Artificial intelligence, computational tools and robotics for drug discovery, development, and delivery

Ayodele James Oyejide , Yemi Adekola Adekunle , Oluwatosin David Abodunrin , Ebenezer Oluwatosin Atoyebi

Intelligent Pharmacy ›› 2025, Vol. 3 ›› Issue (3) : 207 -224.

PDF (2083KB)
Intelligent Pharmacy ›› 2025, Vol. 3 ›› Issue (3) : 207 -224. DOI: 10.1016/j.ipha.2025.01.001
Review article

Artificial intelligence, computational tools and robotics for drug discovery, development, and delivery

Author information +
History +
PDF (2083KB)

Abstract

The integration of Artificial Intelligence (AI) and robotics into the pharmaceutical sector is rapidly transforming drug discovery, development, and delivery (D-DDD) processes. Traditional drug development is often characterized by lengthy timelines, high costs, and complex challenges associated with target identification, drug efficacy, and safety profiling. AI and robotics offer transformative solutions, bringing speed, precision, and scalability to various stages of D-DDD. In this review, we analyze cutting-edge advancements in AI-driven predictive modeling, machine learning algorithms for molecular screening, and data mining techniques that enable efficient drug target identification and toxicity prediction. We also explore robotics applications that enhance automation in high-throughput screening, compound synthesis, and patient-specific drug delivery systems. Through examining the applications, limitations, and future trends of these technologies, this review provides a comprehensive outlook on the potential of AI and robotics to streamline the drug pipeline and enable personalized therapeutic strategies. Our review reveals that the convergence of AI, robotics, and big data has potential to reshape pharmaceutical research, reduce costs, and pave the way for more accessible, effective therapies. This review thus serves as a critical resource for understanding the future trajectory of intelligent, technology-driven pharmacy and its implications for advancing healthcare.

Keywords

Robotics / Artificial intelligence / Intelligent pharmacy / Drug discovery and development / Machine learning

Cite this article

Download citation ▾
Ayodele James Oyejide, Yemi Adekola Adekunle, Oluwatosin David Abodunrin, Ebenezer Oluwatosin Atoyebi. Artificial intelligence, computational tools and robotics for drug discovery, development, and delivery. Intelligent Pharmacy, 2025, 3(3): 207-224 DOI:10.1016/j.ipha.2025.01.001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wouters Olivier J , McKee Martin , Luyten Jeroen . Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA. 2020; 323 (9): 844- 853.

[2]

Berida TI , Adekunle YA , Dada-Adegbola H , Kdimy A , Roy S , Sarker SD . Plant antibacterials: the challenges and opportunities. Heliyon. 2024; 10 (10): e31145.

[3]

Attene-Ramos MS , Austin CP , Xia M . High throughput screening. Encyclopedia of Toxicology. 2014; 2: 916- 917.

[4]

Visan AI , Negut I . Integrating artificial intelligence for drug discovery in the context of revolutionizing drug delivery. Life. 2024; 14: 233.

[5]

Senior AW , et al. Improved protein structure prediction using potentials from deep learning. Nature. 2020; 577: 706- 710.

[6]

Piatetsky-Shapiro G , Tamayo P . Microarray data mining: facing the challenges. SIGKDD Explorations. 2003; 5 (2).

[7]

Dara S , Dhamercherla S , Jadav SS , Babu CM , Ahsan MJ . Machine learning in drug discovery: a review. Artif Intell Rev. 2022; 55 (3): 1947.

[8]

Khandagale SS . Role of pharmaceutical automation and robotics in pharmaceutical industry. A Review. 2024; 15 (3).

[9]

Chen W , Liu X , Zhang S , Chen S . Artificial intelligence for drug discovery: resources, methods, and applications. Mol Ther Nucleic Acids. Feb. 2023; 31: 691- 702.

[10]

Hirohara M , Saito Y , Koda Y , Sato K , Sakakibara Y . Convolutional neural network based on SMILES representation of compounds for detecting chemical motif. BMC Bioinf. Dec. 2018; 19 (19): 526.

[11]

Stasevych M , Zvarych V . Innovative robotic technologies and artificial intelligence in pharmacy and medicine: paving the way for the future of health care-a review. Big Data and Cognitive Computing. Sep. 2023; 7 (3). Art. no. 3.

[12]

Pina AS , Hussain A , Roque ACA . An historical overview of drug discovery. LigandMacromolecular Interactions in Drug Discovery: Methods and Protocols, Methods in Molecular Biology. 2010; 572: 3- 12. ch. 1.

[13]

Cragg GM , Newman DJ . Natural product drug discovery in the next millennium. Pharm Biol. 2001; 39: 8- 17.

[14]

Ng R . History of drug discovery and development. In: Drugs: From Discovery to Approval. Second. John Wiley & Sons, Inc.; 2009: 391- 397.

[15]

Metwaly AM , et al. Traditional ancient Egyptian medicine: a review. Saudi J Biol Sci. 2021; 28 (10): 5823- 5832.

[16]

Sen S , Chakraborty R . Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: importance, challenges and future. J Tradit Complement Med. 2017; 7 (2): 234- 244.

[17]

Toledo-Pereyra LH . Medical renaissance. J Invest Surg. 2015; 28 (3): 127- 130.

[18]

Cannell RJP . Natural products isolation. In: Cannell RJP, ed. Methods in Biotechnology. Totowa, New Jersey: Humana Press Inc; 1998: 1- 473.

[19]

Sarker SD , Nahar L . An introduction to natural products isolation. Methods Mol Biol. 2012; 864: 1- 25.

[20]

Nicolaou KC . Advancing the drug discovery and development process. Angew Chem. 2014; 126: 9280- 9292.

[21]

Paul SM , et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov. 2010; 9: 203- 214.

[22]

Thomsen R , Christensen MH . MolDock: a new technique for high-accuracy molecular docking. J Med Chem. 2006; 49: 3315- 3321.

[23]

Sinha S , Vohora D . Drug discovery and development: an overview. In: Pharmaceutical Medicine and Translational Clinical Research. Elsevier Inc.; 2018: 19- 32. ch. 2.

[24]

Berida TI , Adekunle YA , Dada-Adegbola H , Kdimy A , Roy S , Sarker SD . Plant antibacterials: the challenges and opportunities. Heliyon. 2024; 10 (10): e31145.

[25]

Ban TA . The role of serendipity in drug discovery. Dialogues Clin Neurosci. 2006; 8 (3): 335- 344.

[26]

Goldstein I , Burnett AL , Rosen RC , Park PW , Stecher VJ . The serendipitous story of sildenafil: an unexpected oral therapy for erectile dysfunction. Sex Med Rev. 2019; 7 (1): 115- 128.

[27]

Newman DJ , Cragg GM . Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020; 83 (3): 770- 803.

[28]

Attene-Ramos MS , Austin CP , Xia M . High throughput screening. Encyclopedia of Toxicology. 2014; 2: 916- 917.

[29]

Brito JA , Archer M . Structural biology techniques: X-ray crystallography, cryoelectron microscopy, and small-angle X-ray scattering. In: Practical Approaches to Biological Inorganic Chemistry. Elsevier B.V; 2020: 375- 416. ch. 10.

[30]

Terstappen GC , Reggiani A . In silico research in drug discovery. Trends Pharmacol Sci. 2001; 22 (1): 23- 26.

[31]

Tewabe A , Abate A , Tamrie M , Seyfu A , Abdela Siraj E . Targeted drug delivery - from magic bullet to nanomedicine: principles, challenges, and future perspectives. J Multidiscip Healthc. 2021; 14: 1711- 1724.

[32]

Gao J , Karp JM , Langer R , Joshi N . The future of drug delivery. Chem Mater. 2023; 35: 359- 363.

[33]

Benoit DSW , Overby CT , Sims Jr KR , Ackun-Farmmer MA . Drug delivery systems. In: Wagner WR, Zhang G, Sakiyama-Elbert SE, Yaszemski MJ, eds. Biomaterials Science: An Introduction to Materials in Medicine. 4th ed. Elsevier Inc; Chem Mater. 2020: 1237- 1264. ch. 2.5.12.

[34]

Pillai O , Dhanikula AB , Panchagnula R . Drug delivery: an odyssey of 100 years. Curr Opin Chem Biol. 2001; 5: 439- 446.

[35]

Park K . The controlled drug delivery systems: past forward and future back. J Contr Release. 2014; 190: 3- 8.

[36]

Stein SW , Thiel CG . The history of therapeutic aerosols: a chronological review. J Aerosol Med Pulm Drug Deliv. 2016; 29 (0): 1- 22.

[37]

Park H , Otte A , Park K . Evolution of drug delivery systems: from 1950 to 2020 and beyond. J Contr Release. 2022; 342: 53- 65.

[38]

Heilmann K . Innovations in drug delivery systems. Curr Med Res Opin. 1983; 8: 3- 9.

[39]

Tibbitt MW , Dahlman JE , Langer R . Emerging frontiers in drug delivery. J Am Chem Soc. 2015: A- N.

[40]

Li C , et al. Recent progress in drug delivery. Acta Pharm Sin B. 2019; 9 (6): 1145- 1162.

[41]

Bácskay I , Ujhelyi Z , Fehér P , Arany P . The evolution of the 3D-printed drug delivery systems: a review. Pharmaceutics. 2022; 14: 1312.

[42]

Trenfield SJ , et al. Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opin Drug Deliv. 2019: 1- 14.

