Photochemical regulatory strategies for nucleic acid function and their biomedical applications

Menglu Hu, Yihui Wang, Xiaoming Zhou

Interdisciplinary Medicine ›› 2024, Vol. 2 ›› Issue (3) : e20240006.

PDF
Interdisciplinary Medicine ›› 2024, Vol. 2 ›› Issue (3) : e20240006. DOI: 10.1002/inmd.20240006
REVIEW

Photochemical regulatory strategies for nucleic acid function and their biomedical applications

Author information +
History +

Abstract

Nucleic acids are not only essential biomolecules that drive critical life processes such as growth, development, reproduction, inheritance, and mutation, but also serve as significant markers for disease diagnosis, pathogen identification, and cancer screening. Nevertheless, several challenges have hindered the widespread use of nucleic acids in biomedicine, such as susceptibility to degradation, limited cellular uptake efficiency, potential toxicity, and uncontrollable activity. Photo-regulation offers an effective solution to address these challenges. It allows for the precise control of nucleic acid structure and function and enhances the stability and safety of their application in biomedicine. In this review, we systematically review the structural characteristics of the three primary photosensitive groups commonly used in the regulation of nucleic acid molecules (i.e., photocleavable molecules, photoisomerization molecules, and photo-crosslinking molecules) under light irradiation. Subsequently, recent research advances in the development and application of photo-modulation strategies based on these photosensitive molecules in antisense oligonucleotides, RNA interference, nucleic acid amplification, and CRISPR/Cas systems are outlined. Finally, we discuss the challenges faced in the widespread application of these photo-regulatory strategies and outline potential future directions for their development.

Keywords

nucleic acid / nucleic acid detection / photoactivation / photosensitive molecule

Cite this article

Download citation ▾
Menglu Hu, Yihui Wang, Xiaoming Zhou. Photochemical regulatory strategies for nucleic acid function and their biomedical applications. Interdisciplinary Medicine, 2024, 2(3): e20240006 https://doi.org/10.1002/inmd.20240006

