Development and evaluation of empagliflozin-loaded solid lipid nanoparticles: Pharmacokinetics and pharmacodynamics for oral delivery

Ananda Kumar Chettupalli , Aziz Unnisa , Himabindu Peddapalli , Rajendra Kumar Jadi , Kachupally Anusha , Padmanabha Rao Amarachinta

Intelligent Pharmacy ›› 2025, Vol. 3 ›› Issue (3) : 193 -206.

PDF (2209KB)
Intelligent Pharmacy ›› 2025, Vol. 3 ›› Issue (3) : 193 -206. DOI: 10.1016/j.ipha.2024.12.004
Full length article

Development and evaluation of empagliflozin-loaded solid lipid nanoparticles: Pharmacokinetics and pharmacodynamics for oral delivery

Author information +
History +
PDF (2209KB)

Abstract

Type 2 diabetes mellitus is frequently treated with empagliflozin (EZN), a sodium-glucose cotransporter 2 inhibitor. Solid lipid nanoparticles (SLNs) shield the drug from gastrointestinal breakdown and improve the bioavailability of lipophilic drugs. The aim of the study is to use SLNs to enhance EZN's pharmacokinetics and pharmacodynamics in the treatment of diabetes mellitus. To prepare EZN-loaded SLNs, central composite design (CCD) was employed. The optimized batch (optimized EZN-loaded SLNs) had the desired values of dependent variables Vesicle size (R1), Entrapment Efficiency (R2), and Cumulative Drug Release (CDR) (R3). This was achieved by using analysis of variance (ANOVA) to analyse independent variables such as lipid concentration (X1), surfactant concentration (X2), sonication time (X3), and homogenization speed (X4). F8 exhibited the highest drug entrapment (90.6% ± 2.8%), CDR (89.2 ± 3.6), and average particle size (98.6 ± 2.1 nm) among the 30 distinct formulated formulae (F1-F30). Based on the F-value and p-value, the model was determined to be significant for particle size, entrapment efficiency, and CDR. The actual values of particle size entrapment efficiency and CDR closely matched the projected values of the optimized batch. The in vitro release trials produced a burst release followed by a continuous release. When compared to the EZN solution, the relative bioavailability of EZN-loaded SLNs was 1.2 times higher, indicating superior protection against the gastrointestinal environment. In rats with streptozotocin-induced diabetes mellitus, the optimized EZN-loaded SLNs outperformed the basic drug suspension in terms of antidiabetic efficacy. One promising method for administering EZN in the treatment of diabetes mellitus is by SLNs.

Keywords

Solid lipid nanoparticles / Pharmacokinetics / Bioavailability / Homogenization / Central composite design / Oral formulation

Cite this article

Download citation ▾
Ananda Kumar Chettupalli, Aziz Unnisa, Himabindu Peddapalli, Rajendra Kumar Jadi, Kachupally Anusha, Padmanabha Rao Amarachinta. Development and evaluation of empagliflozin-loaded solid lipid nanoparticles: Pharmacokinetics and pharmacodynamics for oral delivery. Intelligent Pharmacy, 2025, 3(3): 193-206 DOI:10.1016/j.ipha.2024.12.004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Inzucchi SE , Bergenstal RM , Buse JB , et al. Management of Hyperglycemia in Type 2 Diabetes, 2015:a Patient-Centered Approach:update to a position statement of the american diabetes association and the european association for the study of diabetes. Diabetes Care. 2015; 38 (1): 140- 149.

[2]

Pawlak R . Vegetarian diets in the prevention and management of diabetes and its complications. Diabetes Spectr. 2017; 30 (2): 82- 88.

[3]

Sepehri Z , Kiani Z , Afshari M , Kohan F , Dalvand A , Ghavami S . Inflammasomes and type 2 diabetes:an updated systematic review. Immunol Lett. 2017; 192: 97- 103.

[4]

Nawaz MS , Shah KU , Khan TM , et al. Evaluation of current trends and recent development in insulin therapy for management of diabetes mellitus. Diabetes Metab Syndr Clin Res Rev. 2017; 11: S833- S839.

