DNA metabarcoding reveals seasonal changes in diet composition across four arthropod-eating lizard species (Phrynosomatidae: Sceloporus)

Mauricio HERNÁNDEZ, Stephanie HEREIRA-PACHECO, Antton ALBERDI, Aníbal H. DÍAZ DE LA VEGA-PÉREZ, Arturo ESTRADA-TORRES, Sergio ANCONA, Yendi E. NAVARRO-NOYA

PDF
Integrative Zoology ›› 2024, Vol. 19 ›› Issue (3) : 480-495. DOI: 10.1111/1749-4877.12755
ORIGINAL ARTICLE

DNA metabarcoding reveals seasonal changes in diet composition across four arthropod-eating lizard species (Phrynosomatidae: Sceloporus)

Author information +
History +

Abstract

Diet composition and its ecological drivers are rarely investigated in coexisting closely related species. We used a molecular approach to characterize the seasonal variation in diet composition in four spiny lizard species inhabiting a mountainous ecosystem. DNA metabarcoding revealed that the lizards Sceloporus aeneus, S. bicanthalis, S. grammicus, and S. spinosus mostly consumed arthropods of the orders Hemiptera, Araneae, Hymenoptera, and Coleoptera. The terrestrial lizards S. aeneus and S. bicanthalis mostly predated ants and spiders, whereas the arboreal–saxicolous S. grammicus and saxicolous S. spinosus largely consumed grasshoppers and leafhoppers. The taxonomic and phylogenetic diversity of the prey was higher during the dry season than the rainy season, likely because reduced prey availability in the dry season forced lizards to diversify their diets to meet their nutritional demands. Dietary and phylogenetic composition varied seasonally depending on the species, but only dietary composition varied with altitude. Seasonal dietary turnover was greater in S. spinosus than in S. bicanthalis, suggesting site-specific seasonal variability in prey availability; no other differences among species were observed. S. bicanthalis, which lives at the highest altitude in our study site, displayed interseasonal variation in diet breadth. Dietary differences were correlated with the species’ feeding strategies and elevational distribution, which likely contributed to the coexistence of these lizard species in the studied geographic area and beyond.

Keywords

arthropod-eating lizards / diet breadth / environmental barcoding / mountainous ecosystem / seasonal dietary shifts

Cite this article

Download citation ▾
Mauricio HERNÁNDEZ, Stephanie HEREIRA-PACHECO, Antton ALBERDI, Aníbal H. DÍAZ DE LA VEGA-PÉREZ, Arturo ESTRADA-TORRES, Sergio ANCONA, Yendi E. NAVARRO-NOYA. DNA metabarcoding reveals seasonal changes in diet composition across four arthropod-eating lizard species (Phrynosomatidae: Sceloporus). Integrative Zoology, 2024, 19(3): 480‒495 https://doi.org/10.1111/1749-4877.12755

