Extracellular vesicles as carriers for protein and peptide therapeutics delivery: A review

Yohannes Mengesha , Mesay Wondaya , Mulualem Workye , Lielet Belete

Intelligent Pharmacy ›› 2025, Vol. 3 ›› Issue (5) : 350 -367.

PDF (6183KB)
Intelligent Pharmacy ›› 2025, Vol. 3 ›› Issue (5) : 350 -367. DOI: 10.1016/j.ipha.2025.05.001
Review article

Extracellular vesicles as carriers for protein and peptide therapeutics delivery: A review

Author information +
History +
PDF (6183KB)

Abstract

Protein and peptide-based therapeutics hold immense potential for treating various diseases, including cancer, neurodegenerative disorders, and metabolic conditions. However, rapid degradation, poor bioavailability, short half-life, and early clearance limit their clinical application. Several protein and peptide modifications and drug delivery systems (DDS) tested including enzyme inhibitors, chemical modification and conventional nanoparticles have limitations like immune Reponses, extracellular vesicles (EVs), present a good solution to overcome this drawbacks. EVs have gained attention as novel delivery systems for protein and peptide therapeutics owing to their small size, biocompatibility, intrinsic targeting capabilities, lower immunogenicity, and ability to protect cargo from enzymatic degradation. EVs have demonstrated promising results in preclinical studies by enhancing the uptake, loading, penetration, and targeted release of protein/peptide cargos for conditions such as cancer, diabetes, and microbial infections. Additionally, they can serve as carriers for targeting peptides, enabling the delivery of synthetic drugs and genome-editing tools. This review explores the potential of EVs as drug delivery systems (DDS) for protein and peptide drugs, focusing on their advantages and characteristics, engineering and encapsulation, emerging EV and EV-cargo characterization techniques, release, and efficacy in overcoming the limitations of protein- and peptide-based delivery systems. The review also addresses challenges and future perspectives in translating EV-based protein and peptide delivery systems into clinical practice.

Keywords

Protein drug delivery / peptide drug delivery / Extracellular vesicles

Cite this article

Download citation ▾
Yohannes Mengesha, Mesay Wondaya, Mulualem Workye, Lielet Belete. Extracellular vesicles as carriers for protein and peptide therapeutics delivery: A review. Intelligent Pharmacy, 2025, 3(5): 350-367 DOI:10.1016/j.ipha.2025.05.001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Boddu Sai HS , Acharya Devarshi , Hala Vivek , et al. An update on strategies to deliver protein and peptide drugs to the eye. ACS Omega. 2023; 8: 35470- 35498.

[2]

Sadee W . Protein drugs: a revolution in therapy. Pharm Res. 1986; 3 (1): 3- 6.

[3]

Keservani Raj K , Sharma Anil K , Jarouliya Urmila . Protein and peptide in drug targeting and its therapeutic approach. Ars Pharm. 2015; 56 (3): 165- 177.

[4]

Bruno BJ , Miller GD , Lim CS . Basics and recent advances in peptide and protein drug delivery. Ther Deliv. 2013; 4 (11): 1443- 1467.

[5]

Therapeutic Proteins Global Market Report . 2021; COVID-19 Impact and Recoveryto 2030 n.d. www.researchandmarkets.Com/reports/5319142/therapeuticproteins-global-market-report2021 (Accessed March 30, 2025).

[6]

Guo Sijie , Wang Jing , Qi Wang , Wang Jinxin , Qin Song , Li Wenjun . Advances in peptide-based drug delivery systems. Heliyon. 2024; 10: e26009.

[7]

Ika Irianti Marina , Rahmasari Ratika , Erwina Arifianti Ayun , Iswandana Raditya . Non-invasive strategies for protein drug delivery: oral, transdermal, and pulmonary. J Appl Pharmaceut Sci. October, 2020; 10 (10): 166- 179.

[8]

Ahlén G , Strindelius L , Johansson T , et al. Mannosylated mucin-type immunoglobulin fusion proteins enhance antigen-specific antibody and T lymphocyte responses. PLoS One. 2012; 7: e46959.

[9]

Patel A , Cholkar K , Mitra AK . Recent developments in protein and peptide parenteral delivery approaches. Ther Deliv. 2014; 5: 337- 365.

[10]

Mitchell M . The Medicines Company Reports Full Year and Fourth Quarter 2011 Financial Results. 2012. NJ, USA.

[11]

Thanou M , Verhoef JC , Junginger HE . Chitosan and its derivatives as intestinal absorption enhancers. Adv Drug Deliv Rev. 2001; 50 (Suppl. 1): S91- S101.

[12]

Bruno Benjamin J , Miller Geoffrey D , Lim Carol S . Basics and recent advances in peptide and protein drug delivery. Ther Deliv. 2013November; 4 (11): 1443- 1467.

[13]

Bagan J , Paderni C , Termine N , et al. Mucoadhesive polymers for oral transmucosal drug delivery: a review. Curr Pharm Des. 2012; 18: 5497- 5514.