[5]

Grube A , Gerlitzki C , Brendel M . Dissolution or disintegration-substitution of dissolution by disintegration testing for a fixed dose combination product. Drug Dev Ind Pharm. 2019; 45 (1): 130- 138.

[6]

Acharya T , Deedwania P . Cardiovascular outcome trials of the newer anti-diabetic medications. Prog Cardiovasc Dis. 2019; 62 (4): 342- 348.

[7]

Hedrington MS , Davis SN . The role of empagliflozin in the management of type 2 diabetes by patient profile. Therapeut Clin Risk Manag. 2015; 11: 739- 749.

[8]

Rodbard HW , Blonde L , Braithwaite SS , et al. American association of clinical endocrinologists medical guidelines for clinical practice for the management of diabetes mellitus. Endocr Pract. 2007; 13 (SUPPL. 1): 1- 68.

[9]

Levine MJ . Empagliflozin for type 2 diabetes mellitus:an overview of phase 3 clinical trials. Curr Diabetes Rev. 2016; 13 (4).

[10]

Frampton JE . Empagliflozin:a review in type 2 diabetes. Drugs. 2018; 78 (10): 1037- 1048.

[11]

Yoon G , Park JW , Yoon IS . Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs):recent advances in drug delivery. J Pharm Investig. 2013; 43 (5): 353- 362.

[12]

Makwana V , Jain R , Patel K , Nivsarkar M , Joshi A . Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system:elucidation of mechanism of uptake using chylomicron flow blocking approach. Int J Pharm. 2015; 495 (1): 439- 446.

[13]

Mishra V , Bansal KK , Verma A , et al. Solid lipid nanoparticles:emerging colloidal nano drug delivery systems. Pharmaceutics. 2018; 10 (4).

[14]

Vanti G , Muti L , D'ambrosio M , et al. Nanostructured lipid carriers can enhance oral absorption of khellin, a natural pleiotropic molecule. Molecules. 2021; 26 (24): 7657.

[15]

Stella B , Peira E , Dianzani C , et al. Development and characterization of solid lipid nanoparticles loaded with a highly active doxorubicin derivative. Nanomaterials. 2018; 8 (2).

[16]

Trevaskis NL , Kaminskas LM , Porter CJH . From sewer to saviour-targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov. 2015; 14: 781- 803.

[17]

Porter CJH , Trevaskis NL , Charman WN . Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007; 6: 231- 248.

[18]

Soni K , Rizwanullah M , Kohli K . Development and optimization of sulforaphaneloaded nanostructured lipid carriers by the Box-Behnken design for improved oral efficacy against cancer: in vitro, ex vivo and in vivo assessments. Artif Cells, Nanomedicine Biotechnol. 2018; 46 (sup1): 15- 31.

[19]

Harde H , Das M , Jain S . Solid lipid nanoparticles:an oral bioavailability enhancer vehicle. Expet Opin Drug Deliv. 2011; 8 (11): 1407- 1424.

[20]

Miller DB , Spence JD . Clinical pharmacokinetics of fibric acid derivatives (Fibrates). Clin Pharmacokinet. 1998; 34 (2): 155- 162.

[21]

Ganesan P , Ramalingam P , Karthivashan G , Ko YT , Choi DK . Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int J Nanomed. 2018; 13: 1569- 1583.

[22]

Doktorovova S , Souto EB , Silva AM . Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN):in vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. Pharmaceut Dev Technol. 2018; 23 (1): 96- 105.

[23]

Müller RH , Mäder K , Gohla S . Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur J Pharm Biopharm. 2000; 50 (1): 161- 177.

[24]

Zur Mühlen A , Schwarz C , Mehnert W . Solid lipid nanoparticles (SLN) for controlled drug delivery-drug release and release mechanism. Eur J Pharm Biopharm. 1998; 45 (2).

[25]

Beg S , Rahman M , Kohli K . Quality-by-design approach as a systematic tool for the development of nanopharmaceutical products. Drug Discov Today. 2019; 24 (3): 717- 725.

