Red blood cell derived nanocarrier drug delivery system: A promising strategy for tumor therapy

Xin Wang, Kuirong Mao, Xiaonan Zhang, Yuning Zhang, Yong-Guang Yang, Tianmeng Sun

Interdisciplinary Medicine ›› 2024, Vol. 2 ›› Issue (3) : e20240014.

PDF
Interdisciplinary Medicine ›› 2024, Vol. 2 ›› Issue (3) : e20240014. DOI: 10.1002/inmd.20240014
REVIEW

Red blood cell derived nanocarrier drug delivery system: A promising strategy for tumor therapy

Author information +
History +

Abstract

Nano drug delivery systems have been widely used in tumor therapy. Researchers have been devoted to exploring novel nano-carriers to prolong circulation time biocompatibility and tumor targeting efficiency in vivo. Erythrocyte membranes as bionic nano-drug delivery systems have attracted more attention recently. There are abundant red blood cells (RBCs) in circulation, which are natural carriers for nanomaterial delivery. There are mainly two strategies to use RBCs as nanomaterial carriers: RBC-hitchhiking and bionic nanomaterial coated with erythrocyte membrane loading with drugs. Although nano-carrier based on RBCs have yielded some progress, the mechanism of mutual effect between nanoparticles and RBCs is still unclear. Here, we review the effects of nanoparticles on RBCs (morphology and function, etc) and application of RBCs membrane as nano-drug delivery carriers in tumor therapy.

Keywords

erythrocyte membrane coating / nanoparticles drug delivery system / RBC-hitchhiking / RBCs / tumor therapy

Cite this article

Download citation ▾
Xin Wang, Kuirong Mao, Xiaonan Zhang, Yuning Zhang, Yong-Guang Yang, Tianmeng Sun. Red blood cell derived nanocarrier drug delivery system: A promising strategy for tumor therapy. Interdisciplinary Medicine, 2024, 2(3): e20240014 https://doi.org/10.1002/inmd.20240014