[14]

Cao Shu-jun , Xu Shuo , Wang Hui-ming , Ling Yong , Dong Jiahua , Xia Rui-dong , Sun Xiang-hong . Nanoparticles: oral delivery for protein and peptide drugs. AAPS PharmSciTech. 2019; 20: 190.

[15]

Battaglia L , Ugazio E . Lipid nano- and microparticles: an overview of patentrelated research. J Nanomater. 2019; 2019: 1- 22.

[16]

Berillo D , Yeskendir A , Zharkinbekov Z , Raziyeva K , Saparov A . Peptide-based drug delivery systems. Medicina. 2021; 57: 1209.

[17]

Prasad Yadav Roshan , Chauhan Meenakshi K . Mini- review: potential of nanocarriers for protein based drug delivery. Ann Biol Res. 2023; 14 (2): 1- 5.

[18]

Ying Hana , Gaoa Zhonggao , n, et al. Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins. Acta Pharm Sin B. 2019; 9 (5): 902- 922.

[19]

Díez-Villares Sandra , et al. Quantitative PET tracking of intra-articularly administered 89Zr-peptide-decorated nanoemulsions. J Contr Release. 2023; 356: 702- 713.

[20]

Bouzo BL , Lores S , Jatal R , et al. Sphingomyelin nanosystems loaded with uroguanylin and etoposide for treating metastatic colorectal cancer. Sci Rep. 2021; 11: 17213.

[21]

Ika Irianti Marina , Rahmasari Ratika , Erwina Arifianti Ayun , Iswandana Raditya . Non-invasive strategies for protein drug delivery: oral, transdermal, and pulmonary. J Appl Pharmaceut Sci. October, 2020; 10 (10): 166- 179.

[22]

Halawa EM , Fadel M , Al-Rabia MW , et al. Antibiotic action and resistance: updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance. Front Pharmacol. 2024; 14: 1305294.

[23]

Antonyak MA , Cerione RA . The distinct traits of extracellular vesicles generated by transformed cells. Small GTPases. 2018.

[24]

Ofir-Birin Y , Abou Karam P , Rudik A , Giladi T , Porat Z , Regev-Rudzki N . Monitoring extracellular vesicle cargo active uptake by imaging flow cytometry. Front Immunol. 2018.

[25]

Witwer W , Wolfram J . Extracellular vesicles versus synthetic nanoparticles for drug Delivery. Nat Rev Mater. 2021; 6 (2): 103- 106.

[26]

Hagedorn L , Jürgens DC , Merkel OM , Winkeljann B . Endosomal escape mechanisms of extracellular vesicle-based drug carriers: lessons for lipid nanoparticle design. Extracell Vesicles Circ Nucleic Acids. 2024; 5: 344- 357.

[27]

Li X , Wei Y , Zhang Z , Zhang X . Harnessing genetically engineered cell membranederived vesicles as biotherapeutics. Extracell Vesicles Circ Nucleic Acids. 2024; 5: 44- 63.

[28]

Van Niel G , D'Angelo G , Raposo G . Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018.

[29]

Sonallya Tasvilla , Juhasz Tünde , Szigyart Imola Cs , et al. Categorizing interaction modes of antimicrobial peptides with extracellular vesicles: disruption, membrane trespassing, and clearance of the protein corona. J Colloid Interface Sci. 2025; 679: 496- 509.

[30]

Alvarez-Erviti L , Seow Y , Yin H , Betts C , Lakhal S , Wood MJA . Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011.

[31]

Cooper JM , Wiklander PBO , Nordin JZ , et al. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord. 2014.

[32]

Liu Y , Li D , Liu Z , et al. Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse. Sci Rep. 2015.

[33]

Liu H , Geng Z , Su J . Engineered mammalian and bacterial extracellular vesicles as promising nanocarriers for targeted therapy. Extracell Vesicles Circ Nucleic Acids. 2022; 3: 63- 86.

[34]

Elsharkasy OM , et al. Extracellular vesicles as drug delivery systems: why and how? Adv Drug Deliv Rev. 2020; 159: 332- 343.

[35]

van Niel G , D'Angelo G , Raposo G . Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018; 19: 213- 228.

[36]

Raposo G , Stoorvogel W . Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013; 200: 373- 383.

[37]

Mashouri L , Yousefi H , Aref AR , Ahadi Am , Molaei F , Alahari SK . Exosomes: composition, biogenesis, and mechanisms n cancer metastasis and drug resistance. Mol Cancer. 2019; 18: 75.

[38]

Zhu L , Sun HT , Wang S , et al. Isolation and characterization of exosomes for cancer research. J Hematol Oncol. 2020; 13: 152.

[39]

Laberge A , Arif S , Moulin VJ . Microvesicles: intercellular messengers in cutaneous wound healing. J Cell Physiol. 2018; 233: 5550- 5563.

[40]

Zhu S , Li S , Yi M , Li N , Wu K . Roles of microvesicles in tumor progression and clinical applications. Int J Nanomed. 2021; 16: 7071- 7090.

[41]

Xu Y , Feng K , Zhao H , Di L , Wang L , Wang R . Tumor-derived extracellular vesicles as messengers of natural products in cancer treatment. Theranostics. 2022; 12: 1683- 1714.