References

[1]
a)J. Yang, H. Liu, X. Zhang, Biotechnol. Adv. 2014, 32, 804;b)D. Miyoshi, F. C. Simmel, S. Maiti, L. A. Marky, J. Nucleic Acids 2011, 2011, 547245;c)C. Teller, I. Willner, Curr. Opin. Biotechnol. 2010, 21, 376;d)M. Kuwahara, N. Sugimoto, Molecules 2010, 15, 5423.
CrossRef Google scholar
[2]
M. He, N. Nandu, T. B. Uyar, M. Royzen, M. V. Yigit, Chem. Commun. 2020, 56, 7313.
CrossRef Google scholar
[3]
K. S. Park, C. Y. Lee, H. G. Park, Chem. Commun. 2016, 52, 4868.
CrossRef Google scholar
[4]
a)D. J. Sharkey, E. R. Scalice, K. G. Christy Jr., S. M. Atwood, J. L. Daiss, Nat. Biotechnol. 1994, 12, 506;b)M. B. Kermekchiev, A. Tzekov, W. M. Barnes, Nucleic Acids Res. 2003, 31, 6139;c)D. E. Kellogg, I. Rybalkin, S. Chen, N. Mukhamedova, T. Vlasik, P. D. Siebert, A. Chenchik, BioTechniques 1994, 16, 1134.
CrossRef Google scholar
[5]
a)G. Mayer, A. Heckel, Angew. Chem. Int. Ed. 2006, 45, 4900;b)L. Chen, Y. Liu, W. Guo, Z. Liu, Exploration 2022, 2, 20210099;c)A. S. Lubbe, W. Szymanski, B. L. Feringa, Chem. Soc. Rev. 2017, 46, 1052;d)Q. Liu, A. Deiters, Acc. Chem. Res. 2014, 47, 45;e)Y. Wu, Z. Yang, Y. Lu, Curr. Opin. Chem. Biol. 2020, 57, 95;f)X. Tang, I. J. Dmochowski, Mol. Biosyst. 2007, 3, 100.
CrossRef Google scholar
[6]
a)F. Ercole, T. P. Davis, R. A. Evans, Polym. Chem. 2010, 1, 37;b)J. Cui, A. Del Campo, in Smart Polymers and Their Applications (Eds: M. R. Aguilar, J. S. Román), Woodhead Publishing 2014, pp. 93–133;c)C. G. Bochet, J. Chem. Soc. Perkin Trans. 1 2002, 125.
CrossRef Google scholar
[7]
a)X. J. Tang, S. Maegawa, E. S. Weinberg, I. J. Dmochowski, J. Am. Chem. Soc. 2007, 129, 11000;b)D. Matsunaga, H. Asanuma, M. Komiyama, J. Am. Chem. Soc. 2004, 126, 11452;c)J. P. Casey, R. A. Blidner, W. T. Monroe, Mol. Pharm. 2009, 6, 669;d)Y. Ji, J. Yang, L. Wu, L. Yu, X. Tang, Angew. Chem. Int. Ed. 2016, 55, 2152.
CrossRef Google scholar
[8]
G. Leriche, L. Chisholm, A. Wagner, Bioorg. Med. Chem. 2012, 20, 571.
CrossRef Google scholar
[9]
A. R. Bader, A. D. Kontowicz, J. Am. Chem. Soc. 1953, 75, 5416.
CrossRef Google scholar
[10]
P. Ordoukhanian, J.-S. Taylor, Bioconjugate Chem. 2000, 11, 94.
CrossRef Google scholar
[11]
S. Nadji, C. I. Wang, J. S. Taylor, J. Am. Chem. Soc. 1992, 114, 9266.
CrossRef Google scholar
[12]
B. Giese, A. Dussy, C. Elie, P. Erdmann, U. Schwitter, Angew. Chem. Int. Ed. 1994, 33, 1861.
CrossRef Google scholar
[13]
J. A. Barltrop, P. J. Plant, P. Schofield, Chem. Commun. 1966, 822.
CrossRef Google scholar
[14]
J. H. Kaplan, B. Forbush III, J. F. Hoffman, Biochemistry 1978, 17, 1929.
CrossRef Google scholar
[15]
J. W. Yang, D. Thomason, Biotechniques 1993, 15, 848.
[16]
H. Lusic, A. Deiters, ChemInform 2006, 37, 2147.