References

[1]
a)E. Perez-Herrero, A. Fernandez-Medarde, Eur. J. Pharm. Biopharm. 2015, 93, 52;b)G. Wei, Y. Wang, G. Yang, Y. Wang, R. Ju, Theranostics 2021, 11, 6370.
CrossRef Google scholar
[2]
D. Fan, Y. Cao, M. Cao, Y. Wang, Y. Cao, T. Gong, Signal Transduct. Target. Ther. 2023, 8, 293.
CrossRef Google scholar
[3]
Y. Y. Tan, P. K. Yap, G. L. Xin Lim, M. Mehta, Y. Chan, S. W. Ng, D. N. Kapoor, P. Negi, K. Anand, S. K. Singh, N. K. Jha, L. C. Lim, T. Madheswaran, S. Satija, G. Gupta, K. Dua, D. K. Chellappan, Chem. Biol. Interact. 2020, 329, 109221.
CrossRef Google scholar
[4]
a)C. M. Hu, L. Zhang, S. Aryal, C. Cheung, R. H. Fang, L. Zhang, Proc. Natl. Acad. Sci. USA 2011, 108, 10980;b)J. Xiong, M. Wu, J. Chen, Y. Liu, Y. Chen, G. Fan, Y. Liu, J. Cheng, Z. Wang, S. Wang, Y. Liu, W. Zhang, ACS Nano 2021, 15, 19756;c)Q. Jiang, Y. Liu, R. Guo, X. Yao, S. Sung, Z. Pang, W. Yang, Biomaterials 2019, 192, 292.
CrossRef Google scholar
[5]
C. Gutierrez Millan, C. I. Colino Gandarillas, M. L. Sayalero Marinero, J. M. Lanao, Ther. Deliv. 2012, 3, 25.
CrossRef Google scholar
[6]
a)M. Hamidi, H. Tajerzadeh, Drug Deliv. 2003, 10, 9;b)P. D. Patel, N. Dand, R. S. Hirlekar, V. J. Kadam, Curr. Pharm. Des. 2008, 14, 63.
CrossRef Google scholar
[7]
C. Li, Z. Wang, H. Lei, D. Zhang, Drug Deliv. 2023, 30, 2174206.
[8]
S. Q. Zhang, Q. Fu, Y. J. Zhang, J. X. Pan, L. Zhang, Z. R. Zhang, Z. M. Liu, Acta Pharmacol. Sin. 2021, 42, 1040.
CrossRef Google scholar
[9]
a)E. Nader, C. Nougier, C. Boisson, S. Poutrel, J. Catella, F. Martin, J. Charvet, S. Girard, S. Havard-Guibert, M. Martin, H. Rezigue, H. Desmurs-Clavel, C. Renoux, P. Joly, N. Guillot, Y. Bertrand, A. Hot, Y. Dargaud, P. Connes, Am. J. Hematol. 2022, 97, 283;b)M. F. Leal Denis, S. D. Lefevre, C. L. Alvarez, N. Lauri, N. Enrique, D. E. Rinaldi, R. Gonzalez-Lebrero, L. E. Vecchio, M. V. Espelt, P. Stringa, C. Munoz-Garay, V. Milesi, M. A. Ostuni, V. Herlax, P. J. Schwarzbaum, BBA Mol. Cell Res. 2019, 1866, 896;c)B. Ziemba, G. Matuszko, M. Bryszewska, B. Klajnert, Cell. Mol. Biol. Lett. 2012, 17, 21;d)E. Nishiguchi, K. Okubo, S. Nakamura, Cell Struct. Funct. 1998, 23, 143.
CrossRef Google scholar
[10]
a)E. Kucukal, J. A. Little, U. A. Gurkan, Integr. Biol. 2018, 10, 194;b)D. Katanov, G. Gompper, D. A. Fedosov, Microvasc. Res. 2015, 99, 57.
CrossRef Google scholar
[11]
a)G. Barshtein, D. Arbell, S. Yedgar, Front. Physiol. 2018, 9, 41;b)R. Mehri, C. Mavriplis, M. Fenech, PLoS One 2018, 13, e0199911.
CrossRef Google scholar
[12]
T. Avsievich, A. Popov, A. Bykov, I. Meglinski, Sci. Rep. 2019, 9, 5147.
CrossRef Google scholar
[13]
N. M. Geekiyanage, M. A. Balanant, E. Sauret, S. Saha, R. Flower, C. T. Lim, Y. Gu, PLoS One 2019, 14, e0215447.
CrossRef Google scholar