References

[1]
Alberdi A, Aizpurua O, Gilbert MTP, Bohmann K (2018). Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods in Ecology and Evolution 9, 134–47.
[2]
Alberdi A, Gilbert MTP (2019). Hilldiv: An R package for the integral analysis of diversity based on Hill numbers. BioRxiv,
CrossRef Google scholar
[3]
Anderson RO, Alton LA, White CR, Chapple DG (2022). Ecophysiology of a small ectotherm tracks environmental variation along an elevational cline. Journal of Biogeography 49, 405–15.
[4]
Bessey C, Jarman SN, Stat M et al. (2019). DNA metabarcoding assays reveal a diverse prey assemblage for Mobula rays in the Bohol Sea, Philippines. Ecology and Evolution 9, 2459–74.
[5]
Bolyen E, Rideout JR, Dillon MR et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37, 852–7.
[6]
Caporaso JG, Kuczynski J, Stombaugh J et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–6.
[7]
Castro-Franco R, Bustos-Zagal MG, Trujillo-Jiménez P (2017). Diet composition of Sceloporus horridus horridus (Sauria: Phrynosomatidae) in tropical deciduous forest, Mexico. Acta Zoológica Mexicana 33, 443–9.
[8]
Costa GC, Vitt LJ, Pianka ER, Mesquita DO, Colli GR (2008). Optimal foraging constrains macroecological patterns: Body size and dietary niche breadth in lizards. Global Ecology and Biogeography 17, 670–7.
[9]
Crawley MJ (2005). Statistics: An Introduction Using R. John Wiley and Sons Ltd., Chichester, West Sussex, England, UK, pp. 103–24.
[10]
Crawley MJ (2007). The R Book. John Wiley and Sons Ltd., Chichester, West Sussex, England, UK, 942 p.
[11]
Cross SL, Craig MD, Tomlinson S, Bateman PW (2020). I don't like crickets, I love them: Invertebrates are an important prey source for varanid lizards. Journal of Zoology 310, 323–33.
[12]
Cruz-Elizalde R, Ramírez-Bautista A, Núñez de Cáceres-González FF (2020). Sexual dimorphism and feeding ecology of the black-billied bunchgrass lizard Sceloporus aeneus (Squamata: Phrynosomatidae) in central Mexico. South American Journal of Herpetology 18, 46–55.
[13]
Dalhuijsen K, Branch WR, Alexander GJ (2014). A comparative analysis of the diets of Varanus albigularis and Varanus niloticus in South Africa. African Zoology 49, 83–93.
[14]
Dias EJR, Rocha CFD (2007). Niche differences between two sympatric whiptail lizards (Cnemidophorus abaetensis and C. ocellifer, Teiidae) in the restinga habitat of northeastern Brazil. Brazilian Journal of Biology 67, 41–6.
[15]
Díaz de la Vega-Pérez AH, Jiménez-Arcos VH, Centenero-Alcalá E, Méndez-de la Cruz FR, Ngo A (2019). Diversity and conservation of amphibians and reptiles of a protected and heavily disturbed forest. ZooKeys 830, 111–25.
[16]
Domínguez-Godoy MA, Hudson R, Pérez-Mendoza HA, Ancona S, Díaz de la Vega-Pérez AH (2020). Living on the edge: Lower thermal quality but greater survival probability at a high altitude mountain for the mesquite lizard (Sceloporus grammicus). Journal of Thermal Biology 94, 102757.
[17]
Dormann CF, Fründ J, Blüthgen N, Gruber B (2009). Indices, graphs and null models: Analyzing bipartite ecological networks. The Open Ecology Journal 2, 7–24.
[18]
Feria-Ortiz M, Nieto-Montes de Oca A, Salgado Ugarte IH (2001). Diet and reproductive biology of the viviparous lizard Sceloporus torquatus torquatus (Squamata: Phrynosomatidae). Journal of Herpetology 35, 104–12.
[19]
Finn DR, Yu J, Ilhan ZE et al. (2020). MicroNiche: An R package for assessing microbial miche breadth and overlap from amplicon sequencing data. FEMS Microbiology Ecology 96, fiaa131.
[20]
Gadsden H, Estrada-Rodríguez JL, Quezada-Rivera DA, Leyva-Pacheco SV (2011). Diet of the yarrow's spiny lizard Sceloporus jarrovii in the Central Chihuahuan Desert. The Southwestern Naturalist 56, 89–94.
[21]
García-Rosales A, Cruz-Elizalde R, Ramírez-Bautista A, Mata-Silva V (2019). Feeding ecology of two populations of Sceloporus minor (Squamata: Phrynosomatidae) inhabiting contrasting environments in central Mexico. Salamandra 55, 103–14.
[22]
Gay-García C, Hernández-Vázquez M, Jiménez-López J et al. (2004). Evaluation of climatic forecasts of rainfall for the Tlaxcala State (México): 1998–2002. Atmosfera 17, 127–50.
[23]
Geller J, Meyer C, Parker M, Hawk H (2013). Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Molecular Ecology Resources 13, 851–61.
[24]
Gil V, Pinho CJ, Aguiar CAS, Jardim C, Rubelo R, Vasconcelos R (2020). Questioning the proverb “more haste, less speed”: Classic versus metabarcoding approaches for the diet study of a remote island endemic gecko. PeerJ 8, e8084.
[25]
González-Morales JC, Fajardo V, Díaz de la Vega-Pérez AH et al. (2023). Elevation and blood traits in the mesquite lizard: Are patterns repeatable between mountains? Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 276, 111338.