CrossRef Google scholar
[17]
a)H. Ando, H. Okamoto, Methods Cell Sci. 2003, 25, 25;b)H. Ando, T. Furuta, R. Y. Tsien, H. Okamoto, Nat. Genet. 2001, 28, 317.
CrossRef Google scholar
[18]
G. S. Hartley, Nature 1937, 140, 281.
CrossRef Google scholar
[19]
J. Tian, L. Jin, H. Liu, Z. Hua, Front. Pharmacol. 2023, 14, 1326682.
CrossRef Google scholar
[20]
a)R. Weinstain, T. Slanina, D. Kand, P. Klán, Chem. Rev. 2020, 120, 13135;b)Y. Zhou, Y. Wu, O. Pokholenko, M. Grimsrud, Y. Sham, V. Papper, R. Marks, T. Steele, Sens. Actuators B Chem. 2018, 257, 245.
CrossRef Google scholar
[21]
A. Smakula, Z. Phys. Chem. 1934, 25B, 90.
CrossRef Google scholar
[22]
A. Tavakoli, J.-H. Min, RSC Adv. 2022, 12, 6484.
CrossRef Google scholar
[23]
M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Chem. Rev. 2014, 114, 12174.
CrossRef Google scholar
[24]
M. Irie, M. Mohri, J. Org. Chem. 1988, 53, 803.
CrossRef Google scholar
[25]
C. Beyer, H.-A. Wagenknecht, Synlett 2010, 2010, 1371.
CrossRef Google scholar
[26]
E. Fischer, Y. Hirshberg, J. Am. Chem. Soc. 1952, 11, 4522.
[27]
a)B. Lukasak, K. Morihiro, A. Deiters, Sci. Rep. 2019, 9, 1470;b)C. Gao, Z. B. Fisher, K. J. Edgar, Cellulose 2019, 26, 445.
CrossRef Google scholar
[28]
G. W. J Fleet, R. R. Porter, J. R. Knowles, Nature 1969, 224, 511.
CrossRef Google scholar
[29]
E. Smith, I. Collins, Future Med. Chem. 2015, 7, 159.
CrossRef Google scholar
[30]
R. A. G Smith, J. R. Knowles, J. Am. Chem. Soc. 1973, 95, 5072.
CrossRef Google scholar
[31]
M. M. Hassan, O. O. Olaoye, Molecules 2020, 25, 2285.
CrossRef Google scholar
[32]
R. E. Galardy, L. C. Craig, J. D. Jamieson, M. P. Printz, J. Biol. Chem. 1974, 249, 3510.
CrossRef Google scholar
[33]
a)L. Weng, S. M. Horvat, C. H. Schiesser, M. M. Greenberg, Org. Lett. 2013, 15, 3618;b)G. Lin, L. Li, Angew. Chem. Int. Ed. 2013, 52, 5594;c)J. M. N. San Pedro, M. M. Greenberg, Org. Lett. 2012, 14, 2866.
CrossRef Google scholar
[34]
A. Herner, J. Marjanovic, T. M. Lewandowski, V. Marin, M. Patterson, L. Miesbauer, D. Ready, J. Williams, A. Vasudevan, Q. Lin, J. Am. Chem. Soc. 2016, 138, 14609.
CrossRef Google scholar
[35]
S. K. Choi, in Photonanotechnology for Therapeutics and Imaging (Ed: S. K. Choi), Elsevier 2020, Ch.9.
[36]
a)J. C. Anderson, C. B. Reese, Tetrahedron Lett. 1962, 3, 1;b)R. Orth, S. A. Sieber, J. Org. Chem. 2009, 74, 8476.
CrossRef Google scholar
[37]
P. Ordoukhanian, J. S. Taylor, J. Am. Chem. Soc. 1995, 117, 9570.
CrossRef Google scholar
[38]
J. Olejnik, E. Krzymanska-Olejnik, K. J. Rothschild, Nucleic Acids Res. 1998, 26, 3572.
CrossRef Google scholar
[39]
X. Bai, Z. Li, S. Jockusch, N. J. Turro, J. Ju, Proc. Natl. Acad. Sci. USA 2003, 100, 409.