[26]

Unnisa A , Chettupalli AK , Hagbani T Al , et al. Development of dapagliflozin solid lipid nanoparticles as a novel carrier for oral delivery:statistical design, optimization, in-vitro and in-vivo characterization, and evaluation. Pharmaceuticals. 2022; 15 (5).

[27]

Mujeli M , Hussain SA , Ismail MHS , Biak DRA , Jami MS . Screening of electrocoagulation process parameters for treated palm oil mill effluent using minimum-runs resolution IV design. Int J Environ Sci Technol. 2019; 16 (2): 811- 820.

[28]

Gidwani B , Vyas A . Preparation, characterization, and optimization of altretamineloaded solid lipid nanoparticles using Box-Behnken design and response surface methodology. Artif Cells, Nanomedicine Biotechnol. 2016; 44 (2): 571- 580.

[29]

Cirri M , Bragagni M , Mennini N , Mura P . Development of a new delivery system consisting in "drug-in cyclodextrin-in nanostructured lipid carriers" for ketoprofen topical delivery. Eur J Pharm Biopharm. 2012; 80 (1): 46- 53.

[30]

Shah H , Patel R . Statistical modeling of zaltoprofen loaded biopolymeric nanoparticles:characterization and anti-inflammatory activity of nanoparticles loaded gel. Int J Pharm Investig. 2015; 5 (1): 20.

[31]

Behbahani ES , Ghaedi M , Abbaspour M , Rostamizadeh K . Optimization and characterization of ultrasound assisted preparation of curcumin-loaded solid lipid nanoparticles:application of central composite design, thermal analysis and X-ray diffraction techniques. Ultrason Sonochem. 2017; 38: 271- 280.

[32]

Khalil HE , Alqahtani NK , Darrag HM , et al. Date palm extract (Phoenix dactylifera) PEGylated nanoemulsion:development, optimization and cytotoxicity evaluation. Plants. 2021; 10 (4).

[33]

Zhang L , Hao W , Xu L , et al. A pH-sensitive methenamine mandelate-loaded nanoparticle induces DNA damage and apoptosis of cancer cells. Acta Biomater. 2017; 62: 246- 256.

[34]

Sahle FF , Balzus B , Gerecke C , Kleuser B , Bodmeier R . Formulation and in vitro evaluation of polymeric enteric nanoparticles as dermal carriers with pH-dependent targeting potential. Eur J Pharmaceut Sci. 2016; 92: 98- 109.

[35]

Padhye SG , Nagarsenker MS . Simvastatin solid lipid nanoparticles for oral delivery: formulation development and in vivo evaluation. Indian J Pharmaceut Sci. 2013; 75 (5): 591- 598.

[36]

Khaira R , Sharma J , Saini V . Development and characterization of nanoparticles for the delivery of gemcitabine hydrochloride. Sci World J. 2014; 2014.

[37]

Priyanka K , Sahu PL , Singh S . Optimization of processing parameters for the development of Ficus religiosa L. extract loaded solid lipid nanoparticles using central composite design and evaluation of antidiabetic efficacy. J Drug Deliv Sci Technol. 2018; 43: 94- 102.

[38]

Sharma JB , Bhatt S , Saini V , Kumar M . Pharmacokinetics and pharmacodynamics of curcumin-loaded solid lipid nanoparticles in the management of streptozotocininduced diabetes mellitus:application of central composite design. Assay Drug Dev Technol. 2021; 19 (4): 262- 279.

[39]

Wojcik-Pastuszka D , Krzak J , Macikowski B , Berkowski R , Osi nski B , Musia ł W . Evaluation of the release kinetics of a pharmacologically active substance from model intra-articular implants replacing the cruciate ligaments of the knee. Materials. 2019; 12 (8).

[40]

Chadha R , Bhandari S . Drug-excipient compatibility screening-Role of thermoanalytical and spectroscopic techniques. J Pharmaceut Biomed Anal. 2014; 87: 82- 97.

