Towards designing of some potential new autoimmune disorder inhibitors using crystal structures and Hirshfeld surface analyses in combination with molecular docking and molecular dynamics simulations

Emmanuel Israel Edache , Adamu Uzairu , Paul Andrew Mamza , Gideon Adamu Shallangwa , Muhammad Tukur Ibrahim

Intelligent Pharmacy ›› 2024, Vol. 2 ›› Issue (2) : 204 -225.

PDF (7961KB)
Intelligent Pharmacy ›› 2024, Vol. 2 ›› Issue (2) : 204 -225. DOI: 10.1016/j.ipha.2023.11.008

Towards designing of some potential new autoimmune disorder inhibitors using crystal structures and Hirshfeld surface analyses in combination with molecular docking and molecular dynamics simulations

Author information +
History +
PDF (7961KB)

Abstract

The emergence of multi-drug-resistant autoimmune diseases poses a significant risk to human health and has garnered global attention. In this study, metformin and sulfasalazine have been used as starting materials or control. This research has successfully designed a hundred compounds, to assess their efficacy against two autoimmune disease pathogens: type 1 diabetes and rheumatoid arthritis. The DFT method was engaged to calculate the vibrational frequencies and Frontier Molecular orbitals (FMOs) of the selected compounds. The reactivity and selectivity of the selected compounds are analyzed using parameters like MEP and global reactivity descriptors, which are calculated and interpreted. The Density of state (DOS) of the molecule has been plotted and interpreted. Furthermore, docking results showed favorable interactions of the designed compound D385 with catalytically important amino acid residues. The interactions of the best active D385 when compared with the template and the standard drugs show similar binding sites. DFT studies further confirm the presence of HOMO orbital centered on the isoxazole ring further highlighting its importance for receptor-ligand hydrogen and hydrophobic interactions. The molecular dynamics simulations and MM/GBSA analysis reveal that the inhibitory nature of the designed compound D385 is a proven inhibitor of diabetes type 1 and rheumatoid arthritis inhibitor activities. Our study suggested that the designed compounds showed comparable results to that of metformin and sulfasalazine and may be used for further experimental studies. It can also be used as a pipeline to search for and design new potential autoimmune disease inhibitors. The most promising candidates from computational trials can be examined in a wet laboratory experiment before moving on to clinical trials.

Keywords

Autoimmune disorders / Hirshfeld surface analysis / Docking simulations / Molecular dynamics simulations / Density of states (DOS) / Density function theory (DFT)

Cite this article

Download citation ▾
Emmanuel Israel Edache, Adamu Uzairu, Paul Andrew Mamza, Gideon Adamu Shallangwa, Muhammad Tukur Ibrahim. Towards designing of some potential new autoimmune disorder inhibitors using crystal structures and Hirshfeld surface analyses in combination with molecular docking and molecular dynamics simulations. Intelligent Pharmacy, 2024, 2(2): 204-225 DOI:10.1016/j.ipha.2023.11.008

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

EdacheEI, UzairuA, MamzaPA, Shallangwa GA, AzamM, MinK. Methimazole and propylthiouracil design as a drug for anti-graves’ disease: structural studies, Hirshfeld surface analysis, DFT calculations, molecular docking, molecular dynamics simulations, and design as a drug for anti-graves’ disease. J Mol Struct. 2023;1289:135913.

[2]

WildnerG. Antigenic mimicry – the key to autoimmunity in immune privileged organs. J Autoimmun. 2023;137:102942. PMID 36357242.

[3]

VojdaniA, Vojdani E, RosenbergAZ, ShoenfeldY. The role of exposomes in the pathophysiology of autoimmune diseases II: pathogens. Pathophysiology. 2022;29(2):243–280. PMID 35736648.

[4]

FrazzeiG, van Vollenhoven RF, de JongBA, SiegelaarSE, van Schaardenburg D. Preclinical autoimmune disease: a comparison of rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis and Type 1 diabetes. Front Immunol. 2022;13:899372. PMID 35844538.

