Comprehensive review on modern techniques of granulation in pharmaceutical solid dosage forms
Anil Kumar Vadaga, Sai Shashank Gudla, Gnanendra Sai Kumar Nareboina, Hymavathi Gubbala, Bhuvaneswari Golla
Comprehensive review on modern techniques of granulation in pharmaceutical solid dosage forms
This comprehensive review explores modern granulation techniques in pharmaceutical dosage forms along with conventional methods, focusing on dry granulation and wet granulation. Dry granulation techniques, including slugging, roller compaction, and pneumatic dry granulation, are dissected with thorough analyses of their processing methods, advantages, disadvantages, and diverse applications. The article delves into eleven wet granulation techniques, offering insights into high-shear granulation, low-shear granulation, fluidized bed granulation, reverse wet granulation, steam granulation, moisture-activated dry granulation, melt granulation, freeze-dry granulation, foam granulation, thermal adhesion, and twin screw wet granulation. Each method is scrutinized, providing a comprehensive understanding of its processing steps, merits, drawbacks, and practical applications in pharmaceutical manufacturing. The article serves as a valuable resource for researchers, pharmaceutical professionals, and students, offering a nuanced exploration of diverse granulation techniques vital in drug formulation. This synthesis of information aims to enhance the understanding of granulation processes, facilitating informed decision-making in pharmaceutical development and manufacturing.
Granulation / Dry granulation / Wet granulation / Advanced techniques / Solid dosageforms
[1] |
Soares LA, Ortega GG, Petrovick PR, Schmidt PC. Dry granulation and compression of spray-dried plant extracts. AAPS PharmSciTech. 2005;6:E359–E366.
CrossRef
Google scholar
|
[2] |
Roy D, Bhowmik D, Kumar KPS. A comprehensive review on super disintegrants used in orodispersible tablets. Indian J Res Pharm Biotechnol. 2014;2(4):1297–1303.
|
[3] |
Parikh DM. Handbook of pharmaceutical granulation technology. Drugs Pharmaceut Sci. 2005;81.
|
[4] |
Iveson SM, Litster JD, Hapgood K, Ennis BJ. Nucleation, growth, and breakage phenomena in agitated wet granulation processes: a review. Powder Technol. 2001;117:3–39.
CrossRef
Google scholar
|
[5] |
Aulton ME, Taylor K. Pharmaceutics-The Science of Dosage Form Design. vol. 340. Churchill Livingstone;2002:348.
|
[6] |
Perry EJ. Size enlargement and size reduction. In: Perry’s Chemical Engineers’ Handbook. 7th ed. McGraw-Hill;1994.
|
[7] |
Parikh DM, Bonck JA, Mogavero M. Batch fluid bed granulation. Drugs Pharmaceut Sci. 1997;81:227–302.
|
[8] |
Hasan MM, Rashid HA, Chadni SH, Alam MJ, Hasna R, Islam MM. Gastro retentive: an innovative drug delivery system. Int J Biol Pharmaceut Res. 2016;7(5):262–272.
|
[9] |
Wang LF, Zhao LJ, Hong YL, Shen L, Lin X. Technological advances and challenges for exploring attribute transmission in tablet development by high shear wet granulation. Powder Technol. 2023;118402.
CrossRef
Google scholar
|
[10] |
Nishii K, Horio M. Handbook of Powder Technology. 2007;11:289–322. https://doi.org/10.1016/S0167-3785(07)80041-8.
|
[11] |
Roy Digpati
|
[12] |
Kumar Kochhar Summit
CrossRef
Google scholar
|
[13] |
Dry granulation by slugging method for sustained release of model drug. Int J Pharm Pharmaceut Res. 2020;17(3).
|
[14] |
IOSR. Journal of Pharmacy and Biological Sciences. Sep-Oct 2013;7. e-ISSN:2278-3008, p-ISSN:2319-7676.
|
[15] |
Selkirk AB, Ganderton D. The influence of wet and dry granulation methods on the pore structure of lactose tablets. J Pharm Pharmac. 1970;22(Suppl):86S–94S.