[41]

Prisilla DH , Balamurugan R , Shah HR . Antidiabetic activity of methanol extract of Acorus calamus in STZ induced diabetic rats. Asian Pac J Trop Biomed. 2012; 2 (2 suppl L).

[42]

Qia I . Stability testing guidelines:stability testing of new drug substances and products.[Internet]. ICH Steering Committee; 2003, 2003. p. 1-24. Available from: www.ema.europa.eu/en/ich-q1a-r2-stability-testing-new-drug-substances-drug-prod ucts-scientific-guideline.

[43]

Chalikwar SS , Belgamwar VS , Talele VR , Surana SJ , Patil MU . Formulation and evaluation of Nimodipine-loaded solid lipid nanoparticles delivered via lymphatic transport system. Colloids Surfaces B Biointerfaces. 2012; 97: 109- 116.

[44]

Aji Alex MR , Chacko AJ , Jose S , Souto EB . Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharmaceut Sci. 2011; 42 (1-2): 11- 18.

[45]

Helgason T , Awad TS , Kristbergsson K , McClements DJ , Weiss J . Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). J Colloid Interface Sci. 2009; 334 (1): 75- 81.

[46]

Kovacevic A , Savic S , Vuleta G , Müller RH , Keck CM . Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC):effects on size, physical stability and particle matrix structure. Int J Pharm. 2011; 406 (1-2): 163- 172.

[47]

Olbrich C , Müller RH . Enzymatic degradation of SLN-effect of surfactant and surfactant mixtures. Int J Pharm. 1999; 180 (1): 31- 39.

[48]

Schöler N , Olbrich C , Tabatt K , Müller RH , Hahn H , Liesenfeld O . Surfactant, but not the size of solid lipid nanoparticles (SLN) influences viability and cytokine production of macrophages. Int J Pharm. 2001; 221 (1-2): 57- 67.

[49]

Lalani J , Patil S , Kolate A , Lalani R , Misra A . Protein-functionalized PLGA nanoparticles of lamotrigine for neuropathic pain management. AAPS PharmSciTech. 2015; 16 (2): 413- 427.

[50]

Manoochehri S , Darvishi B , Kamalinia G , et al. Surface modification of PLGA nanoparticles via human serum albumin conjugation for controlled delivery of docetaxel. DARU, J Pharm Sci. 2013; 21 (1).

[51]

Quintanar-Guerrero D , Fessi H , All emann E , Doelker E . Influence of stabilizing agents and preparative variables on the formation of poly(D,L-lactic acid) nanoparticles by an emulsification-diffusion technique. Int J Pharm. 1996; 143 (2): 133- 141.

[52]

Bakshi V , Amarachinta PR , Chettupalli AK . Design, development and optimization of solid lipid nanoparticles of rizatriptan for intranasal delivery:invitro & invivo assessment. Mater Today Proc. 2022; 66: 2342- 2357.

[53]

Amarachinta PR , Sharma G , Samed N , Chettupalli AK , Alle M , Kim JC . Central composite design for the development of carvedilol-loaded transdermal ethosomal hydrogel for extended and enhanced anti-hypertensive effect. J Nanobiotechnology. 2021; 19 (1).

[54]

Anchi P , Khurana A , Swain D , Samanthula G , Godugu C . Dramatic improvement in pharmacokinetic and pharmacodynamic effects of sustain release curcumin microparticles demonstrated in experimental type 1 diabetes model. Eur J Pharmaceut Sci. 2019; 130: 200- 214.

[55]

Kumar VV , Chandrasekar D , Ramakrishna S , Kishan V , Rao YM , Diwan PV . Development and evaluation of nitrendipine loaded solid lipid nanoparticles: influence of wax and glyceride lipids on plasma pharmacokinetics. Int J Pharm. 2007; 335 (1-2): 167- 175.

RIGHTS & PERMISSIONS

The Authors. Publishing services by Elsevier B.V. on behalf of Higher Education Press and KeAi Communications Co. Ltd.

AI Summary AI Mindmap
PDF (2209KB)

215

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/