetic effects of Costus speciosus and carnosine. Trop J Pharmaceut Res. 2020; 19.

[11]

El-Far AH , Shaheen HM , Alsenosy AW , El-Sayed Y , Al Jaouni SK , Mousa SA . Costus speciosus:traditional uses, phytochemistry, and therapeutic potentials. Pharmacogn Rev. 2018; 12.

[12]

Delarosa A , Hendrawan RP , Halimah E . Screening of Costus speciosus and determination of antioxidant potential using DPPH method: a review. Eur J Med Plants. 2023; 34.

[13]

Fitrianingsih SP , Kurniati NF , Fakih TM , Adnyana IK . Integrating network pharmacology, molecular docking, and molecular dynamics to explore the antidiabetic mechanism of Physalis angulata L. Pharmacia. 2025; 72: 1- 29.

[14]

Li W , Yuan G , Pan Y , Wang C , Chen H . Network pharmacology studies on the bioactive compounds and action mechanisms of natural products for the treatment of diabetes mellitus: a review. Front Pharmacol. 2017; 8.

[15]

Luo W , Deng J , He J , et al. Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi-target pharmacology of fenugreek against diabetes. J Cell Mol Med. 2023; 27.

[16]

Agu PC , Afiukwa CA , Orji OU , et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep. 2023; 13.

[17]

Martiz RM , Patil SM , Abdulaziz M , et al. Defining the role of isoeugenol from ocimum tenuiflorum against diabetes mellitus-linked alzheimer's disease through network pharmacology and computational methods. Molecules. 2022; 27.

[18]

Rampogu S , Parameswaran S , Lemuel MR , Lee KW . Exploring the therapeutic ability of fenugreek against type 2 diabetes and breast cancer employing molecular docking and molecular dynamics simulations. Evid base Compl Alternative Med. 2018. 2018.

[19]

Khatabi K El , El-Mernissi R , Hajji H , et al. Identification of novel indole derivatives as potent α-amylase inhibitors for the treatment of type-II diabetes using in-silico approaches. Biointerface Res Appl Chem. 2023; 13.

[20]

Siriwardhene MA , Sabalingam S , Goonetilleke A . Antidiabetic activity of methanol extract and fractions of Costus speciosus leaves in normal and alloxan induced diabetic rats. J Drug Deliv Therapeut. 2023: 13.

[21]

Yuniarti L , Fakih TM , Tejasari M , Indriyanti RA , Maryam E , Nugroho BH . Comprehensive bioactive compound profiling of artocarpus heterophyllus leaves:LC-MS/MS analysis, antioxidant potential, and molecular insights. Drug Des Dev Ther. 2025; 19: 1195- 1213.

[22]

Kim S , Chen J , Cheng T , et al. PubChem 2023 update. Nucleic Acids Res. 2023; 51.

[23]

Daina A , Michielin O , Zoete V . SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7.

[24]

Gfeller D , Grosdidier A , Wirth M , Daina A , Michielin O , Zoete V . SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014; 42.

[25]

Barbarino JM , Whirl-Carrillo M , Altman RB , Klein TE . PharmGKB: a worldwide resource for pharmacogenomic information. Wiley Interdiscipl Rev:Syst Biol Med. 2018; 10.

[26]

Wishart DS , Feunang YD , Guo AC , et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018; 46.

[27]

Hamosh A , Scott AF , Amberger J , Valle D , McKusick VA . Online mendelian inheritance in man (OMIM). Hum Mutat. 2000; 15.

[28]

Safran M , Rosen N , BarShir R , et al. GeneCards-the human gene database. The GeneCards suite chapter. Practical Guide to Life Science Databases. 2022.

[29]

Szklarczyk D , Kirsch R , Koutrouli M , et al. The STRING database in 2023:proteinprotein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023; 51.

[30]

Szklarczyk D , Nastou K , Koutrouli M , et al. The STRING database in 2025:protein networks with directionality of regulation. Nucleic Acids Res. 2025; 53: D730- D737.

[31]

Scardoni G , Petterlini M , Laudanna C . Analyzing biological network parameters with CentiScaPe. Bioinformatics. 2009; 25.

[32]

Huang DW , Sherman BT , Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4.

[33]

RStudio Team . RStudio. Integrated Development for R; 2022.

[34]

Brown T . ChemDraw. Sci Teach. 2014; 81.

[35]

Berman HM , Westbrook J , Feng Z , et al. The protein data bank. Nucleic Acids Res. 2000; 28.

[36]

Delano WL . The PyMOL molecular graphics system. CCP4 Newslett Protein Crystallogr. 2002; 40.

[37]

Forli W , Halliday S , Belew R , Olson A . AutoDock Version 4.2. Citeseer; 2012.

[38]

Eberhardt J , Santos-Martins D , Tillack AF , Forli S . AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python bindings. J Chem Inf Model. 2021; 61.