[5]

PuglieseA. Autoreactive T cells in type 1 diabetes. J Clin Invest. 2017;127(8):2881–2891. PMID 28762987.

[6]

BolonB. Cellular and molecular mechanisms of autoimmune disease. Toxicol Pathol. 2012;40(2):216–229. PMID 22105648.

[7]

EdacheEI, UzairuA, MamzaPA, Shallangwa GA. A mathematical modeling and molecular dynamic simulations in the investigation of novel Type I diabetes treatment. Biomed J Sci Tech Res. 2021;34(1):26472–26489.

[8]

BalakumarP, Maung-U K, JagadeeshG. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res. 2016;113(A):600–609. PMID 27697647.

[9]

KhanMAB, HashimMJ, KingJK, Govender RD, MustafaH, Al KaabiJ. Epidemiology of Type 2 diabetes -global burden of disease and forecasted trends. J Epidemiol Glob Health. 2020;10(1):107–111. PMID 32175717.

[10]

JassimKM, DawoodZS, HusseinAA. Asseabssment knowledge of dietic patients towards prevention of diabetic retinopathy at the endocrinology and Diabetes Center in Basra city. Indian J Forensic Med Toxicol. 2021;15:5172–5182.

[11]

International federation. Diabetes facts and figures. http://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html;2019. Accessed November 15, 2019. http://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html.

[12]

EdacheEI, UzairuA, MamzaPA, Shallangwa GA. 2D-QSAR, 3D-QSAR, molecular docking, and molecular dynamics simulations in the probe of novel type I diabetes treatment. Int J New Chem. 2022;9(4):351–382. https://doi.org/10.22034/ijnc.2021.529335.1161.

[13]

SelvinE, Juraschek SP. Diabetes epidemiology in the COVID-19 pandemic. Diabetes Care. 2020;43(8):1690–1694. PMID 32540920.

[14]

SeiglieJ, PlattJ, CromerSJ, et al. Diabetes as a risk factor for poor early outcomes in patients hospitalized with COVID-19. Diabetes Care. 2020;43(12):2938–2944. PMID 32847827.

[15]

AbuhammadA, TahaMO. QSAR studies in the discovery of novel type-II diabetes therapies. Expet Opin Drug Discov.2015. https://doi.org/10.1517/17460441.2016.1118046.

[16]

LiuD, FangY, RaoY, et al. Synovial fibroblast-derived exosomal microRNA-106b suppresses chondrocyte proliferation and migration in rheumatoid arthritis via down-regulation of PDK4. J Mol Med (Berl). 2020;98(3):409–423. PMID 32152704.

[17]

ZhouS, ZouH, ChenG, Huang G. Synthesis and biological activities of chemical drugs for the treatment of rheumatoid arthritis. Top Curr Chem. 2019;377(5):28. PMID 31563994.

[18]

GuoQ, WangY, XuD, Nossent J, PavlosNJ, XuJ. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6:15. PMID 29736302.

[19]

AliverniniS, PelusoG, FedeleAL, Tolusso B, GremeseE, FerraccioliG. Tapering and discontinuation of TNF-α blockers without disease relapse using ultrasonography as a tool to identify patients with rheumatoid arthritis in clinical and histological remission. Arthritis Res Ther. 2016;18:39. PMID 26842890.

[20]

SioutiE, Andreakos E. The many facets of macrophages in rheumatoid arthritis. Biochem Pharmacol. 2019;165:152–169. PMID 30910693.

[21]

EdacheEI, UzairuA, MamzaPA, Shallangwa GA. Structure-based simulated scanning of rheumatoid arthritis inhibitors:2D-QSAR, 3D-QSAR, docking, molecular dynamics simulation, and lipophilicity indices calculation. Sci Afr. 2022;15:e01088.

[22]

AletahaD, SmolenJS. Diagnosis and management of rheumatoid arthritis: a review. J Am Med Assoc. 2018;320(13):1360–1372. PMID 30285183.

[23]

LinCT, HuangWN, TsaiWC, et al. Predictors of drug survival for biologic and targeted synthetic DMARDs in rheumatoid arthritis: analysis from the TRA clinical electronic registry. PLoS One. 2021;16(4):e0250877. PMID 33930048.