CrossRef Google scholar
[40]
P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, J. Wirz, Chem. Rev. 2012, 113, 119.
CrossRef Google scholar
[41]
S. G. Chaulk, A. M. MacMillan, Nucleic Acids Res. 1998, 26, 3173.
CrossRef Google scholar
[42]
W. T. Monroe, M. M. McQuain, M. S. Chang, J. S. Alexander, F. R. Haselton, J. Biol. Chem. 1999, 274, 20895.
CrossRef Google scholar
[43]
S. Shah, Ph.D. Thesis, University of Missouri -Kansas City (United States -Missouri) 2007.
[44]
L. Krock, A. Heckel, Angew. Chem. Int. Ed. 2005, 44, 471.
CrossRef Google scholar
[45]
A. Heckel, G. Mayer, J. Am. Chem. Soc. 2005, 127, 822.
CrossRef Google scholar
[46]
R. Ting, L. Lermer, D. M. Perrin, J. Am. Chem. Soc. 2004, 126, 12720.
CrossRef Google scholar
[47]
H. Lusic, D. D. Young, M. O. Lively, A. Deiters, Org. Lett. 2007, 9, 1903.
CrossRef Google scholar
[48]
J. M. Govan, D. D. Young, H. Lusic, Q. Liu, M. O. Lively, A. Deiters, Nucleic Acids Res. 2013, 41, 10518.
CrossRef Google scholar
[49]
W. Szymanski, J. M. Beierle, H. A. Kistemaker, W. A. Velema, B. L. Feringa, Chem. Rev. 2013, 113, 6114.
CrossRef Google scholar
[50]
a)H. M. Bandara, S. C. Burdette, Chem. Soc. Rev. 2012, 41, 1809;b)L. Niu, C. Zhong, Z. Chen, Z. Zhang, Z. Li, F. Zhang, Y. Tang, Sci. Bull. 2009, 54, 1169.
CrossRef Google scholar
[51]
M. Hanazawa, R. Sumiya, Y. Horikawa, M. Irie, J. Chem. Soc. Chem. Commun. 1992, 206.
CrossRef Google scholar
[52]
V. I. Minkin, Mol. Switches 2011, 1, 37.
CrossRef Google scholar
[53]
S. A. Fleming, Tetrahedron 1995, 51, 12479.
CrossRef Google scholar
[54]
A. Singh, E. R. Thornton, F. H. Westheimer, J. Biol. Chem. 1962, 237, PC3006.
CrossRef Google scholar
[55]
a)G. W. Preston, A. J. Wilson, Chem. Soc. Rev. 2013, 42, 3289;b)D. P. Murale, S. C. Hong, M. M. Haque, J. S. Lee, Proteome Sci. 2016, 15, 14;c)S. S. Ge, B. Chen, Y. Y. Wu, Q. S. Long, Y. L. Zhao, P. Y. Wang, S. Yang, RSC Adv. 2018, 8, 29428.
CrossRef Google scholar
[56]
A. Rodrigues-Correia, M. B. Koeppel, F. Schäfer, K. B. Joshi, T. Mack, A. Heckel, Anal. Bioanal. Chem. 2011, 399, 441.
CrossRef Google scholar
[57]
a)F. P. Weissenboeck, H. Schepers, A. Rentmeister, Angew. Chem. Int. Ed. 2023, 62, e202301778;b)N. Klöcker, F. P. Weissenboeck, M. van Dülmen, P. Špaček, S. Hüwel, A. Rentmeister, Nat. Chem. 2022, 14, 905.
CrossRef Google scholar
[58]
a)N. Kasyanenko, I. Unksov, V. Bakulev, S. Santer, Molecules 2018, 23, 1576;b)Y. Zakrevskyy, A. Kopyshev, N. Lomadze, E. Morozova, L. Lysyakova, N. Kasyanenko, S. Santer, Phys. Rev. 2011, 84, 021909;c)A.-L. M. Le Ny, C. T. Lee, J. Am. Chem. Soc. 2006, 128, 6400.
CrossRef Google scholar
[59]