[26]
Goodyear SE, Pianka ER (2011). Spatial and temporal variation in diets of sympatric lizards (genus Ctenotus) in the Great Victoria Desert, Western Australia. Journal of Herpetology 45, 265–71.
[27]
Gribbins K, Anzalone M, Collier M, Granados-González G, Villagrán-Santa Cruz M, Hernández-Gallegos O (2011). Temporal germ cell development strategy during continuous spermatogenesis within the montane lizard, Sceloporus bicanthalis (Squamata; Phrynosomatidae). Theriogenology 76, 1090–9.
[28]
Grummer JA, Bryson RW, Reeder TW (2014). Species delimitation using bayes factors: Simulations and application to the Sceloporus scalaris species group (Squamata: Phrynosomatidae). Systematic Biology 63, 119–33.
[29]
Guarino F (2001). Diet of a large carnivorous lizard, Varanus varius. Wildlife Research 28, 627–30.
[30]
Hernández M, Ancona S, Hereira-Pacheco S, Díaz de la Vega-Pérez AH, Navarro-Noya YE (2023). Comparative analysis of two nonlethal methods for the study of the gut bacterial communities in wild lizards. Integrative Zoology 18, 1056–1071.
CrossRef Google scholar
[31]
Herrel A, Van Damme R, Vanhooydonck B, De Vree F (2001). The implications of bite performance for diet in two species of lacertid lizards. Canadian Journal of Zoology 79, 662–70.
[32]
Hsieh TC, Ma KM, Chao A (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7, 1451–6.
[33]
Hurlbert SH (1978). The measurement of niche overlap and some relatives. Ecology 59, 67–77.
[34]
Jiménez-Cruz E, Ramírez-Bautista A, Marshall JC, Lizana-Avia M, Nieto-Montes de Oca A (2005). Reproductive cycle of Sceloporus grammicus (Squamata: Phrynosomatidae) from Teotihuacan, state of Mexico. The Southwestern Naturalist 50, 178–87.
[35]
Joseph GS, Muluvhahothe MM, Seymour CL, Munyai TC, Bishop TR, Foord SH (2019). Stability of Afromontane ant diversity decreases across an elevation gradient. Global Ecology and Conservation 17, e005962.
[36]
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–9.
[37]
Kartzinel TR, Pringle RM (2015). Molecular detection of invertebrate prey in vertebrate diets: Trophic ecology of Caribbean island lizards. Molecular Ecology Resources 15, 903–14.
[38]
Katoh K, Standley DM (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30, 772–80.
[39]
Kok PJR, Broholm TL, Mebs D (2021). Thriving in a hostile world: Insights from the dietary strategy of two allopatric, closely related tepui summit endemic amphibians. Ecology and Evolution 11, 8730–42.
[40]
Lemos-Espinal JA, Ballinger RE, Smith G (1998). Comparative demography of the high-altitude lizard, Sceloporus grammicus (Phrynosomatidae), on the Iztaccihuatl volcano, Puebla, Mexico. The Great Basin Naturalist 58, 375–9.
[41]
Leray M, Yang JY, Meyer CP et al. (2013). A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Frontiers in Zoology 10, 34.
[42]
Leyte-Manrique A, Ramírez-Bautista A (2010). Diet of two populations of Sceloporus grammicus (Squamata: Phrynosomatidae) from Hidalgo, Mexico. The Southwestern Naturalist 55, 98–103.
[43]
Li D (2018). hillR: taxonomic, functional, and phylogenetic diversity and similarity through Hill Numbers. Journal of Open Source Software 3, 1041.
[44]
Mamou R, Marniche F, Amroun M, Herrel A (2016). Trophic ecology of two sympatric lizard species: The Algerian sand lizard and the wall lizard in Djurdjura, northern Algeria. Zoology and Ecology 26, 1–9.
[45]
Manríquez-Morán NL, Villagrán-Santa Cruz M, Méndez de la Cruz FR (2013). Reproductive activity in females of the oviparous lizard Sceloporus aeneus. The Southwestern Naturalist 58, 325–9.
[46]
Martin M (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal 17, 10.
[47]
McCoy ED (1990). The distribution of insects along elevational gradients. Oikos 58, 313–22.
[48]
Méndez de la Cruz FR, Díaz de la Vega-Pérez AH, Centenero-Alcalá H, Jiménez-Arcos VH (2018). Anfibios y Reptiles del Parque Nacional La Malinche. Universidad Autónoma de Tlaxcala, San Pablo del Monte, Mexico.
[49]
Méndez de la Cruz FR, Villagrán-Santa Cruz M, López-Ortíz ML, Hernández-Gallegos O (2013). Reproductive cycle of a high-elevation, oviparous lizard (Sceloporus spinosus: Reptilia: Phrynosomatidae). The Southwestern Naturalist 58, 54–63.
[50]
Minh BQ, Trifinopoulos J, Schrempf D, Schmidt HA (2019). IQTREE version 2.0: Tutorials and Manual Phylogenomic Software by Maximum Likelihood. Available from URL: http://www.iqtree.org
[51]
Montoya A, Kong A, Estrada-Torres A, Cifuentes J, Caballero J (2004). Useful wild fungi of La Malinche Nacional Park, Mexico. Fungal Diversity 17, 115–43.
[52]