CrossRef
Google scholar
|
[16] |
Chalmers AA, Elworthy PH. J Pharm Pharmacol. March 1976;28(31):234–238.
CrossRef
Google scholar
|
[17] |
Khan KA, Musi Kabhumma P. J Pharm Pharmacol. 1981;33(1):627–631.
CrossRef
Google scholar
|
[18] |
Pathak Naveen
|
[19] |
Miller RW. Roller compaction technology. In: Parikh DM, Parikh CK, eds. Handbook on Pharmaceutical Granulation. New York: Marcel Dekker;1997:99–150.
|
[20] |
Reimer HL. Kleinebudde. Hybrid modelling of roll compaction with Styl one evolution. Powder Technol. 2019;341:66–74.
CrossRef
Google scholar
|
[21] |
Layla Hassan
CrossRef
Google scholar
|
[22] |
Jaminet F, Hess H. Untersuchungen Über Kompaktierung und Trockengranulieren. Pharm Acta Helv. 1996;41:39–58.
|
[23] |
Parrott EL. Densification of powders by concavo-convex roller compactor. J. Pharm. Sci. 1981;70:288–291.
CrossRef
Google scholar
|
[24] |
Funakoshi Y, Asogwa T, Satake E. Use of a novel roller compactor with a concave convex roller pair to obtain uniform compacting pressure. Drug Dev Ind Pharm. 1977;3:555–573.
CrossRef
Google scholar
|
[25] |
Hakanen A, Laine E. Acoustic emission during powder compaction and its frequency spectral analysis. Drug Dev Ind Pharm. 1993;19:2539–2560.
CrossRef
Google scholar
|
[26] |
Inghelbrecht S, Remon J-P. The roller compaction of different types of lactose. Int. J. Pharm. 1998;166:135–144.
CrossRef
Google scholar
|
[27] |
Inghelbrecht S, Remon J-P. Roller compaction and tableting of microcrystalline cellulose/drug mixtures. Int. J. Pharm. 1998;161:215–224.
CrossRef
Google scholar
|
[28] |
Rocksloh K, Rapp F-R, Abu Abed S, et al. Optimization of crushing strength and disintegration time of a high dose plant extract tablet by neural networks. Drug Dev Ind Pharm. 1999;25:1015–1025.
CrossRef
Google scholar
|
[29] |
Miller RW. Roller compaction technology. In: Parikh DM, ed. Handbook of Pharmaceutical Granulation Technology. vol. 81. New York: Marcel Dekker Inc;1997:99–150.
|
[30] |
Wu Feiyang
|
[31] |
Politi G, Heilakka E. Method and Apparatus for Dry Granulation. Google Patents;2009.
|
[32] |
Himanshu Solanki
|
[33] |
Shanmugam S. Granulation techniques and technologies: recent progresses. Bioimpacts: BI. 2015;5:55–63.
CrossRef
Google scholar
|
[34] |
Jannat Esratun
|
[35] |
Shahidulla SM, Amtul H, Azeer SA. Granulation techniques: an overview. World J Pharm Pharmaceut Sci. 2019;8(5):525–546.
|
[36] |
Desimone Veronica
CrossRef
Google scholar
|
[37] |
Sharma DM, kosalge SB, Lade SN. Review on moisture-activated dry granulation process. PHARMA TUTOR. 2017;5(12):58–67.
CrossRef
Google scholar
|
[38] |
Reynolds Gavin K, Le Phung K, Nilpawar Amol M. High shear granulation. Handbook of Powder Technology. 2007;1:3–19.
CrossRef
Google scholar
|
[39] |
Chittu TM, Oulahna D, Rheology M Hemati. Granule growth, and Granule strength: application to the wet Granulation of lactose. Journal of Powder Technology. 2011;208(2):441–453.
CrossRef
Google scholar
|
[40] |
Pawar Dipika S, Surwase Mr Rajendra K, Bhamare Sonam B, Pagar Sonali P. Fluidized bed Granulation: a processing technique. International Journal of Pharmaceutical Sciences. 2020;64(2):133–140.
