Research and development of antibody-based novel anti-cancer drugs: An overview
Junxiang Zhou, Han Deng, Hongtao Xiao
Research and development of antibody-based novel anti-cancer drugs: An overview
Antibody-based drugs have been a significant breakthrough in the field of cancer treatment in recent years with the development of biotechnology in pharmaceuticals. These drugs utilize artificially synthesized antibodies to target specific antigens on cancer cells for targeted therapy. Bispecific antibodies (BsAbs) and antibody–drug conjugates (ADCs) are emerging classes of antibody-based drugs. Currently, there are five approved BsAbs and fifteen approved ADCs globally for the treatment of various solid tumors and hematological malignancies. BsAbs can target two different antigens, allowing for more precise targeting, increased specificity, and reduced toxicity. ADCs consist of antibody, linker, and payload, offering improved efficacy and reduced side effects. This article provides an overview of approved BsAbs and ADCs globally, including their characteristics, therapeutic targets, indications, clinical efficacy, and safety profiles, aiming to provide insights into the global development of these types of drugs.
Anti-Cancer drug / Bispecific antibody / Antibody–drug conjugate / Cancer / Targeted therapy / Clinical trial
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA A Cancer J Clin. 2021; 71 (3): 209- 249.
|
[2] |
Jin S, Sun Y, Liang X, et al. Emerging new therapeutic antibody derivatives for cancer treatment[J]. Signal Transduct Targeted Ther. 2022; 7 (1): 39.
|
[3] |
Kaplon H, Crescioli S, Chenoweth A, et al. Antibodies to watch in 2023[J]. mAbs. 2023;15(1), 2153410.
|
[4] |
Buss Na, Henderson Sj, Mcfarlane M, et al. Monoclonal antibody therapeutics: history and future[J]. Curr Opin Pharmacol. 2012; 12: 615- 622.
|
[5] |
Singh S, Tank Nk, Dwiwedi P, et al. Monoclonal antibodies: a review[J]. Curr Clin Pharmacol. 2018; 13: 85- 99.
|
[6] |
Hagenbeek A, Gadeberg O, Johnson P, et al. Frist clinical use of of atumumab, a novel fully human anti-CD20 monoclonal antibody in relapsed or refractory follicular lymphoma: results of a phase 1/2 trial[J]. Blood. 2008; 111 (12): 5486- 5495.
|
[7] |
Labrijn AF, Janmaat ML, Reichert JM, et al. Bispecific antibodies: a mechanistic review of the pipeline[J]. Nat Rev Drug Discov. 2019; 18 (8): 585- 608.
|
[8] |
Oostindie SC, Lazar GA, Schuurman J, et al. Avidity in antibody effector functions and biotherapeutic drug design[J]. Nat Rev Drug Discov. 2022; 21 (10): 715- 735.
|
[9] |
Li HL, Saw PE, Song EW. Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics[J]. Cell Mol Immunol. 2020; 17 (5): 451- 461.
|
[10] |
Klein C, Schaefer W, Regula JT, et al. Engineering therapeutic bispecific antibodies using CrossMab technology[J]. Methods. 2019; 154: 21- 31.
|
[11] |
Kang J, Sun T, Zhang Y. Immunotherapeutic progress and application of bispecific antibody in cancer[J]. Front Immunol. 2022;13.
|
[12] |
Trivedi A. Clinical pharmacology and translational aspects of bispecific antibodies [J]. Clin Transl Sci. 2017; 10 (3): 147- 162.
|
[13] |
Wei J, Yang Y, Wang G, et al. Current landscape and future directions of bispecific antibodies in cancer immunotherapy[J]. Front Immunol. 2022;13, 1035276.
|
[14] |
Kantarjian H, Stein A, Gökbuget N, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia[J]. N Engl J Med. 2017; 376 (9): 836- 847.
|
[15] |
Topp MS, Gökbuget N, Stein AS, et al. Safety and activity of blina·tumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study[J]. Lancet Oncol. 2015; 16 (1): 57- 66.
|
[16] |
Passaro A, Mok T, Peters S, et al. Recent advances on the role of EGFR tyrosine kinase inhibitors in the management of NSCLC with uncommon, non exon 20 insertions, EGFR mutations[J]. J Thorac Oncol. 2021; 16 (5): 764- 773.
|
[17] |
Mithoowani H, Febbraro M. Non-small-cell lung cancer in 2022: a review for general practitioners in oncology[J]. Curr Oncol. 2022; 29 (3): 1828- 1839.
|
[18] |
Yun J, Lee SH, Kim SY, et al. Antitumor activity of amivantamab (JNJ-61186372), an EGFR-MET bispecific antibody, in diverse models of EGFR exon 20 insertion-driven NSCLC[J]. Cancer Discov. 2020; 10 (8): 1194- 1209.
|
[19] |
Neijssen J, Cardoso RMF, Chevalier KM, et al. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET[J]. J Biol Chem. 2021: 296.