a)N. Goyal, P. Narayanaswami, Muscle Nerve 2018, 57, 356;b)C. Rinaldi, M. J. A. Wood, Nat. Rev. Neurosci. 2018, 14, 9;c)T. Wang, Y. Tang, Y. Tao, H. Zhou, D. Ding, Interdiscip. Med. 2024, 2, e20230041.
CrossRef Google scholar
[60]
P. C. Zamecnik, M. L. Stephenson, Proc. Natl. Acad. Sci. USA 1978, 75, 280.
CrossRef Google scholar
[61]
C. F. Bennett, E. E. Swayze, Annu. Rev. Pharmacol. Toxicol. 2010, 50, 259.
CrossRef Google scholar
[62]
a)F. Muntoni, M. J. A. Wood, Nat. Rev. Drug Discov. 2011, 10, 621;b)J. B. Opalinska, A. M. Gewirtz, Nat. Rev. Drug Discov. 2002, 1, 503.
CrossRef Google scholar
[63]
a)X. Tang, M. Su, L. Yu, C. Lv, J. Wang, Z. Li, Nucleic Acids Res. 2010, 38, 3848;b)J. L. Richards, X. Tang, A. Turetsky, I. J. Dmochowski, Bioorg. Med. Chem. Lett. 2008, 18, 6255;c)Y. Masaki, A. Tabira, S. Hattori, S. Wakatsuki, K. Seio, Org. Biomol. Chem. 2022, 20, 8917.
CrossRef Google scholar
[64]
a)D. D. Young, H. Lusic, M. O. Lively, J. A. Yoder, A. Deiters, ChemBioChem 2008, 9, 2937;b)D. Hartmann, M. J. Booth, Commun. Chem. 2023, 6, 59.
CrossRef Google scholar
[65]
G. Mazzotti, D. Hartmann, M. J. Booth, J. Am. Chem. Soc. 2023, 145, 9481.
CrossRef Google scholar
[66]
a)L. Yang, H. B. Kim, J. Y. Sul, S. B. Yeldell, J. H. Eberwine, I. J. Dmochowski, ChemBioChem 2018, 19, 1250;b)D. Hartmann, M. J. Booth, Chem. Commun. 2023, 59, 5685;c)S. Pattanayak, B. R. Sarode, A. Deiters, J. K. Chen, ChemBioChem 2022, 23, e202200374;d)K. Darrah, J. Wesalo, B. Lukasak, M. Tsang, J. K. Chen, A. Deiters, J. Am. Chem. Soc. 2021, 143, 18665;e)A. Bardhan, A. Deiters, C. A. Ettensohn, Dev. Biol. 2021, 475, 21;f)D. Deodato, T. M. Dore, Molecules 2020, 25, 2078;g) M. J. O’Connor, L. L. Beebe, D. Deodato, R. E. Ball, A. T. Page, A. J. VanLeuven, K. T. Harris, S. Park, V. Hariharan, J. D. Lauderdale, T. M. Dore, ACS Chem. Neurosci. 2019, 10, 266.
CrossRef Google scholar
[67]
a)X. Tang, I. J. Dmochowski, Angew. Chem. Int. Ed. 2006, 118, 3603;b)X. Tang, J. Swaminathan, A. M. Gewirtz, I. J. Dmochowski, Nucleic Acids Res. 2008, 36, 559;c)X. Tang, I. J. Dmochowski, Nat. Protoc. 2006, 1, 3041.
CrossRef Google scholar
[68]
A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, C. C. Mello, Nature 1998, 391, 806.
CrossRef Google scholar
[69]
Y. L. Chiu, T. M. Rana, Mol. Cell 2002, 10, 549.
CrossRef Google scholar
[70]
Q. N. Nguyen, R. V. Chavli, J. T. Marques, P. G. Conrad Jr., D. Wang, W. He, B. E. Belisle, A. Zhang, L. M. Pastor, F. R. Witney, M. Morris, F. Heitz, G. Divita, B. R. Williams, G. K. McMaster, Biochim. Biophys. Acta 2006, 1758, 394.
CrossRef Google scholar
[71]
P. K. Jain, S. Shah, S. H. Friedman, J. Am. Chem. Soc. 2011, 133, 440.
CrossRef Google scholar
[72]
S. Shah, S. H. Friedman, Oligonucleotides 2007, 17, 35.
CrossRef Google scholar