[43]

Visan AI , Negut I . Integrating artificial intelligence for drug discovery in the context of revolutionizing drug delivery. Life. 2024; 14: 233.

[44]

Kaul V , Enslin S , Gross SA . History of artificial intelligence in medicine. Gastrointest Endosc. 2020; 92 (4): 807- 812.

[45]

Gholap AD , Uddin MJ , Faiyazuddin M , Omri A , Gowri S , Khalid M . Advances in artificial intelligence for drug delivery and development: a comprehensive review. Comput Biol Med. 2024; 178: 108702.

[46]

Senior AW , et al. Improved protein structure prediction using potentials from deep learning. Nature. 2020; 577: 706- 710.

[47]

Paul D , Sanap G , Shenoy S , Kalyane D , Kalia K , Tekade RK . Artificial intelligence in drug discovery and development. Drug Discov Today. 2021; 26 (1): 80- 93.

[48]

Berdigaliyev N , Aljofan M . An overview of drug discovery and development. Future Med Chem. 2020; 12 (10): 939- 947.

[49]

Nene L , Flepisi BT , Brand SJ , Basson C , Balmith M . Evolution of drug development and regulatory affairs: the demonstrated power of artificial intelligence. Clin Therapeut. 2024; 46: e6- e14.

[50]

Luo M , Feng Y , Wang T , Guan J . Micro-/Nanorobots at work in active drug delivery. Adv Funct Mater. 2018: 1706100.

[51]

Freitas RA . Pharmacytes: an ideal vehicle for targeted drug delivery. J Nanosci Nanotechnol. 2006; 6: 2769- 2775.

[52]

Taylor D . Pharmaceuticals in the environment. In: Hester RE, Harrison RM, eds. The Pharmaceutical Industry and the Future of Drug Development. vol. 2015. The Royal Society of Chemistry; 2015: 1- 33.

[53]

Atoyebi EO , Oyejide AJ , Dele-Afolabi TT , Azmah Hanim MA , Ojo-Kupoluyi OJ . Scaffold modeling advancement in biomaterials application. Reference Module in Materials Science and Materials Engineering. Elsevier; 2023, 9780128035818.

[54]

Mock M , Edavettal S , Langmead C , Russell A . AI can help to speed up drug discovery-but only if we give it the right data. Nature. 2023; 621: 467- 470.

[55]

Savage N . Tapping into the drug discovery potential of AI. Nature. 2021.

[56]

Oyejide AJ , Akinlabi A , Atoyebi EO , Falola PB , Awonusi AA , Awolabi F . Covid-19 crisis era; engineering interventions in sub-saharan africa. Nigerian Journal of Technology. 2023; 42 (3): 389- 398.

[57]

Kokh DB , Kaufmann T , Kister B , Wade RC . Machine learning analysis of τRAMD trajectories to decipher molecular determinants of drug-target residence times. Front Mol Biosci. 2019; 6: 36.

[58]

Kokh D , Amaral M , Bomke J , et al. Estimation of drug-target residence times by τ-random acceleration molecular dynamics simulations. J. Chem. Theory Comput. 2018; 14: 3859- 3869.

[59]

Wouters OJ , McKee M , Luyten J . Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA. Mar. 2020; 323 (9): 844- 853.

[60]

Kokh DB . TauRAMD. Available online at: www.hits.org/downloads/ramd/; 2018.

[61]

Liu B , Zhang W , Guo S , Zuo Z . Discovery of novel modulators targeting human TRPC5: docking-based virtual screening, molecular dynamics simulation and binding affinity predication. J Mol Graph Model. 2021; 102 (2021).

[62]

Al-Fahad D , Ropón-Palacios G , Omoboyowa DA , et al. Virtual screening and molecular dynamics simulation of natural compounds as potential inhibitors of serine/threonine kinase 16 for anticancer drug discovery. Mol Divers. 2024.

[63]

Kontoyianni M . Docking and virtual screening in drug discovery. In: Lazar I, Kontoyianni M, Lazar A, eds. Proteomics for Drug Discovery. New York, NY: Humana Press; 2017: . Methods in Molecular Biology; vol. 1647.

[64]

Bhunia SS , Saxena M , Saxena AK . Ligand- and structure-based virtual screening in drug discovery. In: Saxena AK, ed. Biophysical and Computational Tools in Drug Discovery. Cham: Springer; 2021: . Topics in Medicinal Chemistry; vol. 37.

[65]

Shamsi A , Khan MS , Yadav DK , et al. Structure-based drug-development study against fibroblast growth factor receptor 2: molecular docking and Molecular dynamics simulation approaches. Sci Rep. 2024; 14: 19439.

[66]

Salo-Ahen OMH , Alanko I , Bhadane R , et al. Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes. 2021; 9 (71).

[67]

Ganguly A , Tsai H , Fernández-Pendás M , Lee T , Giese TJ , York DM . AMBER drug discovery boost tools: automated workflow for production free-energy simulation setup and analysis (ProFESSA). J Chem Inf Model. 2022; 62 (23): 6069- 6083.

[68]

Grosdidier A , Zoete V , Michielin O . Fast docking using the CHARMM force field with EADock DSS. J Comput Chem. 2011; 32 (10): 2149- 2159.

[69]

Subramanian J , Sharma S , B-Rao C . Modeling and selection of flexible proteins for structure-based drug design: backbone and side chain movements in p38 MAPK. ChemMedChem. 2008; 3 (2): 336- 344.

[70]

Godwin RC , Melvin R , Salsbury FR . Molecular dynamics simulations and computeraided drug discovery. In: Zhang W, ed. Computer-Aided Drug Discovery. Methods in Pharmacology and Toxicology. New York, NY: Humana Press; 2015.

[71]

Aci-Sèche S , Ziada S , Braka A , Arora R , Bonnet P . Advanced molecular dynamics simulation methods for kinase drug discovery. Future Med Chem. 2016; 8 (5): 545- 566.

[72]

Su B , Shen M , Esposito EX , Hopfinger AJ , Tseng YJ . In silico binary classification QSAR models based on 4D-fingerprints and MOE descriptors for prediction of hERG blockage. J Chem Inf Model. 2010; 50 (7): 1304- 1318.

[73]

Kapetanovic IM . Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem Biol Interact. 2008; 171 (2): 165- 176.

[74]

Fang J , Yang R , Gao L , et al. Predictions of BuChE inhibitors using support vector machine and naive bayesian classification techniques in drug discovery. J Chem Inf Model. 2013; 53 (11): 3009- 3020.

[75]

Chaudhari R , Li Z . PyMine: a PyMOL plugin to integrate and visualize data for drug discovery. BMC Res Notes. 2015; 8: 517.

[76]

González ÀL , Konieczny P , Llamusi B , et al. In silico discovery of substituted pyrido [2,3-d]pyrimidines and pentamidine-like compounds with biological activity in myotonic dystrophy models. PLoS One. 2017; 12 (6): e0178931.

[77]

Irwin JJ , Gaskins G , Sterling T , Mysinger MM , Keiser MJ . Predicted biological activity of purchasable chemical space. J Chem Inf Model. 2018; 58 (1): 148- 164.

[78]

Scotti MS , Herrera-Acevedo C , Barros de Menezes RP , Martin H , et al. MolPredictX: online biological activity predictions by machine learning models. Molecular Informatics. 2022; 41 (12).

[79]

Vuorinen A , Engeli R , Meyer A , et al. Ligand-based pharmacophore modeling and virtual screening for the discovery of novel 17β-hydroxysteroid dehydrogenase 2 inhibitors. J Med Chem. 2014; 57 (14): 5995- 6007.

[80]

Kaserer T , Höferl M , Müller K , et al. In silico predictions of drug-drug interactions caused by CYP1A2, 2C9 and 3A4 inhibition-a comparative study of virtual screening performance. Molecular Informatics. 2015; 34 (6-7): 431- 457.

[81]

Lu SH , Wu JW , Liu HL , et al. The discovery of potential acetylcholinesterase inhibitors: a combination of pharmacophore modeling, virtual screening, and molecular docking studies. J Biomed Sci. 2011; 18: 8.

[82]

Darshit BS , Balaji B , Rani P , Ramanathan M . Identification and in vitro evaluation of new leads as selective and competitive glycogen synthase kinase-3β inhibitors through ligand and structure based drug design. J Mol Graph Model. 2014; 53: 31- 47.

[83]

Jain PP , Degani MS , Raju A , Ray M , Rajan MGR . Rational drug design based synthesis of novel arylquinolines as anti-tuberculosis agents. Bioorg Med Chem Lett. 2013; 23 (22): 6097- 6105.

[84]

Iwaloye O , Ottu PO , Olawale F , Babalola OO , Elekofehinti OO , et al. Computeraided drug design in anti-cancer drug discovery: what have we learnt and what is the way forward? Inform Med Unlocked. 2023; 41: 101332.

[85]

Mandal S , Moudgil M , Mandal SK . Rational drug design. Eur J Pharmacol. 2009; 625 (1-3): 90- 100.

[86]

See KL , Rozana O , Rohana Y , Choon HH . Rational drug discovery of HCV helicase inhibitor: improved docking accuracy with multiple seeding in AutoDock vina and in situ minimization. Curr Comput Aided Drug Des. 2017; 13 (2): 160- 169.

[87]

Rifaioglu AS , Nalbat E , Atalay V , Martin MJ , Cetin-Atalay R , Doǧan T . DEEPScreen: high performance drug-target interaction prediction with convolutional neural networks using 2-D structural compound representations. Chem Sci. 2020; 11: 2531- 2557.