[14]
J. Kim, M. Nafiujjaman, M. Nurunnabi, Y. K. Lee, H. K. Park, Food Chem. Toxicol. 2016, 97, 346.
CrossRef Google scholar
[15]
J. Radosinska, T. Jasenovec, D. Radosinska, P. Balis, A. Puzserova, M. Skratek, J. Manka, I. Bernatova, Biomedicines 2021, 9, 377.
CrossRef Google scholar
[16]
Y. Miao, Y. Yang, L. Guo, M. Chen, X. Zhou, Y. Zhao, D. Nie, Y. Gan, X. Zhang, ACS Nano 2022, 16, 6527.
CrossRef Google scholar
[17]
X. Wang, X. Meng, K. Mao, H. Chen, X. Cong, F. Liu, J. Wang, S. Liu, Y. Xin, G. Zhu, H. Tan, Y. G. Yang, T. Sun, Biomaterials 2023, 300, 122187.
CrossRef Google scholar
[18]
L. Guo, D. Tong, M. Yu, Y. Zhang, T. Li, C. Wang, P. Zhou, J. Jin, B. Li, Y. Liu, R. Liu, V. A. Novakovic, Z. Dong, Y. Tian, J. Kou, Y. Bi, J. Zhou, J. Shi, Int. J. Oncol. 2018, 52, 1981.
[19]
J. W. Weisel, R. I. Litvinov, J. Thromb. Haemostasis 2019, 17, 271.
CrossRef Google scholar
[20]
Q. Ran, Y. Xiang, Y. Liu, L. Xiang, F. Li, X. Deng, Y. Xiao, L. Chen, L. Chen, Z. Li, Sci. Rep. 2015, 5, 16209.
CrossRef Google scholar
[21]
A. A. Ahlam, V. S. Shaniba, P. R. Jayasree, P. R. Manish Kumar, Biol. Trace Elem. Res. 2021, 199, 1778.
CrossRef Google scholar
[22]
I. Tsamesidis, G. K. Pouroutzidou, E. Lymperaki, K. Kazeli, C. B. Lioutas, E. Christodoulou, P. Perio, K. Reybier, A. Pantaleo, E. Kontonasaki, Chem. Biol. Interact. 2020, 318, 108974.
CrossRef Google scholar
[23]
D. Lima, A. Ribicki, L. Goncalves, A. C. M. Hacke, L. C. Lopes, R. P. Pereira, K. Wohnrath, S. T. Fujiwara, C. A. Pessoa, Colloids Surf. B Biointerfaces 2022, 213, 112355.
CrossRef Google scholar
[24]
J. Grebowski, P. Kazmierska, G. Litwinienko, A. Lankoff, M. Wolszczak, A. Krokosz, BBA Biomembr. 2018, 1860, 1528.
CrossRef Google scholar
[25]
H. Shinto, T. Fukasawa, K. Yoshisue, N. Tsukamoto, S. Aso, Y. Hirohashi, H. Seto, Colloids Surf. B Biointerfaces 2019, 181, 270.
CrossRef Google scholar
[26]
T. Liu, S. Han, M. Pang, J. Li, J. Wang, X. Luo, Y. Wang, Z. Liu, X. Yang, Z. Ye, J. Biomater. Appl. 2021, 36, 36.
CrossRef Google scholar
[27]
A. Gupta, R. Das, J. M. Makabenta, A. Gupta, X. Zhang, T. Jeon, R. Huang, Y. Liu, S. Gopalakrishnan, R. C. Milan, V. M. Rotello, Mater. Horiz. 2021, 8, 3424.
CrossRef Google scholar
[28]
D. C. Pan, J. W. Myerson, J. S. Brenner, P. N. Patel, A. C. Anselmo, S. Mitragotri, V. Muzykantov, Sci. Rep. 2018, 8, 1615.
[29]
M. Rabel, P. Warncke, M. Thurmer, C. Gruttner, C. Bergemann, H. D. Kurland, F. A. Muller, A. Koeberle, D. Fischer, Nanoscale 2021, 13, 9415.
CrossRef Google scholar
[30]
I. V. Zelepukin, A. V. Yaremenko, V. O. Shipunova, A. V. Babenyshev, I. V. Balalaeva, P. I. Nikitin, S. M. Deyev, M. P. Nikitin, Nanoscale 2019, 11, 1636.
CrossRef Google scholar
[31]
H. Li, K. Jin, M. Luo, X. Wang, X. Zhu, X. Liu, T. Jiang, Q. Zhang, S. Wang, Z. Pang, Cells 2019, 8, 881.