[24]

PettaI, PeeneI, ElewautD, Vereecke L, De BosscherK. Risks and benefits of corticosteroids in arthritic diseases in the clinic. Biochem Pharmacol. 2019;165:112–125. PMID 30978323.

[25]

PuspaningtyasAR. Docking studies of Physalis peruviana ethanol extract using molegro virtual docker on insulin tyrosine kinase receptor as antidiabetic agent. Int Curr Pharmaceut J. 2014;3(5):265–269.

[26]

AnusreeSS, Priyanka A, NishaVM, DasAA, RaghuKG. An in vitro study reveals the nutraceutical potential of punicic acid relevant to diabetes via enhanced GLUT4 expression and adiponectin secretion. Food Funct. 2014;5(10):2590–2601. PMID 25143251.

[27]

MassalskaM, Maslinski W, CiechomskaM. Small molecule inhibitors in the treatment of rheumatoid arthritis and beyond: latest updates and potential strategy for fighting COVID-19. Cells. 2020;9(8):1876. PMID 32796683.

[28]

LedinghamJ, Gullick N, IrvingK, et al. BSR and BHPR guideline for the prescription and monitoring of non-biologic disease-modifying antirheumatic drugs. Rheumatology. 2017;56(6):865–868. PMID 28339817.

[29]

UgbeFA, Shallangwa GA, UzairuA, AbdulkadirI. Activity modeling, molecular docking and pharmacokinetic studies of some boron-pleuromutilins as anti-Wolbachia agents with potential for treatment of filarial diseases. Chem Data Coll. 2021;36:100783.

[30]

AtalayS, MacitM, BulbulH. Crystal structure and computational studies of N-((2-ethoxynaphthalen-1-yl)methylene-4-fluoroaniline. Eur J Chem. 2021;12(4):454–458.

[31]

EdacheEI, AdamuU, MamzaPA, Gideon SA. Docking Simulations and Virtual Screening to find Novel Ligands for T3S in Yersinia pseudotuberculosis YPIII, A drug target for type III secretion the Gram-negative pathogen Yersinia pseudotuberculosis. Chem Rev Lett. 2021;4:130–144. https://doi.org/10.22034/CRL.2021.254804.1088.T3S.

[32]

UgbeFA, Shallangwa GA, UzairuA, et al. Cheminformatics-based discovery of new organoselenium compounds with potential for the treatment of cutaneous and visceral leishmaniasis. J Biomol Struct Dyn. 2023:1–24.

[33]

EdacheEI, UzairuA, AbechiSE. Development and estimation of an in silico model for anti-HIV-1 integrase inhibitor using genetic function approximation. J. adv. med. pharm. sci. 2016;5(2):1–8.

[34]

ArıcıM, Yeşilel OZ, AcarE, DegeN. Synthesis, characterization and properties of nicotinamide and isonicotinamide complexes with diverse dicarboxylic acids. Polyhedron. 2017i;127:293–301.

[35]

IlmiR, ZhangD, DutraJDL, et al. A Tris -Diketonate europium(III) complex based OLED fabricated by thermal evaporation method displaying efficient bright red emission. Org Electron. 2021;96:106216.

[36]

GuerrabW, ChungI-M, KansizS, et al. Synthesis, structural and molecular characterization of 2, 2-diphenyl-2H, 3H, 5H, 6H, 7H-imidazo[2, 1-b][1, 3]thiazin-3-one. J Mol Struct. 2019;1197:369–376.

[37]

KanmazalpSD, MacitM, DegeN. Hirshfeld surface, crystal structure and spectroscopic characterization of (E)-4-(diethylamino)-2-((4-phenoxyphenylimino) methyl) phenol with DFT studies. J Mol Struct. 2019;1179:181–191.

[38]

SenP, AtmacaGY, ErdogmusA, Kanmazalp SD, DegeN, YildizSZ. Peripherally tetrabenzimidazole units-substituted zinc(II) phthalocyanines: synthesis, characterization and investigation of photophysical and photochemical properties. J Lumin. 2018;194:123–130.