[88]

Yin Q , Fan R , Cao X , Liu Q , Jiang R , Zeng W . DeepDrug: a general graph-based deep learning framework for drug-drug interactions and drug-target interactions prediction. Quantitative Biology. 2023; 11 (3): 260- 274.

[89]

Yang Y , Zhou D , Zhang X , et al. D3AI-CoV: a deep learning platform for predicting drug targets and for virtual screening against COVID-19. Briefings Bioinf. 2022; 23 (3): bbac147.

[90]

Kant R , Tilford H , Freitas CS , et al. Antimicrobial activity of compounds identified by artificial intelligence discovery engine targeting enzymes involved in Neisseria gonorrhoeae peptidoglycan metabolism. Biol Res. 2024; 57: 62.

[91]

Dalkıran A , Atakan A , Rifaioǧlu AS , et al. Transfer learning for drug -target interaction prediction. Bioinformatics. 2023; 39 (1): i103- i110.

[92]

Dalkıran A , et al. Drug-Target Interaction Prediction by Transfer Learning for Proteins with Few Bioactive Compund Data. Middle East Technical University; 2024. Ph.D. - Doctoral Program.

[93]

Gally J , Bourg S , Do Q , Aci-Sèche S , Bonnet P . VSPrep: a general knime workflow for the preparation of molecules for virtual screening. Molecular Informatics. 2017; 36 (10).

[94]

Strobelt H , Bertini E , Braun J , et al. HiTSEE KNIME: a visualization tool for hit selection and analysis in high-throughput screening experiments for the KNIME platform. BMC Bioinf. 2012; 13 (Suppl 8): S4.

[95]

Abdulla M-H , Ruelas DS , Wolff B , et al. Drug discovery for schistosomiasis: hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening. PLoS Negl Trop Dis. 2009; 3 (7): e478.

[96]

McInnes C . Virtual screening strategies in drug discovery. Curr Opin Chem Biol. 2007; 11 (5): 494- 502.

[97]

ringhaus K , Hessler G , Matter H , Schmidt F . Development and applications of global admet models. In: Bajorath Jürgen, ed. Silico Prediction of Human Microsomal Lability. Chemoinformatics for Drug Discovery. 2013: 245- 265[Chapter 11].

[98]

Miteva MA , Villoutreix BO . Computational biology and chemistry in MTi: emphasis on the prediction of some ADMET properties. Molecular Informatics. 2017; 36 (10):.

[99]

Norinder U , Bergström CAS . Prediction of ADMET properties. ChemMedChem. 2006; 1 (9): 920- 937.

[100]

Czodrowski P , Kriegl JM , Scheuerer S , Fox T . Computational approaches to predict drug metabolism. Expet Opin Drug Metabol Toxicol. 2009; 5 (1): 15- 27.

[101]

Bangs AL , Paterson TS . Finding value in in silico biology. Biosilico. 2003; 1 (1): 18- 22.

[102]

Yi J , Shi S , Fu L , et al. OptADMET: a web-based tool for substructure modifications to improve ADMET properties of lead compounds. Nat Protoc. 2024; 19: 1105- 1121.

[103]

Yi J , Shi S , Fu L , et al. OptADMET. cadd.nscc-tj.cn/deploy/optadmet/; 2024.

[104]

Mervin L , Voronov A , Kabeshov M , Engkvist O . QSARtuna: an automated QSAR modeling platform for molecular property prediction in drug design. J Chem Inf Model. 2024; 64 (14): 5365- 5374.

[105]

Yang K , Swanson K , Jin W , Coley C , et al. Analyzing learned molecular representations for property prediction. J Chem Inf Model. 2019; 59 (8): 3370- 3388.

[106]

Galushka M , Swain C , Browne F , et al. Prediction of chemical compounds properties using a deep learning model. Neural Comput & Applic. 2021; 33: 13345- 13366.

[107]

González-Medina M , Naveja JJ , Sánchez-Cruz N , Medina-Franco JL . Open chemoinformatic resources to explore the structure, properties and chemical space of molecules. RSC Adv. 2017; 7: 54153- 54163.

[108]

Geldenhuys WJ , Gaasch KE , Watson M , Allen DD , Van der Schyf CJ . Optimizing the use of open-source software applications in drug discovery. Drug Discov Today. 2006; 11 (3-4): 127- 132.

[109]

O'Boyle NM , Banck M , James CA , et al. Open Babel: an open chemical toolbox. J Cheminf. 2011; 3: 33.

[110]

Parvathaneni V , Kulkarni NS , Muth A , Gupta V . Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov Today. 2019; 24 (10): 2076- 2085.

[111]

Ru J , Li P , Wang J , et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminf. 2014; 6: 13.

[112]

Redka DS , MacKinnon SS , Landon M , et al. A deep learning-based resource, quickly identifies repurposed drug candidates for COVID-19. ChemRxiv. 2020: 2020.

[113]

Zdrazil B , Felix E , Hunter F , et al. The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods. Nucleic Acids Res. 2024; 52 (D1): D1180- D1192.

[114]

Choi J , Lee J V-Dock . Fast generation of novel drug-like molecules using machinelearning-based docking score and molecular optimization. Int J Mol Sci. 2021; 22: 11635.

[115]

Liu S , Wu Y , Lin T , et al. Lead optimization mapper: automating free energy calculations for lead optimization. J Comput Aided Mol Des. 2013; 27: 755- 770.

[116]

Durrant JD , McCammon JA . Potential drug-like inhibitors of Group 1 influenza neuraminidase identified through computer-aided drug design. Comput Biol Chem. 2010; 34 (2): 97- 105.

[117]

Böhm HJ . On the use of LUDI to search the Fine Chemicals Directory for ligands of proteins of known three-dimensional structure. J Computer-Aided Mol Des. 1994; 8: 623- 632.

[118]

Hartenfeller M , Schneider G . Enabling future drug discovery by de novo design. WIREs Computational Molecular Science. 2011; 1 (5): 742- 759.

[119]

Yuan Y , Pei J , Lai L . LigBuilder 2: A Practical de Novo Drug Design Approach. J Chem Inf Model. 2011; 51 (5): 1083- 1091.

[120]

Yuan Y , Pei J , Lai L . LigBuilder V3: A Multi-Target de novo Drug Design Approach. Front Chem. 2020; 8: 142.

[121]

Spiegel JO , Durrant JD . AutoGrow4: an open-source genetic algorithm for de novo drug design and lead optimization. J Cheminf. 2020; 12: 25.

[122]

Wang X , Zhang A , Han Y , Wang P , Sun H , Song G . Urine metabolomics analysis for biomarker discovery and detection of jaundice syndrome in patients with liver disease. Mol Cell Proteomics. 2012; 11 (8): 370- 380.

[123]

Funk RS , Singh RK , Becker ML . Metabolomic profiling to identify molecular biomarkers of cellular response to methotrexate in vitro. Clinical and Translational Science. 2019; 13 (1): 137- 146.

[124]

Zhang A , Sun H , Wang X . Mass spectrometry-driven drug discovery for development of herbal medicine. Mass Spectrom Rev. 2016; 37 (3): 307- 320.

[125]

Wilcoxen KM , Uehara T , Myint KT , Sato Y , Oda Y . Practical metabolomics in drug discovery. Expet Opin Drug Discov. 2010; 5 (3): 249- 263.

[126]

Aithal A , Aithal S , Aithal PS . Case study on certara's simcyp PBPK simulator to eliminate lengthy clinical trials. International Journal of Health Sciences and Pharmacy (IJHSP). 2022; 6 (2): 69- 109.

[127]

Kuentz M , Nick S , Parrott N , Röthlisberger D . A strategy for preclinical formulation development using GastroPlusTM as pharmacokinetic simulation tool and a statistical screening design applied to a dog study. Eur J Pharmaceut Sci. 2006; 27 (1): 91- 99.

[128]

Daga PR , BolgerIan MB , Haworth S , Clark RD , Martin EJ . Physiologically based pharmacokinetic modeling in lead optimization. 1. Evaluation and adaptation of GastroPlus to predict bioavailability of medchem series. Mol. Pharmaceutics. 2018; 15 (3): 821- 830.

[129]

Chien JY , Friedrich S , Heathman MA , et al. Pharmacokinetics/pharmacodynamics and the stages of drug development: role of modeling and simulation. AAPS J. 2005; 7: 55.

[130]

Jamei M , Marciniak S , Feng K , Barnett A , Tucker G , Rostami-Hodjegan A . The Simcyp population-based ADME simulator. Expet Opin Drug Metabol Toxicol. 2009; 5 (2): 211- 223.

[131]

Shaffer CL , Scialis RJ , Rong H , Obach RS . Using Simcyp to project human oral pharmacokinetic variability in early drug research to mitigate mechanism-based adverse events. Biopharm Drug Dispos. 2011; 33 (2): 72- 84.

[132]

Bachmann F , Koch G , Bauer RJ , et al. Computing optimal drug dosing with OptiDose: implementation in NONMEM. J Pharmacokinet Pharmacodyn. 2023; 50: 173- 188.

[133]

Pierre T , Philippe D . Flexibility and binding affinity in protein-ligand, protein-protein and multi-component protein interactions: limitations of current computational approaches. J R Soc Interface. 2012: 920- 933.