CrossRef
Google scholar
|
[41] |
Strel Lothar M, Heinrich Stefan
CrossRef
Google scholar
|
[42] |
Ye T, Yu J, Luo Q, Wang S, Chan H. Inhalable clarithromycin liposomal dry powders using ultrasonic spray freeze drying. Powder Technology. 2017 Jan;305:63–70.
CrossRef
Google scholar
|
[43] |
Jagtap Sonal M, Pawar Ashish Y, Jadhav Khanderao R. Comparative study of reverse wet Granulation with conventional wet Granulation in solubility enhancement of SIMVASTATIN. International Journal of Pharmaceutical Sciences (Int J Pharm Sci). 2014;7(1):264–272.
|
[44] |
Solanki Himanshu K, Basuri Tarashankar
|
[45] |
Sheth Vijay P, Ranpura Vicky D, Patel Vilpul
|
[46] |
Albertini Beatrice
CrossRef
Google scholar
|
[47] |
Abdullah AL Arif
|
[48] |
Ullah Ismat
|
[49] |
Shinde Namdeo
|
[50] |
Moravka Kailas K, Ali Tariq M, Pawar Jaywant N, Amin Purnima D. Application of MEDG process to develop high dose immediate release Formulations. Adv Powder Technol. 2017;28(4):1270–1280.
CrossRef
Google scholar
|
[51] |
Balakrishna Koppukonda
|
[52] |
Lakshman JP, Kowalski J, Vasanthavada M, Tong WQ, Joshi YM, Serajuddin AT. Application of melt granulation technology to enhance tabletting properties of poorly compactible high-dose drugs. J Pharm Sci. 2011 Apr;100(4):1553–1565. Epub 2010 Dec 3. PMID: 24081475.
CrossRef
Google scholar
|
[53] |
Shukla Soham
|
[54] |
stuer Michael
CrossRef
Google scholar
|
[55] |
ACS Appl Nano Mater. 2021;4(9):8863–8871.
CrossRef
Google scholar
|
[56] |
patil Nayan
|
[57] |
solanki Himanshuk
|
[58] |
Thompson MR, weatherely S, pukadyil RN, sheskey pj. Foam granulation:New developments in pharmaceutical solid oral dosage forms using twin screw extrusion machinery. Drug Dev Ind Pharm. 2011;38(7):771–784.
CrossRef
Google scholar
|
[59] |
Iveson SM, Litster JD, Hapgood K, Ennis BJ. Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technology. 2001 Jun;117(1–2):3–39.
CrossRef
Google scholar
|
[60] |
Lin HL, Ho HO, Chen CC, Yeh TS, Sheu MT. Process and formulation characterizations of the thermal adhesion granulation (TAG) process for improving granular properties. Int J Pharm. 2008 Jun 5;357(1-2):206–212. Epub 2008 Feb 12. PMID: 18353570.
CrossRef
Google scholar
|
[61] |
chen Ying-chen
CrossRef
Google scholar
|
[62] |
Kallakunta Venkata Raman
CrossRef
Google scholar
|
[63] |
Bandari Suresh
CrossRef
Google scholar
|
[64] |
Majumder M, Rajabnezhad S, Nokhodchi A, Maniruzzaman M. Chemico-calorimetric analysis of amorphous granules manufactured via continuous granulation process. Drug Delivery and Translational Research. 2018;8:1658–1669.
CrossRef
Google scholar
|
[65] |
S.B. Upadhye, R.R.S. Vladyka, M.A. Repka, J. Park, R.V. Tiwari, H.G. Patil, J.T. Morott Jr., W. Lu. Twin screw dry granulation for producing solid formulations. Google Patent. WO 2017/185040 A1.
|
[66] |
M. Richter. Dry Granulation as a Twin-Screw Process in Pharmaceutical Applications (No. LR-79). [PDF]. Accessed November 8, 2019.
|
[67] |
jannat Esratum
|
/
〈 | 〉 |