[73]
V. Mikat, A. Heckel, RNA 2007, 13, 2341.
CrossRef Google scholar
[74]
a)M. L. Hammill, C. Isaacs-Trépanier, J.-P. Desaulniers, ChemistrySelect 2017, 2, 9810;b)M. L. Hammill, A. Patel, M. A. Alla, J.-P. Desaulniers, Bioorg. Med. Chem. Lett. 2018, 28, 3613;c)M. L. Hammill, G. Islam, J.-P. Desaulniers, Org. Biomol. Chem. 2020, 18, 41.
CrossRef Google scholar
[75]
a)M. L. Hammill, G. Islam, J.-P. Desaulniers, ChemBioChem 2020, 21, 2367;b)M. L. Hammill, K. Tsubaki, Y. Wang, G. Islam, M. Kitamura, T. Okauchi, J.-P. Desaulniers, ChemBioChem 2022, 23, e202200386.
CrossRef Google scholar
[76]
L. Chen, Y. Sun, J. Li, Y. Zhang, Chem. Commun. 2020, 56, 627.
CrossRef Google scholar
[77]
W. Brown, A. Bardhan, K. Darrah, M. Tsang, A. Deiters, J. Am. Chem. Soc. 2022, 144, 16819.
CrossRef Google scholar
[78]
K. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn, H. Erlich, Cold Spring Harbor Symp. Quant. Biol. 1986, 51, 263.
CrossRef Google scholar
[79]
a)A. Heim, C. Ebnet, G. Harste, P. Pring-Akerblom, J. Med. Virol. 2003, 70, 228;b)M. Kubista, J. M. Andrade, M. Bengtsson, A. Forootan, J. Jonak, K. Lind, R. Sindelka, R. Sjoback, B. Sjogreen, L. Strombom, A. Stahlberg, N. Zoric, Mol. Aspects Med. 2006, 27, 95.
CrossRef Google scholar
[80]
P. Gill, A. Ghaemi, Nucleosides, Nucleotides Nucleic Acids 2008, 27, 224.
CrossRef Google scholar
[81]
B. Deiman, P. van Aarle, P. Sillekens, Mol. Biotechnol. 2002, 20, 163.
CrossRef Google scholar
[82]
a)T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, T. Hase, Nucleic Acids Res. 2000, 28, e63;b)K. Nagamine, Y. Kuzuhara, T. Notomi, Biochem. Biophys. Res. Commun. 2002, 290, 1195;c)Y. Mori, K. Nagamine, N. Tomita, T. Notomi, Biochem. Biophys. Res. Commun. 2001, 289, 150.
CrossRef Google scholar
[83]
O. Piepenburg, C. H. Williams, D. L. Stemple, N. A. Armes, PLoS Biol. 2006, 4, 1115.
CrossRef Google scholar
[84]
M. Nilsson, H. Malmgren, M. Samiotaki, M. Kwiatkowski, B. P. Chowdhary, U. Landegren, Science 1994, 265, 2085.
CrossRef Google scholar
[85]
a)G. T. Walker, M. C. Little, J. G. Nadeau, D. D. Shank, Proc. Natl. Acad. Sci. USA 1992, 89, 392;b)G. T. Walker, M. S. Fraiser, J. L. Schram, M. C. Little, J. G. Nadeau, D. P. Malinowski, Nucleic Acids Res. 1992, 20, 1691.
CrossRef Google scholar
[86]
A. Louwrier, A. van der Valk, Enzyme Microb. Technol. 2005, 36, 947.
CrossRef Google scholar
[87]
Y. Lin, S. D. Jayasena, J. Mol. Biol. 1997, 271, 100.
CrossRef Google scholar
[88]
a)D. D. Young, W. F. Edwards, H. Lusic, M. O. Lively, A. Deiters, Chem. Commun. 2008, 462;b)C. Chou, D. D. Young, A. Deiters, Angew. Chem. Int. Ed. 2009, 48, 5950;c)M. Z. Kesici, P. Tinnefeld, A. M. Vera, Nucleic Acids Res. 2022, 50, e31.