[134]

Meng EC , Goddard TD , Pettersen EF , et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 2023; 32 (11): e4792.

[135]

Kumari M . Computational approaches streamlining molecular modelling and drug designing. Research Spectra. 2023; 4 (2): 76- 125.

[136]

Buhlheller C , Sagmeister T , Grininger C , et al. SymProFold: structural prediction of symmetrical biological assemblies. Nat Commun. 2024; 15: 8152.

[137]

Natesh R . Single-particle cryo-EM as a pipeline for obtaining atomic resolution structures of druggable targets in preclinical structure-based drug design. In: Mohan C, ed. Structural Bioinformatics: Applications in Preclinical Drug Discovery Process. Cham: Springer; 2019: . Challenges and Advances in Computational Chemistry and Physics; vol. 27.

[138]

Cushing VI , Koh AF , Feng J , et al. High-resolution cryo-EM of the human CDKactivating kinase for structure-based drug design. Nat Commun. 2024; 15: 2265.

[139]

Kimanius D , Forsberg BO , Scheres SHW , Lindahl E . Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2 eLife 5: e18722. 2016.

[140]

Zivanov J , Nakane T , Forsberg BO , et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife. 2018; 7: e42166.

[141]

Ravindranath PA , Forli S , Goodsell DS , Olson AJ , Sanner MF . AutoDockFR: advances in protein-ligand docking with explicitly specified binding site flexibility. PLoS Comput Biol. 2015; 11 (12): e1004586.

[142]

Laurie R , Alasdair T , Jackson RM . Methods for the prediction of protein-ligand binding sites for structure-based drug design and virtual ligand screening. Curr Protein Pept Sci. 2006; 7 (5): 395- 406.

[143]

Kim R , Skolnick J . Assessment of programs for ligand binding affinity prediction. J Comput Chem. 2008; 29 (8): 1316- 1331.

[144]

Meiler J , Baker D . ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility. Proteins: Struct, Funct, Bioinf. 2006; 65 (3): 538- 548.

[145]

Davis IW , Baker D . RosettaLigand docking with full ligand and receptor flexibility. J Mol Biol. 2009; 385 (2): 381- 392.

[146]

Agamah FE , Mazandu GK , Hassan R , et al. Computational/in silico methods in drug target and lead prediction. Briefings Bioinf. 2020; 21 (5): 1663- 1675.

[147]

Surekha K , Nachiappan M , Prabhu D , Choubey SK , Biswal J , Jeyakanthan J . Identification of potential inhibitors for oncogenic target of dihydroorotate dehydrogenase using in silico approaches. J Mol Struct. 2017; 1127 (2017): 675- 688.

[148]

Gurusamy M , Abdul JF . Lead optimization studies towards finding NS2B/NS3 protease target-specific inhibitors as potential anti-dengue drug-like compounds. Curr Drug Discov Technol. 2019; 16 (3): 307- 314.

[149]

Kaur D , Mathew S , Nair CGS , et al. Structure based drug discovery for designing leads for the non-toxic metabolic targets in multi-drug resistant Mycobacterium tuberculosis. J Transl Med. 2017; 15: 261.

[150]

Juárez-Saldivar A , Schroeder M , Salentin S , et al. Computational drug repositioning for chagas disease using protein-ligand interaction profiling. Int J Mol Sci. 2020; 21 (4270)..

[151]

Salentin S , Adasme MF , Heinrich JC , et al. From malaria to cancer: computational drug repositioning of amodiaquine using PLIP interaction patterns. Sci Rep. 2017; 7: 11401.

[152]

Crouzet SJ , Lieberherr AM , Atz K , et al. G-PLIP: knowledge graph neural network for structure-free protein-ligand bioactivity prediction. Comput Struct Biotechnol J. 2024; 23: 2872- 2882.

[153]

Kell SR , Wang Z , Ji H . Fragment hopping protocol for the design of small-molecule protein-protein interaction inhibitors. Bioorg Med Chem. 2022: 69.

[154]

Bryan DR , Kulp JrJL , Mahapatra MK , et al. BMaps: a web application for fragmentbased drug design and compound binding evaluation. J Chem Inf Model. 2023; 63 (14): 4229- 4236.

[155]

Chopra A . Discovery of ligands binding to HIV-1 reverse transcriptase and capsid protein using X-ray crystallography, fragment screening, and covalent small molecule screening. PhD Dissertation www.proquest.com/openview/b56a8fe2c 26c8fe16f5a4528ea76ba24/1?pq-origsite=gscholar&cbl=1875 0&diss=y; 2021.

[156]

Zara L , Efrém N , van Muijlwijk-Koezen JE , de Esch IJP , Zarzycka B . Progress in free energy perturbation: options for evolving fragments. Drug Discov Today Technol. 2021; 40: 36- 42.

[157]

Day JEH , Berdini V , Castro J , et al. Fragment-based discovery of allosteric inhibitors of SH2 domain-containing protein tyrosine phosphatase-2 (SHP2). J Med Chem. 2024; 67 (6): 4655- 4675.

[158]

Shah I , Bundy J , Chambers B , et al. Navigating transcriptomic connectivity mapping workflows to link chemicals with bioactivities. Chem Res Toxicol. 2022; 35 (11): 1929- 1949.

[159]

Shin HK , Florean O , Hardy B , Tatyana Doktorova T , Kang M . Semi-automated approach for generation of biological networks on drug-induced cholestasis, steatosis, hepatitis, and cirrhosis. Toxicol Res. 2022; 38: 393- 407.

[160]

Silva MH , Kwok A . Open access ToxCast/tox21, toxicological priority index (ToxPi) and integrated chemical environment (ice) models rank and predict acute pesticide toxicity: a case study. International Journal of Toxicology and Environmental Health. 2020; 5 (1): 126- 149.

[161]

Jeong J , Kim D , Choi J . Application of ToxCast/Tox21 data for toxicity mechanismbased evaluation and prioritization of environmental chemicals: perspective and limitations. Toxicol Vitro. 2022; 84 (2022): 105451.

[162]

Zabolotna Y , Bonachera F , Horvath D , et al. Chemspace atlas: multiscale chemography of ultralarge libraries for drug discovery. J Chem Inf Model. 2022; 62 (18): 4537- 4548.

[163]

Medina-Franco JL , Martinez-Mayorga K , Giulianotti MA , Houghten RA , Pinilla C . Curr Comput Aided Drug Des. 2008; 4 (4): 322- 333.

[164]

Larsson J , Gottfries J , Muresan S , Backlund A . ChemGPS-NP: tuned for navigation in biologically relevant chemical space. J. Nat. Prod. 2007; 70 (5): 789- 794.

[165]

Rosén J . ChemGPS-NP and the exploration of biologically relevant chemical space. PhD dissertation, Acta Universitatis Upsaliensis); 2009. urn.kb.se/resolve?urn&equals ;urn: nbn: se: uu: diva-89364.

[166]

Saldívar-González FI , Medina-Franco JL . Approaches for enhancing the analysis of chemical space for drug discovery. Expet Opin Drug Discov. 2022; 17 (7): 789- 798.

[167]

Eddy DM , Schlessinger L , Kahn R . Clinical outcomes and cost-effectiveness of strategies for managing people at high risk for diabetes. Annals of internal medicine. 2005; 143 (4): 251- 264.

[168]

Michelson S , Sehgal A , Friedrich C . In silico prediction of clinical efficacy. Curr Opin Biotechnol. 2006; 17 (6): 666- 670.

[169]

Eddy DM , Schlessinger L . Validation of the archimedes diabetes model. Diabetes Care. 2003; 26 (11): 3102- 3110.

[170]

Fousteri G , Chan JR , Zheng Y , et al. Virtual optimization of nasal insulin therapy predicts immunization frequency to Be crucial for diabetes protection. Diabetes. 2010; 59 (12): 3148- 3158.

[171]

van der Graaf P , Kierzek A . Optimize immuno-oncology drug discovery and development using quantitative systems pharmacology. www.certara.com/app/upl oads/2020/06/WP_Immuno-Oncology-1.pdf; 2020.

[172]

Marier JF , Johnson TN , Minton S . Learning from failure, leveraging biosimulation for pediatric drug development success. Appl Clin Trials. 2016: 25(4). www.appli edclinicaltrialsonline.com/view/learning-failure-leveraging-biosimulation-pediatri c-drug-development-success.

[173]

Arslan E , Haslak ZP , Monard G , Dogan L , Aviyente V . Quantum mechanical prediction of dissociation constants for thiazol-2-imine derivatives. J Chem Inf Model. 2023; 63 (10): 2992- 3004.

[174]

Barbault F , Maurel F . Simulation with quantum mechanics/molecular mechanics for drug discovery. Expet Opin Drug Discov. 2015; 10 (10): 1047- 1057.

[175]

Rodridues SB , Aquino de Araujo RS , Dantas de Mendonca TR , MendoncaJunior FJB , Zhan P , Ferreira da Silva-Junior E . Quantum chemistry in drug design: density function theory (DFT) and other quantum mechanics (QM)-related approaches. Appliead Computaer Aided Drug Design: Models and Methods. 2023; 2023: 258- 309.

[176]

Dalal M , Dubey A , Antil N , Tufail A , Garg S . Synthesis, structural investigation of Schiff base endowed organyltellurium(IV) complexes: biological activities, molecular docking, quantum chemical computations and ADMET prediction. Res Chem Intermed. 2023; 49: 2889- 2917.