[42]

Atkin-Smith GK , Poon IKH . Disassembly of the dying: mechanisms and functions. Trends Cell Biol. 2017; 27: 151- 162.

[43]

Liu D , Kou X , Chen C , et al. Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors. Cell Res. 2018; 28: 918- 933.

[44]

Tang Y , Liu X , Sun M , et al. Recent progress in extracellular vesicle-based carriers for targeted drug delivery in cancer therapy. Pharmaceutics. 2023; 15: 1902.

[45]

Sidhom K , Obi PO , Saleem A . A review of exosomal isolation methods: is size exclusion chromatography the best option? Int J Mol Sci. 2020; 21: 6466.

[46]

Wang W , Luo J , Wang S . Recent progress in isolation and detection of extracellular vesicles for cancer diagnostics. Adv Healthcare Mater. 2018; 7: 1800484.

[47]

Monguió-Tortajada M , Gálvez-Montón C , Bayes-Genis A , Roura S , Borràs FE . Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography. Cell Mol Life Sci. 2019; 76: 2369- 2382.

[48]

Nakai W , Yoshida T , Diez D , et al. A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci Rep. 2016; 6: 33935.

[49]

Konoshenko MY , Lekchnov EA , Vlassov AV , Laktionov PP . Isolation of extracellular vesicles: general methodologies and latest trends. BioMed Res Int. 2018; 2018: 8545347.

[50]

Konoshenko Maria Yu , ekchnov Evgeniy A , Vlassov Alexander V , Laktionov Pavel P . Isolation of extracellular vesicles: general methodologies and latest trends. 2018 Jan 30. BioMed Res Int. 2018: 8545347.

[51]

Zhanga Xiaogang , Borga Ellen GF , Manuel Liacib A , Vosc Harmjan R , Stoorvoge Willem . A novel three step protocol to isolate extracellular vesicles from plasma or cell culture medium with both high yield and purity. J Extracell Vesicles. 2020; 9: 1791450.

[52]

Wang P , Arntz OJ , Husch JFA , Kraan P M Vd , Jjjpvd Beucken , van de Loo FAJ . Polyethylene glycol precipitation is an efficient method to obtain extracellular vesicle-depleted fetal bovine serum. PLoS One. 2023; 18 (12): e0295076.

[53]

Ji H , Chen M , Greening DW , et al. Deep sequencing of RNA from three different extracellular vesicle (EV) subtypes released from the human LIM1863 colon cancer cell line uncovers distinct miRNA-enrichment signatures. PLoS One. 2014; 9: e110314.

[54]

Filipović Lidija , Spasojević Milica , Prodanović Radivoje , et al. Affinity-based isolation of extracellular vesicles by means of single-domain antibodies bound to macroporous methacrylate-based copolymer. New Biotechnol. 2022; 69: 36- 48.

[55]

Meggiolaro A , Moccia V , Brun P , et al. Microfluidic strategies for extracellular vesicle isolation: towards clinical applications. Biosensors. 2023; 13: 50.

[56]

Zhang Shaohua , Deng Jinqi , Li Jianbin , et al. Advanced microfluidic technologies for isolating extracellular vesicles. TrAC, Trends Anal Chem. December 2022; 157: 116817.

[57]

Xi Xiao-ming , Chen-meng , Xia Shu-jun , Lu Rong . Drug loading techniques for exosome-based drug delivery system). Pharmaceutics 2019. 2021; 11: 448.

[58]

Jiang XC , Zhang T , Gao JQ . The in vivo fate and targeting engineering of crossover vesicle-based gene delivery system. Adv Drug Deliv Rev. 2022; 187: 114324.

[59]

Wang Liwei , Wang Di , Ye Zhaoming , Xu Jianbin . Engineering extracellular vesicles as delivery systems in therapeutic applications. Adv Sci. 2023; 10: 2300552.

[60]

Brezgin S , Danilik O , Yudaeva A , et al. Basic guide for approaching drug delivery with extracellular vesicles. Int J Mol Sci. 2024; 25: 10401.

[61]

Tréton Gwenola , Sayer Claudia , Schürz Melanie , et al. Quantitative and functional characterisation of extracellular vesicles after mpassive loading with hydrophobic or cholesterol-tagged small. molecules Journal of Controlled Release. 2023; 361: 694, 71.

[62]

Thomas A Hartjes , Mytnyk Serhii , Jenster Guido W , Steijn Volkert van , van Royen Martin E . Extracellular vesicle quantification and characterization: common methods and emerging approaches. Bioengineering. 2019; 6: 7.

[63]

De Sousa Karina P , Rossi Izadora , Abdullahi Mahamed , Ramirez Marcel Ivan , Stratton Dan , Inal Jameel Malhador . Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. WIREs Nanomed Nanobiotechnol. 2023; 15: e1835.

[64]

Berne BJP , Berne BJP. Dynamic Light Scattering. Mineola, NY, USA: Courier Dover Publications; 2000

[65]

Palmieri V , Lucchetti D , Gatto I , et al. Dynamic light scattering for the characterization and counting of extracellular vesicles: a powerful noninvasive tool. J Nanoparticle Res. 2014; 16: 2583.

