Acalypha wilkesiana L - A potential anti-stearoyl-CoA desaturase agent: Insilico and network pharmacology studies

Abel Kolawole Oyebamiji , Sunday Adewale Akintelu , Oluwakemi Ebenezer , Banjo Semire , Jonathan Oyebamiji Babalola

Intelligent Pharmacy ›› 2024, Vol. 2 ›› Issue (4) : 540 -553.

PDF (3435KB)
Intelligent Pharmacy ›› 2024, Vol. 2 ›› Issue (4) : 540 -553. DOI: 10.1016/j.ipha.2023.12.007

Acalypha wilkesiana L - A potential anti-stearoyl-CoA desaturase agent: Insilico and network pharmacology studies

Author information +
History +
PDF (3435KB)

Abstract

The activity of Seborrheic dermatitis on the skin of children still remains of the dermatoses of male and female babies in the early days of their existence. Acalypha wilkesiana L have been employed by mothers to combat Seborrheic dermatitis, yet, the descriptors responsible for such activity as well as the nonbonding interactions between the selected phytochemicals and stearoyl-CoA desaturase has not been explored. The studied compounds were optimized using Spartan’14 software as well as molecular operating environments (MOE) for docking, Cytoscape software for compound-protein interaction network, Gromacs for molecular dynamic simulation as well ADMETSar for pharmacokinetics studies. The selected compounds proved to have anti-stearoyl-CoA desaturase properties via the calculated descriptors obtained from the chemical compounds obtained from Acalypha wilkesiana L as well as from the result from molecular modeling studies. The Pharmacokinetics results were observed and reported appropriately.

Keywords

Acalypha wilkesiana / Insilico / Seborrheic dermatitis / DFT

Cite this article

Download citation ▾
Abel Kolawole Oyebamiji, Sunday Adewale Akintelu, Oluwakemi Ebenezer, Banjo Semire, Jonathan Oyebamiji Babalola. Acalypha wilkesiana L - A potential anti-stearoyl-CoA desaturase agent: Insilico and network pharmacology studies. Intelligent Pharmacy, 2024, 2(4): 540-553 DOI:10.1016/j.ipha.2023.12.007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gupta AK, Bluhm R, Cooper EA, et al. Seborrheic dermatitis. Dermatol Clin. 2003;21: 401–412.

[2]

Unna PG. Seborrheal eczema. J Cutan Genitourin Dis. 1887;5:12.

[3]

Schwartz RA, Janusz CA, Janniger CK. Seborrheic dermatitis:an overview. Am Fam Physician. 2006;74(1):125–130.

[4]

Pei Y, Gong S, Song M, El-kott AF, Bani-Fwaz MZ, Xu Y. Silico studies, biological effects and anti-lung cancer potential of triacetyl resveratrol as natural phenolic compound. ChemistrySelect. 2022;7:e202201491.

[5]

Li L, Song X, Ouyang M, El-Kott AF, Bani-Fwaz MZ, Yu Z. Anti-HMG-CoA reductase, anti-diabetic, anti-urease, anti-tyrosinase and anti-leukemia cancer potentials of panicolin as a natural compound:in vitro and in silico study. J Oleo Sci. 2022;71(10): 1469–1480.

[6]

Yang X, Zhao Z, Zhao C, Li Y, El-Kott AF, Bani-Fwaz MZ. Anti-breast adenocarcinoma and anti-urease anti-tyrosinase properties of 5-pentylresorcinol as natural compound with molecular docking studies. J Oleo Sci. 2022;71(7):1031–1038.

[7]

Wang L, Karmakar B, Al-Saeed FA, Shati AA, Bani-Fwaz MZ, El-Kott AF. Green synthesis of Ag/Fe3O4 nanoparticles using Mentha longifolia flower extract: evaluation of its antioxidant and anti-lung cancer effects. Heliyon. 2022;8(12): e12326.