CrossRef Google scholar
[32]
N. Wang, J. Li, J. Wang, D. Nie, X. Jiang, Y. Zhuo, M. Yu, J. Control. Release 2022, 350, 886.
CrossRef Google scholar
[33]
O. Y. Golubeva, Y. A. Alikina, T. V. Khamova, E. V. Vladimirova, O. V. Shamova, Inorg. Chem. 2021, 60, 17008.
CrossRef Google scholar
[34]
X. Wang, X. Wang, X. Bai, L. Yan, T. Liu, M. Wang, Y. Song, G. Hu, Z. Gu, Q. Miao, C. Chen, Nano Lett. 2019, 19, 8.
CrossRef Google scholar
[35]
C. Yang, S. Gao, F. Dagnaes-Hansen, M. Jakobsen, J. Kjems, ACS Appl. Mater. Interfaces 2017, 9, 12203.
CrossRef Google scholar
[36]
J. Grebowski, P. Kazmierska-Grebowska, N. Cichon, P. Piotrowski, G. Litwinienko, Int. J. Mol. Sci. 2021, 23, 119.
CrossRef Google scholar
[37]
N. N. Drozd, A. P. Lunkov, A. V. Il’ina, V. P. Varlamov, Bull. Exp. Biol. Med. 2020, 168, 507.
CrossRef Google scholar
[38]
H. Zare-Zardini, A. Amiri, M. Shanbedi, A. Taheri-Kafrani, S. N. Kazi, B. T. Chew, A. Razmjou, J. Biomed. Mater. Res. 2015, 103, 2959.
CrossRef Google scholar
[39]
P. Foroozandeh, A. A. Aziz, M. Mahmoudi, ACS Appl. Mater. Interfaces 2019, 11, 39672.
CrossRef Google scholar
[40]
M. Long, B. Zhang, S. Peng, J. Liao, Y. Zhang, J. Wang, M. Wang, B. Qin, J. Huang, J. Huang, X. Chen, H. Yang, Mater. Sci. Eng. C 2019, 105, 110081.
CrossRef Google scholar
[41]
W. Zhu, J. Guo, J. O. Agola, J. G. Croissant, Z. Wang, J. Shang, E. Coker, B. Motevalli, A. Zimpel, S. Wuttke, C. J. Brinker, J. Am. Chem. Soc. 2019, 141, 7789.
CrossRef Google scholar
[42]
N. B. Shah, G. M. Vercellotti, J. G. White, A. Fegan, C. R. Wagner, J. C. Bischof, Mol. Pharm. 2012, 9, 2146.
CrossRef Google scholar
[43]
L. W. Tsai, Y. C. Lin, E. Perevedentseva, A. Lugovtsov, A. Priezzhev, C. L. Cheng, Int. J. Mol. Sci. 2016, 17, 1111.
CrossRef Google scholar
[44]
D. Pan, O. Vargas-Morales, B. Zern, A. C. Anselmo, V. Gupta, M. Zakrewsky, S. Mitragotri, V. Muzykantov, PLoS One 2016, 11, e0152074.
CrossRef Google scholar
[45]
a)Z. Wu, H. Zhang, J. Yan, Y. Wei, J. Su, Theranostics 2023, 13, 20;b)T. Zhang, H. Cui, C. Y. Fang, K. Cheng, X. Yang, H. C. Chang, M. L. Forrest, Nanomedicine 2015, 10, 573;c)A. Zhu, K. Miao, Y. Deng, H. Ke, H. He, T. Yang, M. Guo, Y. Li, Z. Guo, Y. Wang, X. Yang, Y. Zhao, H. Chen, ACS Nano 2015, 9, 7874;d)H. Li, Y. Li, H. Ao, D. Bi, M. Han, Y. Guo, X. Wang, Drug Deliv. 2018, 25, 880.
CrossRef Google scholar
[46]
T. Volken, A. Buser, D. Castelli, S. Fontana, B. M. Frey, I. Rusges-Wolter, A. Sarraj, J. Sigle, J. Thierbach, T. Weingand, B. M. Taleghani, Blood Transfus. 2018, 16, 73.
[47]
J. Zheng, C. Lu, Y. Ding, J. Zhang, F. Tan, J. Liu, G. Yang, Y. Wang, Z. Li, M. Yang, Y. Yang, W. Gong, C. Gao, Int. J. Pharm. 2022, 619, 121719.
CrossRef Google scholar