|
[20] |
Shah V, McNatty A, Simpson L, et al. Amivantamab-vmjw: a novel treatment for patients with NSCLC harboring EGFR exon 20 insertion mutation after progression on platinum-based chemotherapy[J]. Biomedicines. 2023; 11 (3): 950.
|
[21] |
Park K, Haura EB, Leighl NB, et al. Amivantamab in EGFR exon 20 insertion-mutated non-small-cell lung cancer progressing on platinum chemotherapy: initial results from the CHRYSALIS phase I study[J]. J Clin Oncol. 2021; 39 (30): 3391- 3402.
|
[22] |
Brazel D, Nagasaka M. Spotlight on amivantamab (JNJ-61186372) for EGFR exon 20 insertions positive non-small cell lung cancer[J]. Lung Cancer. 2021; 12: 133- 138.
|
[23] |
Zhang H, Dai Z, Wu W, et al. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer[J]. J Exp Clin Cancer Res. 2021; 40 (1): 184.
|
[24] |
Pang X, Huang Z, Zhong T, et al. Cadonilimab, a tetravalent PD-1/CTLA-4 bispecific antibody with trans-binding and enhanced target binding avidity[J]. mAbs. 2023; 15(1), 2180794.
|
[25] |
Zhang T, Lin Y, Gao Q. Bispecific antibodies targeting immunomodulatory checkpoints for cancer therapy[J]. Cancer Biol Med. 2023; 20 (3): 181- 195.
|
[26] |
Selby PBC, Yacko Pbl R, Glode Pba E. Gemtuzumab ozogamicin: back again[J]. Journal of the Advanced Practitioner in Oncology. 2019;10(1).
|
[27] |
Lamb YN. Inotuzumab ozogamicin: first global approval[J]. Drugs. 2017; 77 (14): 1603- 1610.
|
[28] |
Scott LJ. Brentuximab vedotin: a review in CD30-positive hodgkin lymphoma[J]. Drugs. 2017; 77 (4): 435- 445.
|
[29] |
Tsuchikama K, An Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries[J]. Protein Cell. 2018; 9 (1): 33- 46.
|
[30] |
Fu Z, Li S, Han S, et al. Antibody drug conjugate: the "biological missile" for targeted cancer therapy[J]. Signal Transduct Targeted Ther. 2022; 7 (1): 93.
|
[31] |
Khongorzul P, Ling CJ, Khan FU, et al. Antibody-drug conjugates: a comprehensive review[J]. Mol Cancer Res. 2020; 18 (1): 3- 19.
|
[32] |
Strohl WR. Current progress in innovative engineered antibodies[J]. Protein Cell. 2018; 9 (1): 86- 120.
|
[33] |
Hafeez U, Parakh S, Gan HK, et al. Antibody-drug conjugates for cancer therapy[J]. Molecules. 2020; 25 (20): 4764.
|
[34] |
Yang Y, Wang S, Ma P, et al. Drug conjugate-based anticancer therapy-Current status and perspectives[J]. Cancer Lett. 2023;552, 215969.
|
[35] |
Baah S, Laws M, Rahman KM. Antibody-drug conjugates-A tutorial review[J]. Molecules. 2021; 26 (10): 2943.
|
[36] |
Conilh L, Sadilkova L, Viricel W, et al. Payload diversification: a key step in the development of antibody-drug conjugates[J]. J Hematol Oncol. 2023; 16 (1): 3.
|
[37] |
Ponziani S, Di Vittorio G, Pitari G, et al. Antibody-drug conjugates: the new frontier of chemotherapy[J]. Int J Mol Sci. 2020; 21 (15): 5510.
|
[38] |
Vranic S, Beslija S, Gatalica Z. Targeting HER2 expression in cancer: new drugs and new indications[J]. Bosn J Basic Med Sci. 2021; 21 (1): 1- 4.
|
[39] |
Garcia-Alonso S, Ocana A, Pandiella A. Trastuzumab emtansine: mechanisms of action and resistance, clinical progress, and beyond[J]. Trends Cancer. 2020; 6 (2): 130- 146.
|
[40] |
Dieras V, Miles D, Verma S, et al. Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): a descriptive analysis of final overall survival results from a randomised, open-label, phase 3 trial[J]. Lancet Oncol. 2017; 18 (6): 732- 742.
|
[41] |
Wedam S, Fashoyin-Aje L, Gao X, et al. FDA approval summary: ado-trastuzumab emtansine for the adjuvant treatment of HER2-positive early breast cancer[J]. Clin Cancer Res. 2020; 26 (16): 4180- 4185.
|
[42] |
Turshudzhyan A. The role of ado-trastuzumab emtansine in current clinical practice [J]. J Oncol Pharm Pract. 2021; 27 (1): 150- 155.
|
[43] |
Endo Y, Mohan N, Dokmanovic M, et al. Mechanisms contributing to adotrastuzumab emtansine-induced toxicities: a gateway to better understanding of ADC-associated toxicities[J]. Antib Ther. 2021; 4 (1): 55- 59.