[66]

Perpetuo L , Ferreira R , Thongboonkerd V , Guedes S , Amado F , Vitorino R . Urinary exosomes: diagnostic impact with a bioinformatic approach. Adv Clin Chem. 2022; 111: 69- 99.

[67]

Bozzola JJ , Russell LD . Electron Microscopy: Principles and Techniques for Biologists. Burlington, MA, USA: Jones and Bartlett; 1999.

[68]

Casado S , Lobo MDT , Paino CL . Dynamics of plasma membrane surface related to the release of extracellular vesicles by mesenchymal stem cells in culture. Sci Rep. 2017; 7: 18052.

[69]

Onde-Vancells J , Rodriguez-Suarez E , Embade N , et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res. 2008; 7: 5157- 5166.

[70]

Yuana Y , et al. Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles. J Thromb Haemostasis. 2010; 8 (2): 315- 323.

[71]

Bagrov D , et al. Application of AFM, TEM, and NTA for characterization of exosomes produced by placenta-derived mesenchymal cells. J. Phys. Conf. Ser. 2021; 1942): 012013.

[72]

Zhang H , Silva AC , Zhang W , Rutigliano H , Zhou A . Raman Spectroscopy characterization extracellular vesicles from bovine placenta and peripheral blood mononuclear cells. PLoS One. 2020; 15 (7): e0235214.

[73]

Bano Reshma , Ahmadb a Farhan , Mohsin Mohd . A perspective on the isolation and characterization of extracellular vesicles from different biofluids. RSC Adv. 2021; 11: 19598.

[74]

Durak-Kozica M , Baster Z , Kubat K , Stępień E . 3D visualization of extracellular vesicle uptake by endothelial cells. Cell Mol Biol Lett. 2018; 23: 57.

[75]

Goldbloom-Helzner L , Bains H , Wang A . Approaches to characterize and quantify extracellular vesicle surface conjugation efficiency. Life. 2024; 14: 511.

[76]

Ohno SI , Takanashi M , Sudo K , et al. Systemically injected exosomes targeted to EGFR deliver antitumor MicroRNA to breast cancer cells. Mol Ther. 2013; 21: 185- 191.

[77]

Bagc Canan , Sever-Bahcekapili Melike , Belder Nevin , et al. Overview of extracellular vesicle characterization techniques and introduction to combined reflectance and fluorescence confocal microscopy to distinguish extracellular vesicle subpopulations. Neurophotonic. 2022; 9(2).

[78]

Crescitelli R , Lässer C , Jang SC , et al. Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation. J Extracell Vesicles. 2020; 9 (1): 1722433.

[79]

Dragovic RA , Gardiner C , Brooks AS , et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomed Nanotechnol Biol Med. 2011; 7 (6): 780- 788.

[80]

Saari H , Lisitsyna E , Rautaniemi K , et al. FLIM reveals alternative EV-mediated cellular up-take pathways of paclitaxel. J Contr Release. 2018; 284: 133- 143.

[81]

Shao H , Im H , Castro CM , Breakefield X , Weissleder R , Lee H , et al. New technologies for analysis of extracellular vesicles. Chem Rev. 2018Feb 28; 118 (4): 1950- 68.

[82]

Carolina Paganini , Hettich Britta , Kopp Marie RG , et al. Rapid characterization and quantification of extracellular vesicles by fluorescence-based microfluidic diffusion sizing. Adv Healthcare Mater. 2022; 11: 2100021.

[83]

Logozzi M , De Milito A , Lugini L , et al. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One. 2009; 4 (4): e5219.

[84]

Kobayashi Hisano , Shiba Takayuki . TakeshiYoshida Dilireba Bolidong, et al. Precise analysis of single small extracellular vesicles using flow cytometry. Scientifc Reports. 2024; 14: 7465.

[85]

Di Santo R , Vaccaro M , Romanò S , et al. Machine learning-assisted FTIR analysis of circulating extracellular vesicles for cancer liquid biopsy. J Personalized Med. 2022; 12: 949.

[86]

Nielsen JE , Maltesen RG , Havelund JF , et al. Characterising Alzheimer's disease through integrative NMR-and LC-MS-based metabolomics. Metab. Open. 2021; 12: 100125.

[87]

Jalaludin I , Lubman DM , Kim J . A guide to mass spectrometricm analysis of extracellular vesicle proteins for biomarker discovery. Mass Spectrom Rev. 2023; 42: 844- 872.

[88]

Jiang H , Kumarasamy RV , Pei J , et al. Integrating engineered nanomaterials with extracellular vesicles: advancing targeted drug delivery and biomedical applications. Front. Nanotechnol. 2025; 6: 1513683.

[89]

Pendiuk Goncalves J , Walker SA , Aguilar Díaz de león JS , et al. Glycan node analysis detects varying glycosaminoglycan levels in melanoma-derived extracellular vesicles. Int J Mol Sci. 2023; 24: 8506.