[39]

Burcu ArslanNB, Özdemir N, DayanO, et al. 4-oxadiazole-2 (3H)-thione: experimental and molecular modeling study. Chem Phys. 2014;439:1–11.

[40]

SpackmanMA, Jayatilaka D. Hirshfeld surface analysis. CrystEngComm. 2009;11(1):19–32.

[41]

MackenzieCF, Spackman PR, JayatilakaD, SpackmanMA. CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ. 2017;4(5):575–587.

[42]

SpackmanPR, TurnerMJ, McKinnonJJ, et al. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallogr. 2021;54(3):1006–1011.

[43]

FrischMJ, Schlegel Trucks, GwHB, et al. Gaussian 09, Revision A.02. Fox: Wallingford CT. 2013.

[44]

DuttaA, MondalS, SinghPK, Ray B. Single crystal investigation, Hirshfeld surface and interaction energy framework analyses of structure-directing interactions within two isomorphous Schiff’s base multicomponent salts. J Mol Struct. 2022;1264:133224.

[45]

KaragianniA, Quodbach J, WeingartO, et al. Structural and energetic aspects of entacapone-theophylline-water cocrystal. Solids. 2022;3(1):66–92.

[46]

TahirMN, AliA, KhalidM, et al. Efficient synthesis of imine-carboxylic acid functionalized compounds: single crystal, Hirshfeld surface and quantum chemical exploration. Molecules. 2023;28(7):2967.

[47]

BeckeAD. Density-functional thermochemistry 3. The role of exact exchange. J Chem Phys. 1993;1993(98):5648–5652.

[48]

LeeC, YangW, ParrRG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988;37(2):785–789. PMID 9944570.

[49]

EdacheEI, UzairuA, AbechiSE. Development and estimation of an in silico model for anti-HIV-1 integrase inhibitor using genetic function approximation. J Adv Med Pharm Sci. 2016;5(2):1–18.

[50]

Sánchez-MárquezJ, ZorrillaD, Sánchez-Coronilla A, et al. Introducing “UCA-FUKUI” software: reactivity-index calculations. J Mol Model. 2014;20(11):2492. PMID 25338819.

[51]

TrottO, OlsonAJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010;31(2):455–461. PMID 19499576.

[52]

EberhardtJ, Santos-Martins D, TillackAF, ForliS. AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model. 2021;61(8):3891–3898. PMID 34278794.

[53]

O’BoyleNM, BanckM, JamesCA, Morley C, VandermeerschT, HutchisonGR. Open Babel: an open chemical toolbox. J Cheminf. 2011;3(10):33.

[54]

MorrisGM, HueyR, LindstromW, et al. AutoDock4 and AutoDockToolS4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–2791.

[55]

RavindranathPA, ForliS, GoodsellDS, Olson AJ, SannerMF. AutoDockFR: advances in protein-ligand docking with explicitly specified Binding Site flexibility. PLOS Comp Biol. 2015;11(12):e1004586. PMID 26629955.

[56]

PhillipsJC, BraunR, WangW, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26(16):1781–1802.

[57]

HumphreyW, DalkeA, SchultenK. VMD: visual molecular dynamics. J Mol Graph. 1996;14(1):33–38.

[58]

JoS, KimT, IyerVG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem. 2008;29(11):1859–1865.

[59]

LeeJ, ChengX, SwailsJM, et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theor Comput. 2016;12(1):405–413.

[60]

KimS, LeeJ, JoS, BrooksCL, LeeHS, Im W. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. J Comput Chem. 2017;38(21):1879–1886.

[61]

BaiQ, TanS, XuT, LiuH, HuangJ, Yao X. MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Briefings Bioinf. 2021;22(3):1–12.

[62]

TurnerMJ, McKinnon JJ, WolffSK, et al. Available from: http://hirshfeldsurface.net; 2017.

[63]

OzerCK, SolmazU, ArslanH. Crystal structure, Hirshfeld surface analysis, and DFT studies of N-(2-chlorophenylcarbamothioyl)cyclohexanecarboxamide. Eur J Chem. 2021;12(4):439–449.