|
[44] |
Diaz-Rodriguez E, Gandullo-Sanchez L, Ocana A, et al. Novel ADCs and strategies to overcome resistance to anti-HER2 ADCs[J]. Cancers. 2021; 14 (1): 154.
|
[45] |
Shi F, Liu Y, Zhou X, et al. Disitamab vedotin: a novel antibody-drug conjugates for cancer therapy[J]. Drug Deliv. 2022; 29 (1): 1335- 1344.
|
[46] |
Xu Y, Wang Y, Gong J, et al. Phase I study of the recombinant humanized anti-HER2 monoclonal antibody-MMAE conjugate RC48-ADC in patients with HER2-positive advanced solid tumors[J]. Gastric Cancer. 2021; 24 (4): 913- 925.
|
[47] |
Peng Z, Liu T, Wei J, et al. Efficacy and safety of a novel anti-HER2 therapeutic antibody RC48 in patients with HER2-overexpressing, locally advanced or metastatic gastric or gastroesophageal junction cancer: a single-arm phase II study[J]. Cancer Commun. 2021; 41 (11): 1173- 1182.
|
[48] |
Sheng X, Yan X, Wang L, et al. Open-label, multicenter, phase II study of RC48-ADC, a HER2-targeting antibody-drug conjugate, in patients with locally advanced or metastatic urothelial carcinoma[J]. Clin Cancer Res. 2021; 27 (1): 43- 51.
|
[49] |
Sharma P, Retz M, Siefker-Radtke A, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial[J]. Lancet Oncol. 2017; 18 (3): 312- 322.
|
[50] |
Jiang J, Li S, Shan X, et al. Preclinical safety profile of disitamab vedotin:a novel anti-HER2 antibody conjugated with MMAE[J]. Toxicol Lett. 2020; 324: 30- 37.
|
[51] |
Shah NN, Sokol L. Targeting CD22 for the treatment of B-cell malignancies[J]. ImmunoTargets Ther. 2021; 10: 225- 236.
|
[52] |
Inotuzumab ozogamicin for acute lymphoblastic leukaemia. Aust Prescr. 2019;42(4): 141–142.
|
[53] |
Uy N, Nadeau M, Stahl M, et al. Inotuzumab ozogamicin in the treatment of relapsed/refractory acute B cell lymphoblastic leukemia[J]. Hematol Res Rev. 2018; 9: 67- 74.
|
[54] |
Shor B, Gerber HP, Sapra P. Preclinical and clinical development of inotuzumabozogamicin in hematological malignancies[J]. Mol Immunol. 2015;67(2 Pt A): 107–116.
|
[55] |
Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia[J]. N Engl J Med. 2016; 375 (8): 740- 753.
|
[56] |
Jabbour E, Ravandi F, Kebriaei P, et al. Salvage chemoimmunotherapy with inotuzumab ozogamicin combined with mini-hyper-CVD for patients with relapsed or refractory Philadelphia chromosome-negative acute lymphoblastic leukemia A phase 2 clinical trial[J]. JAMA Oncol. 2018; 4 (2): 230- 234.
|
[57] |
Kantarjian H, Ravandi F, Short NJ, et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy for older patients with Philadelphia chromosomenegative acute lymphoblastic leukaemia: a single-arm, phase 2 study[J]. Lancet Oncol. 2018; 19 (2): 240- 248.
|
[58] |
Li T, Yu J, Hou M, et al. Quantitative evaluation of therapy options for relapsed/ refractory diffuse large B-cell lymphoma: a model-based meta-analysis[J]. Pharmacol Res. 2023;187, 106592.
|
[59] |
Assi R, Masri N, Dalle IA, et al. Polatuzumab vedotin: current role and future applications in the treatment of patients with diffuse large B-cell lymphoma[J]. Clin Hematol Int. 2021; 3 (1): 21- 26.
|
[60] |
Polatuzumab vedotin for B-cell lymphoma. Aust Prescr. 2020;43(6):218-219.
|
[61] |
Sehn LH, Hertzberg M, Opat S, et al. Polatuzumab vedotin plus bendamustine and rituximab in relapsed/refractory DLBCL: survival update and new extension cohort data[J]. Blood Adv. 2022; 6 (2): 533- 543.
|
[62] |
Sehn LH, Herrera AF, Flowers CR, et al. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma[J]. J Clin Oncol. 2020; 38 (2): 155- 165.
|
[63] |
Tilly H, Morschhauser F, Sehn LH, et al. Polatuzumab vedotin in previously untreated diffuse large B-cell lymphoma[J]. N Engl J Med. 2022; 386 (4): 351- 363.
|
[64] |
Deeks ED. Polatuzumab vedotin: first global approval[J]. Drugs. 2019; 79 (13): 1467- 1475.
|
/
〈 | 〉 |