[90]

Aresta AM , De Vietro N , Zambonin C . Analysis and characterization of the extracellular vesicles released in non-cancer diseases using matrix-assisted laser desorption ionization/mass spectrometry. Int J Mol Sci. 2024; 25: 4490.

[91]

Korenevsky AV , Shcherbitskaia AD , Berezkina ME , et al. MALDI-TOF mass spectrometric protein profiling of microvesicles produced by the NK-92 natural killer cell line. Med. Immunol Ser. 2020; 22: 633- 646.

[92]

Ferguson S , Yang KS , Weissleder R . Single extracellular vesicle analysis for early cancer detection. Trends Mol Med. 2022; 28: 681- 692.

[93]

Willms E , et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep. 2016; 6: 22519.

[94]

Lee Y-J , Chae S , Choi D . Monitoring of single extracellular vesicle heterogeneity in cancer progression and therapy. Front Oncol. 2023; 13: 1256585.

[95]

Baǧcı Canan , Sever-Bahcekapili Melike , Belder Nevin , Bennett Adam PS , Evren Erdener a Şefik , Dalkaraa Turgay . Overview of extracellular vesicle characterization techniques and introduction to combined reflectance and fluorescence confocal microscopy to distinguish extracellular vesicle subpopulations. Neurophotonics. 2022; 2(2).

[96]

Maiolo D , Paolini L , Di Noto G , et al. Colorimetric nanoplasmonic assay to determine purity and titrate extracellular vesicles. Anal Chem. 2015; 87: 4168- 4176.

[97]

Bril'kov MS , Stenbakk V , Jakubec M , et al. Bacterial extracellular vesicles: towards realistic models for bacterial membranes in molecular interaction studies by surface plasmon resonance. Front Mol Biosci. 2023; 10: 1277963.

[98]

Bordanaba-Florit G , Royo F , Kruglik SG , Falcón-Pérez JM . Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat Protoc. 2021Jul; 16(7): 3163- 3185.

[99]

Wu S , Zhao Y , Zhang Z , Zuo C , Wu H , Liu Y . The advances and applications of characterization technique for exosomes: from dynamic light scattering to superresolution imaging technology. Photonics. 2024; 11: 101.

[100]

Rust MJ , Bates M , Zhuang X . Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006; 3 (10): 793- 796.

[101]

Nizamudeena Zubair , Markusb Robert , Lodge Rhys , et al. Rapid and accurate analysis of stem cell-derived extracellular vesicles with super resolution microscopy and live imaging. BBA-Molecular Cell Research. 2018; 1865: 1891, 19.

[102]

Huang Guan , Liu Yongtao , Wang Dejiang , et al. Upconversion nanoparticles for super-resolution quantifcation of single small extracellular vesicles. eLight. 2022; 2: 20.

[103]

Lelek Mickaël , Gyparaki Melina T , Beliu Gerti , et al. Single-molecule localization microscopy. Nature Reviews Methods Primers. 2021; 1. Article number: 39.

[104]

Hyun Y , Kim D . Development of deep-LearningBased single-molecule localization image analysis. Int J Mol Sci. 2022; 23: 6896.

[105]

Khater Ismail M , Nabi Ivan Robert , Hamarneh Ghassan . A review of superresolution single molecule localization microscopy cluster analysis and quantification methods. PATTER. June 12, 2020; 1.

[106]

Scalisi Silvia , Pisignano Dario , Cella Zanacchi Francesca . Single-molecule localization microscopy goes quantitative. Microsc Res Tech. 2023; 86: 494- 504.

[107]

Puthukodan Sujitha , Hofmann Martina , Mairhofer Mario , et al. Intracellular tracking, and colocalization of extracellular vesicles using atomic force and 3D single-MoleculeLocalization microscopy. Anal Chem. 2023; 95: 6061- 6070.

[108]

Chen C , Zong S , Wang Z , et al. ACS Applied Materials & Interfaces. 2016: 25825- 25833.

[109]

Lennon Kathleen M , Wakefield Devin L , Maddox Adam L , et al. Single molecule characterization of individual extracellular vesicles from pancreatic cancer. J Extracell Vesicles. 2019; 8: 1685634.

[110]

Deng F , et al. Single-particle interferometric reflectance imaging characterization of individual extracellular vesicles and population dynamics. J Vis Exp. 2022.

[111]

Dilsiz Nihat . A comprehensive review on recent advances in exosome isolation and characterization:toward clinical applications. Transl Oncol. 2024; 50: 102121.

[112]

Liang Y , Lehrich BM , Zheng S , Lu M . Emerging methods in biomarker identification for extracellular vesicle-based liquid biopsy. J Extracell Vesicles. 2021; 10: e12090.

[113]

Shaabani N , Meira SR , Marcet-Palacios M , Kulka M . Multiparametric biosensors for characterizing extracellular vesicle subpopulations. ACS Pharmacol Transl Sci. 2023; 6: 387- 398.

[114]

Breitwieser Kai , Koch Leon F , Tertel Tobias , et al. Detailed characterization of small extracellular vesicles from different cell types based on tetraspanin composition by ExoView R100 platform. Int J Mol Sci. 2022; 15: 8544.