[8]

Wang C, Li G, Karmakar B, et al. Pectin mediated green synthesis of Fe3O4/Pectin nanoparticles under ultrasound condition as an anti-human colorectal carcinoma bionanocomposite. Arab J Chem. 2022;15(6):103867.

[9]

Xue Y, Karmakar B, AlSalem HS, et al. Green nanoarchitectonics of Cu/Fe3O4 nanoparticles using Helleborus Niger extract towards an efficient nanocatalyst, antioxidant and anti-lung cancer agent. J Inorg Organomet Polym Mater. 2022;32(9): 3585–3594.

[10]

Cai Y, Karmakar B, Salem MA, et al. Ag NPs supported chitosan-agarose modified Fe3O4 nanocomposite catalyzed synthesis of indazolo[2,1-b]phthalazines and anticancer studies against liver and lung cancer cells. Int J Biol Macromol. 2022;208: 20–28.

[11]

Zhu B, Xie N, Yue L, et al. Formulation and characterization of a novel anti-human endometrial cancer supplement by gold nanoparticles green-synthesized using Spinacia oleracea L. Leaf aqueous extract. Arab J Chem. 2022;15(3):103576.

[12]

Ro BI, Dawson TL. The role of sebaceous gland activity and scalp microfloral metabolism in the etiology of seborrheic dermatitis and dandruF. J Invest Dermatol Symp Proc. 2005;10(3):194–197.

[13]

Chen J, Karmakar B, Salem MA, et al. CuO NPs@ Starch as a novel chemotherapeutic drug for the treatment of several types of gastrointestinal system cancers including gastric, pancreatic, and colon cancers. Arab J Chem. 2022;15(4):103681.

[14]

Mangion SE, Mackenzie L, Roberts MS, Holmes AM. Seborrheic dermatitis: topical therapeutics and formulation design. Eur J Pharm Biopharm. 2023;185:148–164.

[15]

Paton CM, Ntambi JM. Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab. 2009;297:E28–E37.

[16]

Paton CM, Ntambi JM. Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab. 2009;297:E28–E37.

[17]

Paton CM, Ntambi JM. Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab. 2009;297(1):E28–E37.

[18]

Ntambi JM, Miyazaki M, Stoehr JP, et al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci USA. 2002;99:11482–11486.

[19]

Hammond LE, Neschen S, Romanelli AJ, et al. Mitochondrial glycerol-3-phosphate acyltransferase-1 is essential in liver for the metabolism of excess acyl-CoAs. J Biol Chem. 2005;280:25629–25636.

[20]

Maeda K, Cao H, Kono K, et al. Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes. Cell Metabol. 2005;1: 107–119.

[21]

Izadi MS, Naserian AA, Nasiri MR, Heravi RM. An evolutionary relationship between stearoyl-CoA desaturase (SCD) protein sequences involved in fatty acid metabolism. Reports of Biochemistry & Molecular Biology. 2014;3(1).

[22]

Castro LFC, Wilson JM, Goncalves O, Galante-Oliveira S, Rocha E, Cunha I. The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates. BMC volutionary Biology. 2011;11(1):132.

[23]

Kadiri HE, Ossai HU. Ameliorative potential of Acalypha wilkesiana leaf extract (subsp. macrophylla) on cyanide-induced renal damaged Wister rats. Scientific African. 2023;19:e01568.

[24]

Wu H, Pang H, Chen Y, et al. Anti-inflammatory effect of a polyphenol-enriched fraction from Acalypha wilkesiana on lipopolysaccharide-stimulated RAW 264.7 macrophages and acetaminophen-induced liver injury in mice. Oxid Med Cell Longev. 2018;7858094.

[25]

Santiago C, Lim K, Loh H, Ting KN. Prevention of cell-surface attachment and reduction of penicillin- binding protein 2a (PBP2a) level in methi-cillin-resistant Staphylococcus aureus biofilms by Acalypha wilkesiana. BMC Compl Alternative Med. 2015;15:79.