[177]

Dmitriev AV , Lagunin AA , Karasev DA , et al. Prediction of drug-drug interactions related to inhibition or induction of drug-metabolizing enzymes. Curr Top Med Chem. 2019; 19 (5): 319- 336.

[178]

Stjernschantz E , Vermeulen NP , Oostenbrink C . Computational prediction of drug binding and rationalisation of selectivity towards cytochromes P450. Expet Opin Drug Metabol Toxicol. 2008; 4 (5): 513- 527.

[179]

Klon AE . Machine learning algorithms for the prediction of hERG and CYP450 binding in drug development. Expet Opin Drug Metabol Toxicol. 2010; 6 (7): 821- 833.

[180]

Ford KA , Ryslik G , Sodhi J , et al. Computational predictions of the site of metabolism of cytochrome P450 2D6 substrates: comparative analysis, molecular docking, bioactivation and toxicological implications. Drug Metabol Rev. 2015; 47 (3): 291- 319.

[181]

Pavan M , Menin S , Bassani D , Sturlese M , Moro S . Implementing a scoring function based on interaction fingerprint for Autogrow4: protein kinase CK1δ as a case study. Front Mol Biosci. 2022: 9.

[182]

Mitra P , Shultis D , Zhang Y . EvoDesign: de novo protein design based on structural and evolutionary profiles. Nucleic acids research. 2013; 41 (Web Server issue): W273- W280.

[183]

EvoDesign . Result of EvoDesign for MopII molbindin from Clostridium pasteurianum. seq2fun.dcmb.med.umich.edu/EvoDesign/example/index.php; 2024.

[184]

Kawai K , Nagata N , Takahashi Y . De novo design of drug-like molecules by a fragment-based molecular evolutionary approach. J Chem Inf Model. 2014; 54 (1): 49- 56.

[185]

Durrant JD , Lindert S , McCammon JA . AutoGrow 3.0: an improved algorithm for chemically tractable, semi-automated protein inhibitor design. J Mol Graph Model. 2013; 44: 104- 112.

[186]

Patel L , Shukla T , Huang X , Ussery DW , Wang S . Machine learning methods in drug discovery. Molecules. 2020; 25 (22).

[187]

Dara S , Dhamercherla S , Jadav SS , Babu CM , Ahsan MJ . Machine learning in drug discovery: a review. Artif Intell Rev. 2022; 55 (3): 1947.

[188]

Carracedo-Reboredo P , et al. A review on machine learning approaches and trends in drug discovery. Comput Struct Biotechnol J. Jan. 2021; 19: 4538- 4558.

[189]

Katsila T , Spyroulias GA , Patrinos GP , Matsoukas MT . Computational approaches in target identification and drug discovery. Comput Struct Biotechnol J. 2016; 14: 177- 184.

[190]

Zhao T , Hu Y , Valsdottir LR , Zang T , Peng J . Identifying drug-target interactions based on graph convolutional network and deep neural network. Briefings Bioinf. 2021; 22 (2): 2141- 2150.

[191]

Ru X , Zou Q , Lin C . Optimization of drug-target affinity prediction methods through feature processing schemes. Bioinformatics. 2023; (39): 11.

[192]

Nguyen T , Le H , Quinn TP , Nguyen T , Le TD , Venkatesh S . GraphDTA: predicting drug-target binding affinity with graph neural networks. Bioinformatics. 2021; 37 (8): 1140- 1147.

[193]

Zhu J , Wang J , Wang X , et al. Prediction of drug efficacy from transcriptional profiles with deep learning. Nat Biotechnol. 2021; 39: 1444- 1452.

[194]

Xie L , He S , Song X , Bo X , Zhang Z . Deep learning-based transcriptome data classification for drug-target interaction prediction. BMC Genom. 2018; 19: 667.

[195]

Aliper A , Plis S , Artemov A , Ulloa A , Mamoshina P , Zhavoronkov A . Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm. 2016; 13 (7): 2524- 2530.

[196]

Cai H , Zhang H , Zhao D , Wu J , Wang L . FP-GNN: a versatile deep learning architecture for enhanced molecular property prediction. Briefings Bioinf. 2022; 23 (6): bbac408.

[197]

Jiang J , Wang R , Wei G . GGL-tox: geometric graph learning for toxicity prediction. J Chem Inf Model. 2021; 61 (4): 1691- 1700.

[198]

Zhang J , Norinder U , Svensson F . Deep learning-based conformal prediction of toxicity. J Chem Inf Model. 2021; 61 (6): 2648- 2657.

[199]

Tran TTV , Surya Wibowo A , Tayara H , Chong KT . Artificial intelligence in drug toxicity prediction: recent advances, challenges, and future perspectives. J Chem Inf Model. 2023; 63 (9): 2628- 2643.

[200]

Mayr A , Klambauer G , Unterthiner T , Hochreiter S . DeepTox: toxicity prediction using deep learning. Front Environ Sci. 2016; 3: 80.

[201]

Hansen PW , Clemmensen L , Sehested TSG , et al. Identifying drug-drug interactions by data mining: a pilot study of warfarin-associated drug interactions. Circulation: Cardiovascular Quality and Outcomes. 2016; 9 (6): 621- 628.

[202]

Vilar S , Friedman C , Hripcsak G . Detection of drug-drug interactions through data mining studies using clinical sources, scientific literature and social media. Briefings Bioinf. 2018; 19 (5): 863- 877.

[203]

Hauben M . Artificial intelligence and data mining for the pharmacovigilance of drug-drug interactions. Clin Therapeut. 2023; 45 (2): 117- 133.

[204]

Bannigan P , Aldeghi M , Bao Z , Häse F , Aspuru-Guzik A , Allen C . Machine learning directed drug formulation development. Adv Drug Deliv Rev. 2021; 175 (2021): 113806.

[205]

Mak KK , Wong YH , Pichika MR . Artificial intelligence in drug discovery and development. In: Hock FJ, Pugsley MK, eds. Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays. Cham: Springer; 2024.

[206]

Palli P , Mishra S , Rao PS . Inferring compound similarity: a clustering approach in drug discovery. 1st International Conference on Cognitive, Green and Ubiquitous Computing (IC-CGU), Bhubaneswar, India, 2024. 2024: 1- 6.

[207]

Lambrinidis G , Tsantili-Kakoulidou A . Multi-objective optimization methods in novel drug design. Expet Opin Drug Discov. 2020; 16 (6): 647- 658.

[208]

Bunte K , Leppäaho E , Saarinen I , Kaski S . Sparse group factor analysis for biclustering of multiple data sources. Bioinformatics. 2016; 32 (16): 2457- 2463.

[209]

He L , Tang J , Andersson EI , et al. Patient-customized drug combination prediction and testing for T-cell prolymphocytic leukemia patients. Cancer Res. 2018; 78 (9): 2407- 2418.

[210]

Ebata K , Yamashiro S , Iida K , Okada M . Building patient-specific models for receptor tyrosine kinase signaling networks. The FEBS Journal Emerging Methods and Technologies. 2022; 289 (2022): 90- 101.

[211]

Hakami MA . Harnessing machine learning potential for personalised drug design and overcoming drug resistance. J Drug Target. 2024; 32 (8): 918- 930.

[212]

Zand R , Abedi V , Hontecillas R , et al. Development of synthetic patient populations and in silico clinical trials. In: Bassaganya-Riera J, ed. Accelerated Path to Cures. Cham: Springer; 2018: 57- 77.

[213]

Schöning V , Hammann F . How far have decision tree models come for data mining in drug discovery? Expet Opin Drug Discov. 2018; 13 (12): 1067- 1069.

[214]

Hammann F , Drewe J . Decision tree models for data mining in hit discovery. Expet Opin Drug Discov. 2012; 7 (4): 341- 352.

[215]

Burbidge R , Trotter M , Buxton B , Holden S . Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem. 2001; 26 (1): 5- 14.

[216]

Nayarisseri Anuraj , Khandelwal Ravina , Tanwar Poonam , et al. Artificial intelligence, big data and machine learning approaches in precision medicine & drug discovery. Curr Drug Targets. 2021; 22 (6): 631- 655.

[217]

Zernov VV , Balakin KV , Ivaschenko AA , Savchuk NP , Pletnev IV . Drug discovery using support vector machines. The case studies of drug-likeness, agrochemicallikeness, and enzyme inhibition predictions. J Chem Inf Comput Sci. 2003; 43 (6): 2048- 2056.

[218]

Leong MK , Chen YM , Chen HB , Chen P . Development of a new predictive model for interactions with human cytochrome P450 2A6 using pharmacophore ensemble/ support vector machine (PhE/SVM) approach. Pharm Res (N Y). 2009; 26: 987- 1000.

[219]

Heikamp K , Bajorath J . Support vector machines for drug discovery. Expet Opin Drug Discov. 2013; 9 (1): 93- 104.

[220]

Maltarollo VG , Kronenberger T , Espinoza GZ , Oliveira PR , Honorio KM . Advances with support vector machines for novel drug discovery. Expet Opin Drug Discov. 2018; 14 (1): 23- 33.

[221]

Zhu Y , Jung W , Wang F , Che C . Drug repurposing against Parkinson's disease by text mining the scientific literature. Libr Hi Technol. 2020; 38 (4): 741- 750.

[222]

Zheng S , Dharssi S , Wu M , Li J , Lu Z . Text mining for drug discovery. In: Larson R, Oprea T, eds. Bioinformatics and Drug Discovery. New York, NY: Humana Press; 2019: . Methods in Molecular Biology; vol. 1939.