[115]

Tian Y , Ma L , Gong M , et al. Protein profling and sizing of extracellular vesicles from colorectal cancer patients via fow cytometry. ACS Nano. 2018; 12 (1): 671- 680.

[116]

Nanofcm , et al. flow nanoanalyzer. www.nanofcm.com/products/flow-nanoanalyzer [Accessed 30 March 2025].

[117]

Andronico Luca A , Jiang Yifei , Jung Seung-Ryoung , Fujimoto Bryant S , Vojtech Lucia , Chiu Daniel T , et al. Sizing extracellular vesicles using membrane dyes and a single molecule-sensitive flow analyzer. Anal Chem. 2021Apr 13; 93 (14): 5897- 5905.

[118]

Natasha S , Vorobjev Barteneva Ivan A . Imaging flow cytometry:methods and protocols. In: Barteneva NS, Vorobjev IA, eds. Methods in Molecular Biology. vol. 1389. New York:Humana; 2016: 1- 3, 295.

[119]

Terte Tobias , Görgens André , Giebel Bernd . Analysis of individual extracellular vesicles by imaging flow cytometry. Methods Enzymol. 2020; 645: 55- 78.

[120]

Ricklefs F , Maire C , Reimer R , et al. Imaging flow cytometry facilitates multiparametric characterization of extracellular vesicles in malignant brain tumours. J Extracell Vesicles. 2019; 8 (1): 1588555.

[121]

Ofir-Birin Y , Abou karam P , Rudik A , Giladi T , Porat Z , Regev-Rudzki N . Monitoring extracellular vesicle cargo active uptake by imaging flow cytometry. Front Immunol. 2018; 9: 1011.

[122]

>Woud Wouter W , van der Pol Edwin , Mul Erik , Hoogduijn Martin J , Baan Carla C , Boer Karin , Merino Ana . An imaging flow cytometry-based methodology for the analysis of single extracellular vesicles in unprocessed human plasma. Commun Biol. 2022; 5: 633.

[123]

George TC , Fanning SL , Fitzgeral-Bocarsly P , et al. Quantitative measurement of nuclear translocation events using similarity analysis of multispectral cellular images obtained in flow. J Immunol Methods. 2006; 311: 117- 129.

[124]

Ugawa M , Ota S . Recent technologies on 2D and 3D imaging flow cytometry. Cells. 2024; 13: 2073.

[125]

Beckmn coulter life sciences . www.beckman.com/resources/reading-material/application-notes/spectral-flow-cytometry-detailed-scientific-overview.[Accessed 29 March 2025].

[126]

Abudumijiti, Aibaidula Zack , Fain Cori E , et al. Spectral flow cytometry identifies distinct nonneoplastic plasma extracellular vesicle phenotype in glioblastoma patients. Neuro-Oncology Advances. 2023; 5 (1): 1- 12.

[127]

Lai James J , Hill John J , Huang Casey Y , et al. Unveiling the complex world of extracellular vesicles:novel characterization techniques and manufacturing considerations. Chonnam Med J. 2024; 60: 1- 12.

[128]

Kazuki Hattori ,a Yuki Goda ,a Minato Yamashita ,a Yusuke Yoshioka ,b Ryosuke Kojima ,c,d and Sadao Ota , Droplet array-based platform for parallel optical analysis of dynamic extracellular vesicle secretion from single cells, Analytical ChemistryVol 94/Issue 32.

[129]

Shen Hanfei , Atiyas Yasemin , Yang Zijian , et al. Issadore, Ultrasensitive quantification of PD-L1+ extracellular vesicles in melanoma patient plasma using a parallelized high throughput droplet digital assay. Lab Chip. 2024; 24: 3403.

[130]

Chungen Qian , Yujin Xiao , Jie Wang , Yiwei L , Shunji Li , Bo Wei , Wei Du , Xiaojun Feng , Peng Chen , Liu Bi-Feng , Rapid exosomes concentration and in situ detection of exosomal microRNA on agarose-based microfluidic chip, Sensor Actuator B Chem Volume 333, 15 April 2021, 129559.

[131]

Ste Aleksandra , Heinz Andrea , Dziomba Szymon . Characterization of extracellular vesicles by capillary zone electrophoresis:a novel concept for characterization of a next-generation drug delivery platform. J Pharm Anal. 2024; 14: 101004.

[132]

Hendrix A , Lippens L , Pinheiro C , et al. Extracellular vesicle analysis. Nat. Rev. Meth. Primers. 2023; 3: 56.

[133]

Gao Z , Hutchins Z , Li Z , et al. Offline coupling of asymmetrical flow field?flow fractionation and capillary electrophoresis for separation of extracellular vesicles. Anal Chem. 2022; 94: 14083e14091.

[134]

Tani Y , Kaneta T . Indirect capillary electrophoresis immunoassay of membrane protein in extracellular vesicles. J Chromatogr A. 2020; 1629: 461513.