Montoya-Ciriaco N, Gómez-Acata S, Muñoz-Arenas LC et al. (2020). Dietary effects on gut microbiota of the mesquite lizard Sceloporus grammicus (Wiegmann, 1828) across different altitudes. Microbiome 8, 6.
[53]
Moreno-Rueda G, Melero E, Reguera S, Zamora-Camacho FJ, Álvarez-Benito I (2018). Prey availability, prey selection, and trophic niche width in the lizard Psammodromus algirus along an elevational gradient. Current Zoology 64, 603–13.
[54]
Nielsen JM, Clare E, Hayden B, Brett MT, Kratina P (2017). Diet tracing in ecology: Method comparison and selection. Methods in Ecology and Evolution 9, 278–91.
[55]
Oksanen J, Blanchet FG, Friendly M et al. (2022). Vegan: Community Ecology Package. R Package Version 2.6-2. Available from URL: https://CRAN.R-project.org/package=vegan
[56]
O'Rourke DR, Bokulich NA, Jusino MA, MacManes MD, Foster JT (2020). A total crapshoot? Evaluating bioinformatic decisions in animal diet metabarcoding analyses. Ecology and Evolution 10, 9721–39.
[57]
Ortega-Rubio A, Barrault R, Halffter G (1999). Population dynamics of Sceloporus grammicus (Sauria: Phrynosomatidae) at Durango, Mexico. The Southwestern Naturalist 44, 64–72.
[58]
Pereira A, Xavier R, Perera A, Salvi D, Harris DJ (2019). DNA metabarcoding to assess diet partitioning and feeding strategies in generalist vertebrate predators: A case study on three syntopic lacertid lizards from Morocco. Biological Journal of the Linnean Society 127, 800–9.
[59]
Pompanon F, Deagle BE, Symondson WOC, Brown DS, Jarman SN, Taberlet P (2012). Who is eating what: Diet assessment using next generation sequencing. Molecular Ecology 21, 1931–50.
[60]
Potapov AM, Beaulieu F, Birkhofer K et al. (2022). Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biological Reviews 97, 1057–117.
[61]
R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
[62]
Ratnasingham S, Hebert PDN (2007). BOLD: The barcode of life data system (www.barcodinglife.org). Molecular Ecology Notes 7, 355–64.
[63]
Reid REB, Greenwald EN, Wang Y, Wilmers CC (2013). Dietary niche partitioning by sympatric Peromyscus boylii and P. californicus in a mixed evergreen forest. Journal of Mammalogy 94, 1248–57.
[64]
Richards LA, Windsor DM (2007). Seasonal variation of arthropod abundance in gaps and the understorey of a lowland moist forest in Panama. Journal of Tropical Ecology 23, 169–76.
[65]
Rivera-Rea J, Macotela L, Moreno-Rueda G et al. (2023). Thermoregulatory behavior varies with altitude and season in the sceloporine mesquite lizard. Journal of Thermal Biology 114, 103539.
[66]
Robeson MS, O'Rourke DR, Kaehler BD et al. (2021). RESCRIPt: Reproducible sequence taxonomy reference database management. PLoS Computational Biology 17, e1009581.
[67]
Rodríguez-Romero F, Méndez FR, García-Collazo R, Villagrán-Santa Cruz M (2002). Comparación del esfuerzo reproductor en dos especies hermanas del género Sceloporus (Sauria: Phrynosomatidae) con diferente modo reproductor. Acta Zoológica Mexicana 85, 181–8.
[68]
Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584.
[69]
Rubolini D, Pirovano A, Borghi S (2003). Influence of seasonality, temperature and rainfall on the winter diet of the long-eared owl, Asio otus. Folia Zoologica 52, 67–76.
[70]
Serrano-Cardozo VH, Lemos–Espinal JA, Smith GR (2008). Comparative diet of three sympatric Sceloporus in the semiarid Zapotitlán Valley, Mexico. Revista Mexicana Biodiversidad 79, 427–34.
[71]
Tan WC, Measey J, Vanhooydonck B, Herrel A (2021). The relationship between bite force, morphology, and diet in southern African agamids. BMC Ecology and Evolution 21, 126.
[72]
Torres Barragán CA, Hernández Salinas U, Ramírez-Bautista A (2020). Do growth rate and survival differ between undisturbed and disturbed environments for Sceloporus spinosus Wiegmann, 1828 (Squamata: Phrynosomatidae) from Oaxaca, Mexico? Amphibian and Reptile Conservation 14, 43–54.
[73]
Vitt LJ, van Loben Sels RC, Ohmart RD (1981). Ecological relationships among arboreal desert lizards. Ecology 62, 398–410.
[74]
Wardhaugh CW, Stone MJ, Stork NE (2018). Seasonal variation in a diverse beetle assemblage along two elevational gradients in the Australian Wet Tropics. Scientific Reports 8, 8559.
[75]
Widhiono I, Sudiana E, Darsono D (2017). Diversity of wild bees along elevational gradient in an agricultural area in Central Java, Indonesia. Psyche: A Journal of Entomology 2017, 2968414.
[76]
Wiens JJ, Kozak KH, Silva N (2013). Diversity and niche evolution along aridity gradients in North American lizards (Phrynosomatidae). Evolution 67, 1715–28.
[77]
Wu Q, Dang W, Hu Y-C, Lu H-L (2018). Altitude influences thermal ecology and thermal sensitivity of locomotor performance in a toad-headed lizard. Journal of Thermal Biology 71, 136–41.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/