[223]

Jin S , Niu Z , Jiang C , et al. HeTDR: drug repositioning based on heterogeneous networks and text mining. Patterns. 2021; 2 (8): 100307.

[224]

Rastegar-Mojarad M , Elayavilli RK , Li D , Prasad R , Liu H . A new method for prioritizing drug repositioning candidates extracted by literature-based discovery. 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2015: 669- 674.

[225]

Park K . A review of computational drug repurposing. Translational and clinical pharmacology. 2019; 27 (2): 59- 63.

[226]

Liu R , Wei L , Zhang P . A deep learning framework for drug repurposing via emulating clinical trials on real-world patient data. Nat Mach Intell. 2021; 3: 68- 75.

[227]

Thakur A , Thakur GK , Khan N , Kulkarni S . Transforming drug discovery: leveraging deep learning and NLP for accelerated drug repurposing through text mining in biomedical literature. International Journal of Intelligent Systems and Applications in Engineering. 2024; 21 (20s): 165- 172.

[228]

Bhatnagar R , Sardar S , Beheshti M , Podichetty JT . How can natural language processing help model informed drug development : a review. JAMIA open. 2022; 5 (2): ooac043.

[229]

Riddick G , Song H , Ahn S , et al. Predicting in vitro drug sensitivity using Random Forests. Bioinformatics. 2011; 27 (2): 220- 224.

[230]

Gayvert KM , Madhukar NS , Elemento O . A data-driven approach to predicting successes and failures of clinical trials. Cell Chem Biol. 2016; 23 (10): 1294- 1301.

[231]

Feijoo F , Palopoli M , Bernstein J , Siddiqui S , Albright TE . Key indicators of phase transition for clinical trials through machine learning. Drug Discov Today. 2020; 25 (2): 414- 421.

[232]

Bate A , Lindquist M , Edwards IR , et al. A Bayesian neural network method for adverse drug reaction signal generation. E. J. Clin. Pharmacol. 1998; 54: 315- 321.

[233]

Çıray F . Artificial Learning-Based Analysis of Molecular, Clinical Trials and Patent Data for Improved Drug Development, Ph.D.-Doctoral Program. IEEE: Middle East Technical University; IJPER. 2022.

[234]

Zhou M , Chen Y , Xu R . A Drug-Side Effect Context-Sensitive Network approach for drug target prediction. Bioinformatics. 2019; 35 (12): 2100- 2107.

[235]

Lee Lee WP , Huang JY , Chang HH , Lee KT , Lai CT . Predicting drug side effects using data analytics and the integration of multiple data sources. IEEE Access. 2017; 5: 20449- 20462.

[236]

Vaxjo K . Benefits and challenges of an automated storage and retrieval system. www.diva-portal.org/smash/get/diva2: 1437907/FULLTEXT02; 2020.

[237]

Gedrych M . Automated compound storage and retrieval system for microplates and tubes. JALA: J Assoc Lab Autom. 2000; 5 (3): 24- 25.

[238]

Sarkar C , Das B , Rawat VS , et al. Artificial intelligence and machine learning technology driven modern drug discovery and development. Int J Mol Sci. 2023; 24 (3): 2026.

[239]

Dhudum R , Ganeshpurkar A , Pawar A . Revolutionizing drug discovery: a comprehensive review of AI applications. Drugs and Drug Candidates. 2024; 3 (1): 148- 171.

[240]

Zhang W , Zou H , Luo L , Liu Q , Wu W , Xiao W . Predicting potential side effects of drugs by recommender methods and ensemble learning. Neurocomputing. 2016; 173 (3): 979- 987.

[241]

Dimitri GM , Lió P . DrugClust: a machine learning approach for drugs side effects prediction. Comput Biol Chem. 2017; 68: 204- 210.

[242]

You J , McLeod RD , Hu P . Predicting drug-target interaction network using deep learning model. Comput Biol Chem. 2019; 80: 90- 101.

[243]

Sharifabad MM , Sheikhpour R , Gharaghani S . Brns þ ssfsm-DTI: a hybrid method for drug-target interaction prediction based on balanced reliable negative samples and semi-supervised feature selection. Chemometr Intell Lab Syst. 2022; 220 (2022): 104462.

[244]

Zhong F , Wu X , Yang R , et al. Drug target inference by mining transcriptional data using a novel graph convolutional network framework. Protein & Cell. 2022; 13 (4): 281- 301.

[245]

Zhong F , Wu X , Li X , et al. Computational target fishing by mining transcriptional data using a novel Siamese spectral-based graph convolutional network. bioRxiv. 2020.

[246]

Zhu H . Big data and artificial intelligence modeling for drug discovery. Annu Rev Pharmacol Toxicol. 2020; 60: 573- 589.

[247]

Kuenzi BM , Park J , Fong SH , et al. Predicting drug response and synergy using a deep learning model of human cancer cells. Cancer Cell. 2020; 38 (5): 672- 684.

[248]

Atoyebi EO , Adedayo SA , Idusuyi N , Olorunnisola AO . A review of artificial neural networks for biomedical applications: trends and prospects. In: Conference Proceedings Of the International Conference of Mechanical Engineering, Energy Technology and Management, IMEETMCON2018-015. 2018: 59- 67.

[249]

Piatetsky-Shapiro G , Tamayo P . Microarray data mining: facing the challenges. SIGKDD Explorations. 2003; 5 (2).

[250]

Oualikene-Gonin W , Jaulent MC , Thierry JP , et al. Artificial intelligence integration in the drug lifecycle and in regulatory science: policy implications, challenges and opportunities. Front Pharmacol. 2024; 15: 1437167.

[251]

Dele-Afolabi TT , Azmah Hanim MA , Ojo-Kupoluyi OJ , Atoyebi EO . Application of neural networks and artificial intelligence tools for modelling, characterization, and forecasting in materials engineering. Reference Module in Materials Science and Materials Engineering. Elsevier; IJPER. 2023, 9780128035818.

[252]

Lionta E , Spyrou G , Vassilatis DK , Cournia Z . Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem. Aug. 2014; 14 (16): 1923- 1938.

[253]

Rodríguez-Pérez R , Bajorath J . Evolution of support vector machine and regression modeling in chemoinformatics and drug discovery. J Comput Aided Mol Des. May 2022; 36 (5): 355- 362.

[254]

Heikamp K , Bajorath J . Support vector machines for drug discovery. Expert Opin Drug Discov. Jan. 2014; 9 (1): 93- 104.

[255]

Zhao CY , Zhang HX , Zhang XY , Liu MC , Hu ZD , Fan BT . Application of support vector machine (SVM) for prediction toxic activity of different data sets. Toxicology. Jan. 2006; 217 (2): 105- 119.

[256]

Jaganathan K , Tayara H , Chong KT . Prediction of drug-induced liver toxicity using SVM and optimal descriptor sets. Int J Mol Sci. Jul. 2021; 22 (15): 8073.

[257]

Cavasotto CN , Scardino V . Machine learning toxicity prediction: latest advances by toxicity end point. ACS Omega. Dec. 2022; 7 (51): 47536- 47546.

[258]

Stasevych M , Zvarych V . Innovative robotic technologies and artificial intelligence in pharmacy and medicine: paving the way for the future of health care-a review. Big Data and Cognitive Computing. Sep. 2023; 7 (3).

[259]

Yadav S , Singh A , Singhal R , Yadav JP . Revolutionizing drug discovery: the impact of artificial intelligence on advancements in pharmacology and the pharmaceutical industry. Intelligent Pharmacy. Jun. 2024; 2 (3): 367- 380.

[260]

Vora LK , Gholap AD , Jetha K , Thakur RRS , Solanki HK , Chavda VP . Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics. Jul. 2023; 15 (7): 1916.

[261]

Paul D , Sanap G , Shenoy S , Kalyane D , Kalia K , Tekade RK . Artificial intelligence in drug discovery and development. Drug Discov Today. Jan. 2021; 26 (1): 80.

[262]

Babajide Mustapha I , Saeed F . Bioactive molecule prediction using extreme gradient boosting. Molecules. Aug. 2016; 21 (8).

[263]

Sheridan RP , Wang WM , Liaw A , Ma J , Gifford EM . Extreme gradient boosting as a method for quantitative structure-activity relationships. J Chem Inf Model. Dec. 2016; 56 (12): 2353- 2360.

[264]

Zhang J , Mucs D , Norinder U , Svensson F . LightGBM: an effective and scalable algorithm for prediction of chemical toxicity-application to the Tox21 and mutagenicity data sets. J Chem Inf Model. Oct. 2019; 59 (10): 4150- 4158.

[265]

Liu H , Zhang W , Nie L , Ding X , Luo J , Zou L . Predicting effective drug combinations using gradient tree boosting based on features extracted from drug-protein heterogeneous network. BMC Bioinf. Dec. 2019; 20 (1): 645.

[266]

Tanoori B , Jahromi MZ . Using drug-drug and protein-protein similarities as feature vector for drug-target binding prediction. Chemometr Intell Lab Syst. Oct. 2021; 217: 104405.

[267]

Xuan P , Sun C , Zhang T , Ye Y , Shen T , Dong Y . Gradient boosting decision treebased method for predicting interactions between target genes and drugs. Front Genet. May2021; 10.