[48]
J. Zheng, C. Lu, M. Yang, J. Sun, J. Zhang, Y. Meng, Y. Wang, Z. Li, Y. Yang, W. Gong, C. Gao, Pharmaceutics 2022, 14, 1820.
CrossRef Google scholar
[49]
A. C. Anselmo, V. Gupta, B. J. Zern, D. Pan, M. Zakrewsky, V. Muzykantov, S. Mitragotri, ACS Nano 2013, 7, 11129.
CrossRef Google scholar
[50]
T. M. H Huynh, B. N. Yalamandala, M. R. Chiang, W. H. Weng, C. W. Chang, W. H. Chiang, L. D. Liao, Y. C. Liu, S. H. Hu, J. Control. Release 2023, 358, 718.
CrossRef Google scholar
[51]
K. Zhu, Y. Xu, R. Zhong, W. Li, H. Wang, Y. S. Wong, S. Venkatraman, J. Liu, Y. Cao, Regen. Biomater. 2023, 10, rbad045.
CrossRef Google scholar
[52]
Z. Zhao, A. Ukidve, V. Krishnan, A. Fehnel, D. C. Pan, Y. Gao, J. Kim, M. A. Evans, A. Mandal, J. Guo, V. R. Muzykantov, S. Mitragotri, Nat. Biomed. Eng. 2021, 5, 441.
CrossRef Google scholar
[53]
T. D. Nguyen, B. M. Bordeau, Y. Zhang, A. G. Mattle, J. P. Balthasar, Int. J. Mol. Sci. 2022, 24, 475.
CrossRef Google scholar
[54]
M. Wu, Z. Luo, Z. Cai, Q. Mao, Z. Li, H. Li, C. Zhang, Y. Zhang, A. Zhong, L. Wu, X. Liu, EMBO Mol. Med. 2023, 15, e16836.
[55]
A. N. Barclay, T. K. Van den Berg, Annu. Rev. Immunol. 2014, 32, 25.
CrossRef Google scholar
[56]
Q. Xia, Y. Zhang, Z. Li, X. Hou, N. Feng, Acta Pharm. Sin. B 2019, 9, 675.
CrossRef Google scholar
[57]
G. M. Ihler, R. H. Glew, F. W. Schnure, Proc. Natl. Acad. Sci. USA 1973, 70, 2663.
CrossRef Google scholar
[58]
a)F. Leone, R. Cavalli, Expert Opin. Drug Deliv. 2015, 12, 1607;b)A. A. Matrai, G. Varga, B. Tanczos, B. Barath, A. Varga, L. Horvath, Z. Bereczky, A. Deak, N. Nemeth, Clin. Hemorheol. Microcirc. 2021, 78, 291;c)L. Wang, J. Du, Y. Zhou, Y. Wang, Nanomedicine 2017, 13, 455.
CrossRef Google scholar
[59]
a)S. Mitragotri, P. A. Burke, R. Langer, Nat. Rev. Drug Discov. 2014, 13, 655;b)B. Sun, Y. Yeo, Curr. Opin. Solid State Mater. Sci. 2012, 16, 295.
CrossRef Google scholar
[60]
L. Ren, L. Qiu, B. Huang, J. Yin, Y. Li, X. Yang, G. Chen, Nanomaterials 2021, 11, 2513.
CrossRef Google scholar
[61]
M. Daniyal, Y. Jian, F. Xiao, W. Sheng, J. Fan, C. Xiao, Z. Wang, B. Liu, C. Peng, Q. Yuhui, W. Wang, Nanomedicine 2020, 15, 691.
CrossRef Google scholar
[62]
Y. Bao, J. Chen, H. Qiu, C. Zhang, P. Huang, Z. Mao, W. Tong, ACS Appl. Mater. Interfaces 2021, 13, 24532.
CrossRef Google scholar
[63]
Q. Wen, Y. Zhang, T. A. Muluh, K. Xiong, B. Wang, Y. Lu, Z. Wu, Y. Liu, H. Shi, S. Xiao, S. Fu, Int. J. Biol. Macromol. 2021, 193, 228.
CrossRef Google scholar
[64]
L. Rao, L. L. Bu, J. H. Xu, B. Cai, G. T. Yu, X. Yu, Z. He, Q. Huang, A. Li, S. S. Guo, W. F. Zhang, W. Liu, Z. J. Sun, H. Wang, T. H. Wang, X. Z. Zhao, Small 2015, 11, 6225.
CrossRef Google scholar
[65]
J. Deng, S. Xu, W. Hu, X. Xun, L. Zheng, M. Su, Biomaterials 2018, 154, 24.