[135]

Dou Y , Ren L , Kulabhusan P , et al. Quantitative capillary electrophoresis for analysis of extracellular vesicles (EVqCE). Separations. 2021; 8: 110.

[136]

Xie S , Zhang Q , Jiang L . Current knowledge on exosome biogenesis, cargo sorting mechanism and therapeutic implications. Membranes. 2022; 12 (5): 498..

[137]

Hyo . Recent advances in extracellular vesicles for therapeutic cargo deliveryKim, Park Jinbong, Zhu Yin, Wang Xiaoyun, Han Yohan, Zhang Duo, eds. Exp Mol Med. 2024; 56: 836- 849.

[138]

Mulcahy LA , Pink RC , Carter DR . Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014; 3: 24641..

[139]

Cecchin R , Troyer Z , Witwer K , Morris KV . Extracellular vesicles:the next generation in gene therapy delivery. Mol Ther. 2023; 31: 1225- 1230.

[140]

Bruno Benjamin J , Miller Geoffrey D , Lim Carol S . Basics and recent advances in peptide and protein drug delivery. Ther Deliv. 2013; 4 (11): 1443- 1467.

[141]

Leader B , Baca QJ , Golan DE . Protein therapeutics:a summary and pharmacological classification. Nat Rev Drug Discov. 2008; 7: 21- 39.

[142]

Mitchell MJ , et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021; 20: 101- 124.

[143]

Rima M , Rima M , Fajloun Z , Sabatier J-M , Bechinger B , Naas T . Antimicrobial peptides:a potent alternative to antibiotics. Antibiotics. 2021; 10: 1095.

[144]

Bee Ha Gan , Gaynord Josephine , Rowe Sam M , Deingruber Tomas , Spring David R . The multifaceted nature of antimicrobial peptides:current synthetic chemistry approaches and future directions. Chem Soc Rev. 2021; 50: 7820.

[145]

Sultana A , Luo H , Ramakrishna S . Antimicrobial peptides and their applications in biomedical sector. Antibiotics. 2021; 10: 1094.

[146]

Ivanova A , O'Driscoll G , Gordon E , Dekker N , Lázaro-Ibáñez E . Creating designer engineered extracellular vesicles for diverse ligand display, target recognition, and controlled protein loading and delivery. Adv Sci. 2023; 10: 2304389.

[147]

Ibrahim Usri H , Gafar Mohammed A , Khan Rene , Abdelrahman Tageldin , Thirumala Govender , Mackraj Irene . Engineered extracellular vesicles coated with an antimicrobial peptide for advanced control of bacterial sepsis. J of Extracellular Bio. 2024; 3: e70000.

[148]

Alharbi Mona , Lai Andrew , Godbole Nihar , et al. Enhancing precision targeting of ovarian cancer tumor cells in vivo through extracellular vesicle engineering. Int J Cancer. 2024; 155: 1510- 1523.

[149]

Wang Xu , Chen Yihuan , Md, Zhenao Zhao , Meng Qingyou , Yu You , Sun Jiacheng , Yang Ziying , Chen Yueqiu , Li Jingjing , Ma Teng , Liu Hanghang , Li Zhen , Yang Junjie , Shen Zhenya . Engineered exosomes with ischemic myocardiumtargeting peptide for targeted therapy in myocardial infarction. J Am Heart Assoc. 2018; 7: e008737.

[150]

Capriotti Lorena , Iuliano Marco , Lande Roberto , et al. Potential pathogenetic role of antimicrobial peptides carried by extracellular vesicles in an in vitro psoriatic model. J Inflamm Res. 2022; 15: 5387- 5399.

[151]

Busatto S , Iannotta D , Walker SA , Di Marzio L , Wolfram J . A simple and quick method for loading proteins in extracellular vesicles. Pharmaceuticals. 2021; 14: 356.

[152]

Huang Tianwei , Sato Yuya , Kuramochi Akiko , et al. Surface modulation of extracellular vesicles with cell-penetrating peptide-conjugated lipids for improvement of intracellular delivery to endothelial cells. Regenerative Therapy. 2023; 22: 90- 98.

[153]

Tin Chanh Pham , Kavishka Jayasinghe Migara , Pham Thach Tuan , Yang Yuqi . Covalent conjugation of extracellular vesicles with peptides and nanobodies for targeted therapeutic delivery. J Extracell Vesicles. 2021; 10: e12057.

[154]

Ovchinnikova LA , Terekhov SS , Ziganshin RH , et al. Reprogramming extracellular vesicles for protein therapeutics delivery. Pharmaceutics. 2021; 13: 768.

[155]

Shi Ao , Li Jialun , Qiu Xinyuan , et al. TGF-�� loaded exosome enhances ischemic wound healing in vitro and in vivo. Theranostics. 2021; 11 (13): 6616- 6631.

[156]

Bari Elia , Ferrarotti Ilaria , Di Silvestre Dario , et al. Adipose mesenchymal extracellular vesicles as alpha-1-antitrypsin physiological delivery systems for lung regeneration. Cells. 2019; 8: 965.