[268]

Ji J , Zhou J , Yang Z , Lin Q , Coello CAC . AutoDock Koto: a gradient boosting differential evolution for molecular docking. IEEE Trans Evol Comput. Dec. 2023; 27 (6): 1648- 1662.

[269]

Zhao Z , Xu Y , Zhao Y . SXGBsite: prediction of protein-ligand binding sites using sequence information and extreme gradient boosting. Genes. Dec. 2019; 10 (12).

[270]

Alghushairy O , Ali F , Alghamdi W , Khalid M , Alsini R , Asiry O . Machine learningbased model for accurate identification of druggable proteins using light extreme gradient boosting. J Biomol Struct Dyn. Oct. 2023: 1- 12.

[271]

Broach JR , Thorner J . High-throughput screening for drug discovery. Progress. 1996; 384: 14- 16.

[272]

Kapur R , Giuliano KA , Campana M , et al. Streamlining the drug discovery process by integrating miniaturization, high throughput screening, high content screening, and automation on the CellChipTM system. Biomed Microdevices. 1999; 2: 99- 109.

[273]

Macarrón R , Hertzberg RP . Design and implementation of high-throughput screening assays. Methods Mol Biol. 2009; 565: 1- 32.

[274]

Bokhari FF , Albukhari A . Design and implementation of high throughput screening assays for drug discoveries. High-Throughput Screening for Drug Discovery. IntechOpen; 2022..

[275]

Coley CW , Thomas DA , Lummiss JAM , Jaworski JN , et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. SCIENCE. 2019; 365 (6453).

[276]

Hardwick T , Ahmed N . Digitising chemical synthesis in automated and robotic flow. Chem Sci. 2020; 11: 11973- 11988.

[277]

Ha T , Lee D , Kwon Y , Park MS , et al. AI-driven robotic chemist for autonomous synthesis of organic molecules. 2003; 9 (44).

[278]

Nelson EK , Piehler B , Eckels J , et al. LabKey Server: an open source platform for scientific data integration, analysis and collaboration. BMC Bioinf. 2011; 12: 71.

[279]

Bai J , Cao L , Mosbach S , Akroyd J , Lapkin AA , Kraft M . From platform to knowledge graph: evolution of laboratory automation. J Appl Comput Sci. 2022; 2 (2): 292- 309.

[280]

Elliott C , Vijayakumar V , Zink W , Hansen R . National instruments LabVIEW: a programming environment for laboratory automation and. Measurement. 2007; 12 (1).

[281]

Stasevych M , Zvarych V . Innovative robotic technologies and artificial intelligence in pharmacy and medicine: paving the way for the future of health care-a review. Big Data Cogn. Comput. 2023; 7: 147.

[282]

Egorov E , Pieters C , Korach-Rechtman H , et al. Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems. Drug Deliv. and Transl. Res. 2021; 11: 345- 352.

[283]

Saharan VA . Robotic automation of pharmaceutical and life science industries. In: Saharan VA, ed. Computer Aided Pharmaceutics and Drug Delivery. Singapore: Springer; 2021.

[284]

Su Q , Ganesh S , Moreno M , Bommireddy Y , et al. A perspective on Quality-byControl (QbC) in pharmaceutical continuous manufacturing. Comput Chem Eng. 2019; 125: 216- 231.

[285]

Schmidt A , Frey S , Hillen D , et al. A framework for automated quality assurance and documentation for pharma 4.0. In: Habli I, Sujan M, Bitsch F, eds. Computer Safety, Reliability, and Security. SAFECOMP 2021. Cham: Springer; 2021: . Lecture Notes in Computer Science%28%29; vol. 12852.

[286]

Gaisford W . Robotic liquid handling and automation in epigenetics. J Lab Autom. 2012; 17 (5): 327- 329.

[287]

Anderson CE , Huynh T , Gasperino DJ , et al. Automated liquid handling robot for rapid lateral flow assay development. Anal Bioanal Chem. 2022; 414: 2607- 2618.

[288]

Choudhury AM , Sarikonda H , Khan II , Deol J , Tirmizi Z . Liquid handling technologies: a study through major discoveries and advancements. AIJMR. 2024; 2 (5): September- October 2024.

[289]

Janzen WP . High throughput screening. In: Walker JM, Rapley R, eds. Molecular Biomethods Handbook. Springer Protocols Handbooks. Humana Press; 2008.

[290]

Auld DS , Coassin PA , Coussens NP , et al. Microplate selection and recommended practices in high-throughput screening and quantitative biology. In: Markossian S, Grossman A, Arkin M, et al., eds. Assay Guidance Manual. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2020: 2024.

[291]

Cronk D . In: Hill RG, Rang HP, eds. Chapter 8-High-Throughput Screening. 2nd ed. Drug Discovery and Development; 2013: 95- 117.

[292]

Tristan CA , Ormanoglu P , Slamecka J , et al. Robotic high-throughput biomanufacturing and functional differentiation of human pluripotent stem cells. Stem Cell Rep. 2021; 16 (12): 3076- 3092.

[293]

Whitmire M , Ammerman J , de Lisio P , Killmer J , Kyle D . LC-MS/MS bioanalysis method development, validation, and sample analysis: points to consider when conducting nonclinical and clinical studies in accordance with current regulatory guidances. J Anal Bioanal Techniques. 2011; S4: 1.

[294]

Rustandi RR , Loughney JW , Hamm M , Hamm C , et al. Qualitative and quantitative evaluation of SimonTM, a new CE-based automated Western blot system as applied to vaccine development. Electrophoresis. 2012; 33 (Issue 17): 2790- 2797.

[295]

Fu Q , Murray CI , Karpov OA , Van Eyk JE . Automated proteomic sample preparation: the key component for high throughput and quantitative mass spectrometry analysis. Mass Spectrometry ReviewsVolume. 2021; 42 (2): 873- 886. e21750.

[296]

Hirohara M , Saito Y , Koda Y , Sato K , Sakakibara Y . Convolutional neural network based on SMILES representation of compounds for detecting chemical motif. BMC Bioinf. Dec. 2018; 19 (19): 526.

[297]

Matsuzaka Y , Uesawa Y . Prediction model with high-performance constitutive androstane receptor (CAR) using DeepSnap-deep learning approach from the Tox21 10K compound library. Int J Mol Sci. Sep. 2019; 20 (19): 4855.

[298]

Qi X , Zhao Y , Qi Z , Hou S , Chen J . Machine learning empowering drug discovery: applications, opportunities and challenges. Molecules. 2024; 29 (4)..

[299]

Koutroumpa N-M , Papavasileiou KD , Papadiamantis AG , Melagraki G , Afantitis A . A systematic review of deep learning methodologies used in the drug discovery process with emphasis on in vivo validation. Int J Mol Sci. Mar. 2023; 24 (7): 6573.

[300]

Grau M Indri , Lo Bello L , Sauter T . Robots in industry: the past, present, and future of a growing collaboration with humans. IEEE Industrial Electronics Magazine. March 2021; 15 (1): 50- 61.

[301]

www.kandasoft.com/blog/ai-and-its-impact-on-drug-development-benefits-challe nges-and-use-cases.

[302]

Rahman R , Dhruba SR , Ghosh S , Pal R . Functional random forest with applications in dose-response predictions. Sci Rep. Feb. 2019; 9 (1): 1628.

[303]

Cano G , et al. Automatic selection of molecular descriptors using random forest: application to drug discovery. Expert Syst Appl. Apr. Apr. 2017; 72: 151- 159.

[304]

Plewczynski D , von Grotthuss M , Rychlewski L , Ginalski K . Virtual high throughput screening using combined random forest and flexible docking. Comb Chem High Throughput Screen. Jun. 2009; 12 (5): 484- 489.

[305]

Wan Q , Pal R . A multivariate random forest based framework for drug sensitivity prediction. 2013 IEEE International Workshop on Genomic Signal Processing and Statistics. Nov. 2013: 53.

[306]

Vora LK , Gholap AD , Jetha K , Thakur RRS , Solanki HK , Chavda VP . Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics. Jul. 2023; 15 (7): 1916.

[307]

Paul D , Sanap G , Shenoy S , Kalyane D , Kalia K , Tekade RK . Artificial intelligence in drug discovery and development. Drug Discov Today. Jan. 2021; 26 (1): 80.

[308]

Oyejide AJ . Biomedical engineering education in Nigeria: emergence, challenges, prospects and areas for development. International Journal of African Higher Education. 2023; 10 (2): 24- 49.

[309]

Autodesk Autodesk. The history of industrial robots, from single taskmaster to self-teacher. www.autodesk.com/design-make/articles/history-of-industrial-robots; 2024.

[310]

An Overview of High Throughput Screening," The Scientist Magazine®. Accessed: Sep. 03, 2024.[Online]. Available: www.the-scientist.com/an-overview-of-high-thr oughput-screening-71561.

[311]

HTS Robotics Platform » High-Throughput Molecular Screening Center » The Wertheim UF Scripps Institute » University of Florida." Accessed: Sep. 03, 2024. [Online]. Available: hts.scripps.ufl.edu/facilities/hts-robotics/.

[312]

Hansel CS , Plant DL , Holdgate GA , Collier MJ , Plant H . Advancing automation in high-throughput screening: modular unguarded systems enable adaptable drug discovery. Drug Discov Today. Aug. 2022; 27 (8): 2051- 2056.

[313]

Michael S , et al. A robotic platform for quantitative high-throughput screening. Assay Drug Dev Technol. Oct. 2008; 6 (5): 637- 657.