[39]

BIOVIA. Dassault Systèmes BIOVIA, Discovery Studio Modeling Environment, Release 2017. San Diego:Dassault Systèmes; 2017.

[40]

Abraham MJ , Murtola T , Schulz R , et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1-2: 19- 25.

[41]

Abraham Mark , Alekseenko Andrey , Bergh Cathrine , et al. Erik Lindahl. GROMACS 2023.3 Manual (2023.3). Zenodo; 2023 (2023) Gromacs manual-2023.3.

[42]

Sousa Da Silva AW , Vranken WF . Acpype-AnteChamber PYthon parser interfacE. BMC Res Notes. 2012; 5.

[43]

Humphrey W , Dalke A , Schulten K . VMD:visual molecular dynamics. J Mol Graph. 1996; 14.

[44]

Kumari R , Kumar R , Consortium OSDD , Lynn A . g_mmpbsa-a GROMACS tool for MM-PBSA and its optimization for high-throughput binding energy calculations. J Chem Inf Model. 2014.

[45]

Shi Y , Si D , Chen D , et al. Bioactive compounds from Polygonatum genus as antidiabetic agents with future perspectives. Food Chem. 2023; 408.

[46]

Iravani S , Conrad TOF . An interpretable deep learning approach for biomarker detection in LC-MS proteomics data. IEEE ACM Trans Comput Biol Bioinf. 2023; 20.

[47]

Horai H , Arita M , Kanaya S , et al. MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom. 2010; 45.

[48]

Mata R , Flores-Bocanegra L , Ovalle-Magallanes B , Figueroa M . Natural products from plants targeting key enzymes for the future development of antidiabetic agents. Nat Prod Rep. 2023; 40.

[49]

Schultze SM , Hemmings BA , Niessen M , Tschopp O . PI3K/AKT, MAPK and AMPK signalling:protein kinases in glucose homeostasis. Expet Rev Mol Med. 2012; 14.

[50]

Leung M , Roitman D , Rodrigues P . PIK3CA inhibitor, alpelisib, and diabetic ketoacidosis: a case study on choosing wisely. J Oncol Pharm Pract. 2021; 27.

[51]

Perner F , Perner C , Ernst T , Heidel FH . Roles of JAK2 in aging, inflammation, hematopoiesis and malignant transformation. Cells. 2019; 8.

[52]

Wu Y , Liu X , Li G . Integrated bioinformatics and network pharmacology to identify the therapeutic target and molecular mechanisms of Huangqin decoction on ulcerative Colitis. Sci Rep. 2022; 12.

[53]

Huang X , Rehman HM , Szöllȍsi AG , Zhou S . Network pharmacology-based approach combined with bioinformatic analytics to elucidate the potential of curcumol against hepatocellular carcinoma. Genes. 2022; 13.

[54]

Erhirhie EO , Ihekwereme CP , Ilodigwe EE . Advances in acute toxicity testing:strengths, weaknesses and regulatory acceptance. Interdiscip Toxicol. 2018; 11.

[55]

Ruepp MD , Wei H , Leuenberger M , Lochner M , Thompson AJ . The binding orientations of structurally-related ligands can differ; A cautionary note. Neuropharmacology. 2017; 119.

[56]

Varma AK , Patil R , Das S , Stanley A , Yadav L , Sudhakar A . Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of Drug-Designing. PLoS One. 2010; 5.

[57]

Coimbra JTS , Feghali R , Ribeiro RP , Ramos MJ , Fernandes PA . The importance of intramolecular hydrogen bonds on the translocation of the small drug piracetam through a lipid bilayer. RSC Adv. 2020; 11.

[58]

Guo P , Feng R , Li Z , Han T . Gender differences in the relationships between dietary phytosterols intake and prevalence of obesity in Chinese population. Food Sci Nutr. 2023; 11.

[59]

Ojo OA , Ogunlakin AD , Gyebi GA , et al. GC-MS chemical profiling, antioxidant, antidiabetic, and anti-inflammatory activities of ethyl acetate fraction of Spilanthes filicaulis (Schumach. and Thonn.) C.D. Adams leaves:experimental and computational studies. Front Pharmacol. 2023; 14.

[60]

Lodish H , Berk A , Kaiser CA , et al. Cellular and Molecular Biology. Int J Basic Clin Pharmacol. 2013: 579- 586.

[61]

Vezza T , Canet F , de Marañón AM , Bañuls C , Rocha M , Víctor VM . Phytosterols:nutritional health players in the management of obesity and its related disorders. Antioxidants. 2020; 9.

RIGHTS & PERMISSIONS

The Authors. Publishing services by Elsevier B.V. on behalf of Higher Education Press and KeAi Communications Co. Ltd.

AI Summary AI Mindmap
PDF (6828KB)

390

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/