CrossRef Google scholar
[66]
E. T. Dams, P. Laverman, W. J. Oyen, G. Storm, G. L. Scherphof, J. W. van Der Meer, F. H. Corstens, O. C. Boerman, J. Pharmacol. Exp. Ther. 2000, 292, 1071.
CrossRef Google scholar
[67]
T. Ishida, H. Kiwada, Int. J. Pharm. 2008, 354, 56.
CrossRef Google scholar
[68]
Y. Zhang, J. Cao, Z. Yuan, J. Mater. Chem. B 2020, 8, 3959.
CrossRef Google scholar
[69]
S. Alcala-Alcala, C. G Benitez-Cardoza, E. J. Lima-Munoz, E. Pinon-Segundo, D. Quintanar-Guerrero, Int. J. Pharm. 2015, 489, 139.
[70]
a)P. Kolhar, A. C. Anselmo, V. Gupta, K. Pant, B. Prabhakarpandian, E. Ruoslahti, S. Mitragotri, Proc. Natl. Acad. Sci. USA 2013, 110, 10753;b)S. Baumeister, P. Gangopadhyay, U. Repnik, K. Lingelbach, Eur. J. Cell Biol. 2015, 94, 332;c)J. S. Brenner, D. C. Pan, J. W. Myerson, O. A Marcos-Contreras, C. H. Villa, P. Patel, H. Hekierski, S. Chatterjee, J. Q. Tao, H. Parhiz, K. Bhamidipati, T. G. Uhler, E. D. Hood, R. Y. Kiseleva, V. S. Shuvaev, T. Shuvaeva, M. Khoshnejad, I. Johnston, J. V. Gregory, J. Lahann, T. Wang, E. Cantu, W. M. Armstead, S. Mitragotri, V. Muzykantov, Nat. Commun. 2018, 9, 2684.
CrossRef Google scholar
[71]
Z. Vanic, S. Barnert, R. Suss, R. Schubert, J. Liposome Res. 2012, 22, 148.
CrossRef Google scholar
[72]
Y. Chen, Y. Li, J. Liu, Q. Zhu, J. Ma, X. Zhu, J. Control. Release 2021, 335, 345.
CrossRef Google scholar
[73]
Y. Zhang, Y. Wang, Q. Xin, M. Li, P. Yu, J. Luo, X. Xu, X. Chen, J. Li, J. Mater. Chem. B 2022, 10, 2497.
CrossRef Google scholar
[74]
P. Wu, X. Jiang, S. Yin, Y. Yang, T. Liu, K. Wang, J. Nanobiotechnol. 2021, 19, 213.
[75]
a)J. Guo, J. O. Agola, R. Serda, S. Franco, Q. Lei, L. Wang, J. Minster, J. G. Croissant, K. S. Butler, W. Zhu, C. J. Brinker, ACS Nano 2020, 14, 7847;b)R. H. Fang, C. M. Hu, K. N. Chen, B. T. Luk, C. W. Carpenter, W. Gao, S. Li, D. E. Zhang, W. Lu, L. Zhang, Nanoscale 2013, 5, 8884.
CrossRef Google scholar
[76]
a)N. G. Sosale, K. R. Spinler, C. Alvey, D. E. Discher, Curr. Opin. Immunol. 2015, 35, 107;b)X. Zhen, P. Cheng, K. Pu, Small 2019, 15, 1804105.
CrossRef Google scholar
[77]
P. Wang, F. Jiang, B. Chen, H. Tang, X. Zeng, D. Cai, M. Zhu, R. Long, D. Yang, R. K. Kankala, S. Wang, Y. Liu, Colloids Surf. B Biointerfaces 2020, 189, 110842.
CrossRef Google scholar
[78]
Y. Zhang, Q. Xia, T. Wu, Z. He, Y. Li, Z. Li, X. Hou, Y. He, S. Ruan, Z. Wang, J. Sun, N. Feng, J. Nanobiotechnol. 2021, 19, 245.
CrossRef Google scholar
[79]
S. Malhotra, S. Dumoga, N. Singh, WIREs Nanomed. Nanobiotechnol. 2022, 14, e1776.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Authors. Interdisciplinary Medicine published by Wiley-VCH GmbH on behalf of Nanfang Hospital, Southern Medical University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/