[314]

Serrano DR , Luciano FC , Anaya BJ , et al. Artificial intelligence (AI) applications in drug discovery and drug delivery: revolutionizing personalized medicine. Pharmaceutics. 2024; 16 (10): 1328.

[315]

Narayanan RR , Durga N , Nagalakshmi S . Impact of artificial intelligence (AI) on drug discovery and product development. Indian Journal of Pharmaceutical Education and Research. 2022; 56 (3): S387- S397.

[316]

Labant M . Fully Automated Luxury Drug Discovery: lacking the molecular assemblers of science fiction, drug discovery is making do with AI-driven lead generation, robot-executed experiments, and advanced analytical technologies. Genetic Engineering & Biotechnology News. 2020; 40 (8): 18- 20.

[317]

Hilbush BS . In: Silico Dreams: How Artificial Intelligence and Biotechnology Will Create the Medicines of the Future. John Wiley & Sons; 2021.

[318]

Vora LK , Gholap AD , Jetha K , Thakur RRS , Solanki HK , Chavda VP . Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics. 2023; 15 (7): 1916.

[319]

Mittelstadt BD , Floridi L . The ethics of big data: current and foreseeable issues in biomedical contexts. The ethics of biomedical big data. 2016: 445- 480.

[320]

Xu L , Jiang C , Wang J , Yuan J , Ren Y . Information security in big data: privacy and data mining. IEEE Access. 2014; 2: 1149- 1176.

[321]

Vannoy J , Xiao J . Real-time adaptive motion planning (RAMP) of mobile manipulators in dynamic environments with unforeseen changes. IEEE Transactions on Robotics. 2008; 24 (5): 1199- 1212.

[322]

Vukobratovic M , Kircanski N . Real-time Dynamics of Manipulation Robots. vol. 4. Springer Science & Business Media; 2013.

[323]

Damarla R . Enhancement of drug discovery with machine learning clustering algorithms. Journal of High School Science. May 2022;6(2)[Online]. Available: jh ss.scholasticahq.com/article/35568-enhancement-of-drug-discovery-with-mach ine-learning-clustering-algorithms. Accessed August 30, 2024.

[324]

Braun J , Fayne D . Mapping of Protein Binding Sites using clustering algorithms - development of a pharmacophore based drug discovery tool. J Mol Graph Model. Sep. 2022; 115: 108228.

[325]

Bhagat HV , Singh M . DPCF: a framework for imputing missing values and clustering data in drug discovery process. Chemometr Intell Lab Syst. Dec. 2022; 231: 104686.

[326]

Voicu A , Duteanu N , Voicu M , Vlad D , Dumitrascu V . The rcdk and cluster R packages applied to drug candidate selection. J Cheminf. Jan. 2020; 12 (1): 3.

[327]

Malhat MG , Mousa HM , El-Sisi AB . Clustering of chemical data sets for drug discovery. 2014 9th International Conference on Informatics and Systems. Dec. 2014. DEKM-11-DEKM-18.

[328]

Li W . A fast clustering algorithm for analyzing highly similar compounds of very large libraries. J Chem Inf Model. Sep. 2006; 46 (5): 1919- 1923.

[329]

Udrescu L , et al. Clustering drug-drug interaction networks with energy model layouts: community analysis and drug repurposing. Sci Rep. Sep. 2016; 6 (1): 32745.

[330]

Ma J , Wang J , Ghoraie LS , Men X , Haibe-Kains B , Dai P . A comparative study of cluster detection algorithms in protein-protein interaction for drug target discovery and drug repurposing. Front Pharmacol. 2019: 10.

[331]

Perualila-Tan NJ , Shkedy Z , Talloen W , Göhlmann HWH , Moerbeke MV , Kasim A . Weighted similarity-based clustering of chemical structures and bioactivity data in early drug discovery. J. Bioinform. Comput. Biol. Aug. 2016; 14 (4): 1650018.

[332]

Malhat M , Mousa HM , El-Sisi A . Improving Jarvis-Patrick algorithm for drug discovery. 2014 9th International Conference on Informatics and Systems. 2014.

[333]

Mahmud SMH , Chen W , Jahan H , Liu Y , Hasan SMM . Dimensionality reduction based multi-kernel framework for drug-target interaction prediction. Chemometr Intell Lab Syst. May 2021; 212: 104270.

[334]

Calangian MTF , Magboo VPC . Predicting drug-target interaction (DTI) based on machine learning with Lasso dimensionality reduction and SMOTE from protein sequence and drug fingerprint. In: 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET). Jul; 2022: 1- 6.

[335]

Chen W , Liu X , Zhang S , Chen S . Artificial intelligence for drug discovery: resources, methods, and applications. Mol Ther Nucleic Acids. Feb. 2023; 31: 691- 702.

[336]

Eckhart L , Lenhof K , Rolli L-M , Lenhof H-P . A comprehensive benchmarking of machine learning algorithms and dimensionality reduction methods for drug sensitivity prediction. Briefings Bioinf. Jul. 2024; 25 (4): bbae242.

[337]

Kalian AD , et al. Exploring dimensionality reduction techniques for deep learning driven QSAR models of mutagenicity. Toxics. Jul. 2023; 11 (7).

[338]

Lin E , Lin C-H , Lane H-Y . Relevant applications of generative adversarial networks in drug design and discovery: molecular de novo design, dimensionality reduction, and de novo peptide and protein design. Molecules. Jul. 2020; 25 (14): 3250.

[339]

Vaxjo K . Benefits and Challenges of an Automated Storage and Retrieval. 2020.

[340]

Gedrych M . Automated compound storage and retrieval system for microplates and tubes. JALA: J Assoc Lab Autom. 2000; 5 (3): 24- 25.

[341]

An Overview of High Throughput Screening," The Scientist Magazine®. Accessed: Sep. 03, 2024.[Online]. Available: www.the-scientist.com/an-overview-of-high-thr oughput-screening-71561.

[342]

HTS Robotics Platform » High-Throughput Molecular Screening Center » The Wertheim UF Scripps Institute » University of Florida." Accessed: Sep. 03, 2024. [Online]. Available: hts.scripps.ufl.edu/facilities/hts-robotics/.

[343]

Hansel CS , Plant DL , Holdgate GA , Collier MJ , Plant H . Advancing automation in high-throughput screening: modular unguarded systems enable adaptable drug discovery. Drug Discov Today. Aug. 2022; 27 (8): 2051- 2056.

[344]

Michael S , et al. A robotic platform for quantitative high-throughput screening. Assay Drug Dev Technol. Oct. 2008; 6 (5): 637- 657.

[345]

Stasevych M , Zvarych V . Innovative robotic technologies and artificial intelligence in pharmacy and medicine: paving the way for the future of health care-a review. Big Data and Cognitive Computing. Sep. 2023; 7 (3).

[346]

Yadav S , Singh A , Singhal R , Yadav JP . Revolutionizing drug discovery: the impact of artificial intelligence on advancements in pharmacology and the pharmaceutical industry. Intelligent Pharmacy. Jun. 2024; 2 (3): 367- 380.

[347]

Vora LK , Gholap AD , Jetha K , Thakur RRS , Solanki HK , Chavda VP . Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics. Jul. 2023; 15 (7): 1916.

[348]

Paul D , Sanap G , Shenoy S , Kalyane D , Kalia K , Tekade RK . Artificial intelligence in drug discovery and development. Drug Discov Today. Jan. 2021; 26 (1): 80.

[349]

Serrano DR , Luciano FC , Anaya BJ , et al. Artificial intelligence (AI) applications in drug discovery and drug delivery: revolutionizing personalized medicine. Pharmaceutics. 2024; 16 (10): 1328.

[350]

Narayanan RR , Durga N , Nagalakshmi S . Impact of artificial intelligence (AI) on drug discovery and product development. Indian Journal of Pharmaceutical Education and Research. 2022; 56 (3): S387- S397.

[351]

Labant M . Fully Automated Luxury Drug Discovery: lacking the molecular assemblers of science fiction, drug discovery is making do with AI-driven lead generation, robot-executed experiments, and advanced analytical technologies. Genetic Engineering & Biotechnology News. 2020; 40 (8): 18- 20.

[352]

Hilbush BS . In: Silico Dreams: How Artificial Intelligence and Biotechnology Will Create the Medicines of the Future. John Wiley & Sons; 2020.

[353]

Vora LK , Gholap AD , Jetha K , Thakur RRS , Solanki HK , Chavda VP . Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics. 2023; 15 (7): 1916.

[354]

Mittelstadt BD , Floridi L . The ethics of big data: current and foreseeable issues in biomedical contexts. The ethics of biomedical big data. 2016: 445- 480.

[355]

Xu L , Jiang C , Wang J , Yuan J , Ren Y . Information security in big data: privacy and data mining. IEEE Access. 2014; 2: 1149- 1176.

[356]

Vannoy J , Xiao J . Real-time adaptive motion planning (RAMP) of mobile manipulators in dynamic environments with unforeseen changes. IEEE Transactions on Robotics. 2008; 24 (5): 1199- 1212.

[357]

Vukobratovic M , Kircanski N . Real-time Dynamics of Manipulation Robots. vol. 4. Springer Science & Business Media; 2013.

RIGHTS & PERMISSIONS

The Authors. Publishing services by Elsevier B.V. on behalf of Higher Education Press and KeAi Communications Co. Ltd.

AI Summary AI Mindmap
PDF (2083KB)

183

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/