[26]

Adesina SK, Ogudaini O Idowu AO, Onawunmi H, Pais M. Antimicrobialk constituents of the leaves of Acalypha wilkesiana ans Acalypha hispida. Phytother Res. 2000;14:371–374.

[27]

Oladunmoye MK. Comparative evaluation of antimicrobial activities and phytochemical screening of two varieties of Acalypha wilkesiana. Int J Trop Med. 2006;1(3):134–136.

[28]

Igwe KK, Madubuike AJ, Otuokere IE, Chika I, Amaku FJ. Studies on the medicinal plant Acalypha wilkesiana ethanol extract phytocomponents by GCMS analysis. Glob J Sci Front Res (GJSFR). 2016;16(2).

[29]

Halayal RY, Bagewadi ZK, Maliger RB, Al Jadidi S, Deshpande SH. Network pharmacology based anti-diabetic attributes of bioactive compounds from Ocimum gratissimum L. through computational approach. Saudi J Biol Sci. 2023.

[30]

Bai Y, McCoy JG, Levin EJ, et al. X-ray structure of a mammalian stearoyl-CoA desaturase. Nature. 2015;524(7564):252–256.

[31]

Oyebamiji AK, Tolufashe GF, Semire B. Inhibition study on anti-type 3 of 3 α-hydroxysteroid dehydrogenase activity against 1,2,3-triazolo[4,5-D]pyrimidine derivatives: molecular modelling approach. Scientific African. 2020;8. e004 4 4.

[32]

Oyebamiji AK, Akintayo ET, Akintayo CO, Aworinde HO, Adekunle OD, Akintelu SA. Cyclic RGD-containing peptides: in silico exploration against BCL-X(L). Ukrainian Biochem J. 2023;95(2):93–105.

[33]

Oyebamiji AK, Olujinmi FE, Akintayo ET, et al. Potential inhibiting activities of phytochemicals from enantia chlorantia bark against lac-tate dehydrogenase: in silico approach. Eurasian Journal of Chemistry. 2023.

[34]

Saral A, Sudha P, Muthu S, Sevvanthi S, Sangeetha P, Selvakumari S. Vibrational spectroscopy, quantum computational and molecular docking studies on 2-chloroquinoline-3-carboxaldehyde. Heliyon. 2021;7:e07529.

[35]

Manoj KP, Elangovan N, Chandrasekar S. Synthesis, XRD, hirshfeld surface analysis, ESP, HOMO-LUMO, quantum chemical modeling and anticancer activity of di(pmethyl benzyl)(dibromo)(1,10-phenanthroline) tin(IV) complex. Inorg Chem Commun. 2022;139:109324.

[36]

Kadela-Tomanek M, Bębenek E, Sokal A, Książek M, Chrobak E. Crystal structure and spectroscopic analysis of 3-Diethoxyphosphoryl-28-[1-(1-deoxy-_-D-glucopyranosyl)-1H-1,2,3-triazol-4-yl]carbonylbetulin. Crystals. 2023;13:1488.

[37]

Parvathy G, Kaliammal R, Velsankar K, Kumar MK, Sankaranarayanan K, Sudhahar S. Studies on structural, optical, homo-lumo and mechanical properties of piperazinium p-hydroxybenzoate monohydrate single crystal for nonlinear optical applications. Chem Phys Lett. 2020;758:137934.

[38]

Aihara J. Reduced HOMO LUMO gap as an Index of kinetic stability for polycyclic aromatic hydrocarbons. J Phys Chem A. 1999;103:7487–7495.

[39]

Oyebamiji AK, Akintelu SA, Semire B, et al. Molecular modeling insights into bioactivities of head-to-tail cyclic peptides: potential sedoheptulose-7-phosphate isomerase inhibitors. Advanced Journal of Chemistry, Section A. 2024;7(2):146–162.

RIGHTS & PERMISSIONS

2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.

AI Summary AI Mindmap
PDF (3435KB)

549

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/