[157]

Gao Ke , Xi Wenjin , Ni Jianxin , et al. Genetically modified extracellular vesicles loaded with activated gasdermin-D potentially inhibit prostate-specific membrane antigen-positive prostate carcinoma growth and enhance immunotherapy. Biomaterials. 2025; 315: 122894.

[158]

Xiang X , Chen J , Jiang T , et al. Milk-derived exosomes carrying siRNA-KEAP1 promote diabetic wound healing by improving oxidative stress. Drug Delivery and Translational Research. 2023.

[159]

Kim GyeungYun , Lee Youngki , Ha Junkyu , Han Sangrok , Lee Minhyung . Engineering exosomes for pulmonary delivery of peptides and drugs to inflammatory lung cells by inhalation. J Contr Release. 2021Feb 10; 330: 684- 695.

[160]

Wang Jian-Jun , Wang Ze-You , Chen Rui , et al. Macrophage-secreted exosomes delivering miRNA-21 inhibitor can regulate BGC-823 cell proliferation. Asian Pac J Cancer Prev APJCP. 2015; 16.

[161]

He Cong , Ali Doulathunnisa Jaffar , Huantian X , et al. Epithelial cell -derived microvesicles:a safe delivery platform of CRISPR/Cas9 conferring synergistic antitumor effect with sorafenib. Exp Cell Res. 2020; 392 (2): 112040.

[162]

Kim Gyeungyun , Kim Minkyung , Lee Youngki , Byun Jung Woo , Hwang Do Won , Lee Minhyung . Systemic delivery of microRNA-21 antisense oligonucleotides to the brain using T7-peptide decorated exosomes. J Contr Release. 2020; 317: 273- 281.

[163]

Gaurav I , Thakur A , Zhang K , et al. Peptide-conjugated vascular endothelial extracellular vesicles encapsulating vinorelbine for lung cancer targeted therapeutics. Nanomaterials. 2024; 14: 1669.

[164]

Mizenko Rachel R , Feaver Madison , Bozkurt Batuhan T , et al. A critical systematic review of extracellular vesicle clinical trials. J Extracell Vesicles. 2024; 13: e12510.

[165]

Ghodasara A , Raza A , Wolfram J , Salomon C , Popat A . Clinical translation of extracellular vesicles. Adv Healthcare Mater. 2023; 12: 2301010.

[166]

Liu Kai . A Pilot Study of Human Adipose Tissue Derived Exosomes Promoting Wound Healing; 2022-2023[clinical trial, NCT05475418] clinicaltrials.gov/study/NCT05475418. Accessed April 28, 2025.

[167]

Schulman Carl . A Pilot safety study of mesenchymal stem cell derived extracellular vesicles for the treatment of burn wounds[clinical trials. NCT05078385]. 2023-2024. clinicaltrials.gov/study/NCT05078385.[Accessed 28 April 2025].

[168]

Carolina Nonaka . Feb 2, 2024-june 6, 2025 (estimated), extracellular vesicles from mesenchymal cells in the treatment of acute respiratory failure[clinical trials, NCT06002841]. clinicaltrials.gov/study/NCT06002841.[Accessed 28 April 2025].

[169]

Yao Dan . Janu 01, 2023-janu 01, 2025, A clinical study on safety and effectiveness of mesenchymal stem cell exosomes for the treatment of COVID-19[clinical trials, NCT05787288]. clinicaltrials.gov/study/NCT05787288.[Accessed 28 April 2025].

[170]

Junwei Hao . A Multi-Center, Open, Single-Arm, Basket-Design Clinical Trial to Evaluate the Safety and Efficacy of Human Umbilical Cord Mesenchymal Stem CellDerived Small Extracellular Vesicles HUC-MSC-sEV-001 Nasal Drops for the Treatment of Multiple Neurodegenerative Diseases[clinical Trial, NCT06607900]. 2024-2028. clinicaltrials.gov/study/NCT06607900.[Accessed 28 April 2025].

[171]

Jihui Du . Clinical study of the safety and efficacy of umbilical cord mesenchymal stem cell exosomes in treating chronic cough after COVID-19 infection[clinical trial, NCT05808400]. clinicaltrials.gov/study/NCT05808400 2023-2025. [Accessed 28 April 2025].

[172]

Stawarska A , Bamburowicz-Klimkowska M , Runden-Pran E , et al. Extracellular vesicles as next-generation diagnostics and advanced therapy medicinal products. Int J Mol Sci. 2024; 25: 6533.

[173]

Yao Chenlu , Zhang Hong , Wang Chao . Recent advances in therapeutic engineered extracellular vesicles. Nanoscale. 2024; 16: 7825.

[174]

Van Delen Mats , Derdelinckx Judith , Wouters Kristien , Nelissen Inge , Cools Nathalie . A systematic review and meta-analysis of clinical trials assessing safety and efficacy of human extracellular vesicle-based therapy. J Extracell Vesicles. 2024; 13: e12458.

RIGHTS & PERMISSIONS

The Authors. Publishing services by Elsevier B.V. on behalf of Higher Education Press and KeAi Communications Co. Ltd.

AI Summary AI Mindmap
PDF (6183KB)

206

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/