[64]

GargU, AzimY, AlamM. In acid-aminopyrimidine continuum: experimental and computational studies of furan tetracarboxylate-2-aminopyrimidinium salt. RSC Adv. 2021;11(35):21463–21474.

[65]

BoukabchaN, Benmohammed A, BelhachemiMHM, et al. Spectral investigation, TDDFT study, Hirshfeld surface analysis, NCI-RDG, HOMO-LUMO, chemical reactivity and NLO properties of 1-(4-fluorobenzyl)-5-bromolindolin-2, 3≑dione. J Mol Struct. 2023;1285:135492.

[66]

ChalkhaM, Ameziane el Hassani A, NakkabiA, et al. Crystal structure, Hirshfeld surface and DFT computations, along with molecular docking investigations of a new pyrazole as a tyrosine kinase inhibitor. J Mol Struct. 2023 Feb 5;1273:134255.

[67]

LipinskiCA. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337–341.

[68]

VeberDF, Johnson SR, ChengHY, SmithBR, WardKW, KoppleKD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615–2623.

[69]

JamrózMH. Vibrational energy distribution analysis (VEDA): scopes and limitations. Spectrochim Acta Mol Biomol Spectrosc. 2013;114:220–230.

[70]

BoyleNMO, Tenderholt AL, LangnerKM. High capacity hydrogen storage in Ni decorated carbon nanocone: a first-principles study. J Comput Chem. 2008;29:839–845.

[71]

SocratesG. Infrared and Raman Characteristic Group. Frequencies: Tables and Charts. 3rd ed. Chichester: Wiley;2001.

[72]

KhadkaJB, JoshiBD. Molecular electrostatic potential, HOMO-LUMO and vibrational study of aristolochic acid II using density functional theory. Bibechana. 2015;12:40–52.

[73]

AbrahamJP, SajanD, JoeIH, Jayakumar VS. Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of p-amino acetanilide. Spectrochim Acta Mol Biomol Spectrosc. 2008;71(2):355–367. PMID 18321771.

[74]

GurbanovAV, Kuznetsov ML, DemukhamedovaSD, et al. Role of substituents on resonance assisted hydrogen bonding vs. intermolecular hydrogen bonding. CrystEngComm. 2020;22(4):628–633.

[75]

SangwanS, YadavN, KumarR, et al. A score years’ update in the synthesis and biological evaluation of medicinally important 2-pyridones. Eur J Med Chem. 2022;232:114199. PMID 35219150.

[76]

NaghiyevFN, Cisterna J, KhalilovAN, et al. Crystal structure and Hirshfeld surface analysis of acetoacetanilide based reaction products. Molecules. 2020;25(9):2235. PMID 32397450.

[77]

ArivazhaganaM, Sambathkumar K, JeyavijayanS. Density functional theory study of FTIR and FT-Raman spectra of 7-acetoxy-4-methylcoumarin. Indian J Pure Appl Phys. 2010;48:716–722.

[78]

KeS-H. All-electron GW methods implemented in molecular orbital space: ionization energy and electron affinity of conjugated molecules. Phys Rev B. 2011;84(20):205415.

[79]

GuptaR, Srivastava D, SahuM, TiwariS, Ambasta RK, KumarP. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers. 2021;25(3):1315–1360. PMID 33844136.

[80]

KazemiS, Daryani AS, AbdoussM, ShariatiniaZ. DFT computations on the hydrogen bonding interactions between methacrylic acid-trimethylolpropane trimethacrylate copolymers and letrozole as drug delivery systems. J Theor Comput Chem. 2016;15(2):1650015.

[81]

RijalR, Lamichhane HP, PudasaineeK. Molecular structure homo-lumo analysis and vibrational spectroscopy of the cancer healing pro-drug temozolomide based on dft calculations. AIMS Biophys. 2022;9(3):208–220.

RIGHTS & PERMISSIONS

2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.

AI Summary AI Mindmap
PDF (7961KB)

Supplementary files

Supporting Information

357

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/