CrossRef Google scholar
[89]
a)K. Tanaka, H. Katada, N. Shigi, A. Kuzuya, M. Komiyama, ChemBioChem 2008, 9, 2120;b)A. Kuzuya, K. Tanaka, H. Katada, M. Komiyama, Molecules 2011, 17, 328.
CrossRef Google scholar
[90]
B. Cheng, H. Kashida, N. Shimada, A. Maruyama, H. Asanuma, Chem. Commun. 2019, 55, 1080.
CrossRef Google scholar
[91]
T. T. Cai, C. L. Zhong, Y. D. He, Y. Q. Chen, J. Q. Wang, J. Q. Wang, K. W. Zheng, Sens. Actuators B Chem. 2023, 388, 133797.
CrossRef Google scholar
[92]
a)P. Horvath, R. Barrangou, Science 2010, 327, 167;b)K. S. Makarova, D. H. Haft, R. Barrangou, S. J. Brouns, E. Charpentier, P. Horvath, S. Moineau, F. J. Mojica, Y. I. Wolf, A. F. Yakunin, J. van der Oost, E. V. Koonin, Nat. Rev. Microbiol. 2011, 9, 467;c)R. Sorek, C. M. Lawrence, B. Wiedenheft, Annu. Rev. Biochem. 2013, 82, 237.
CrossRef Google scholar
[93]
a)J. D. Sander, J. K. Joung, Nat. Biotechnol. 2014, 32, 347;b)P. D. Hsu, E. S. Lander, F. Zhang, Cell 2014, 157, 1262;c)G. Liu, Q. Lin, S. Jin, C. Gao, Mol. Cell 2022, 82, 333;d)W. Tang, J. Liu, B. Ding, Interdiscip. Med. 2022, 1, e220220014.
CrossRef Google scholar
[94]
a)D. S. Chertow, Science 2018, 360, 381;b)Y. Li, S. Li, J. Wang, G. Liu, Trends Biotechnol. 2019, 37, 730;c)M. M. Kaminski, O. O. Abudayyeh, J. S. Gootenberg, F. Zhang, J. J. Collins, Nat. Biomed. Eng. 2021, 5, 643.
CrossRef Google scholar
[95]
a)C. Y. Zhuo, J. B. Zhang, J. H. Lee, J. Jiao, D. Cheng, L. Liu, H. W. Kim, Y. Tao, M. Q. Li, Signal Transduction Targeted Ther. 2021, 6, 238;b)A. E. Modell, S. U. Siriwardena, V. M. Shoba, X. Li, A. Choudhary, Curr. Opin. Chem. Biol. 2021, 60, 113;c)W. Zhou, A. Deiters, Angew. Chem. Int. Ed. 2016, 55, 5394.
CrossRef Google scholar
[96]
a)P. K. Jain, V. Ramanan, A. G. Schepers, N. S. Dalvie, A. Panda, H. E. Fleming, S. N. Bhatia, Angew. Chem. Int. Ed. 2016, 55, 12440;b)M. Hu, Z. Qiu, Z. Bi, T. Tian, Y. Jiang, X. Zhou, Proc. Natl. Acad. Sci. USA 2022, 119, e2202034119; c)Y. Chen, X. Xu, J. Wang, Y. Zhang, W. Zeng, Y. Liu, X. Zhang, Anal. Chem. 2022, 94, 9724.
CrossRef Google scholar
[97]
a)Y. Liu, R. S. Zou, S. He, Y. Nihongaki, X. Li, S. Razavi, B. Wu, T. Ha, Science 2020, 368, 1265;b) E. V. Moroz-Omori, D. Satyapertiwi, M. C. Ramel, H. Hogset, I. K. Sunyovszki, Z. Liu, J. P. Wojciechowski, Y. Zhang, C. L. Grigsby, L. Brito, L. Bugeon, M. J. Dallman, M. M. Stevens, ACS Cent. Sci. 2020, 6, 695;c)Y. Wang, Y. Liu, F. Xie, J. Lin, L. Xu, Chem. Sci. 2020, 11, 11478;d)W. Y. Zhou, W. Brown, A. Bardhan, M. Delaney, A. S. Ilk, R. R. Rauen, S. I. Kahn, M. Tsang, A. Deiters, Angew. Chem. Int. Ed. 2020, 59, 8998;e)M. Hu, R. Liu, Z. Qiu, F. Cao, T. Tian, Y. X. Lu, Y. Jiang, X. Zhou, Angew. Chem. Int. Ed. 2023, 62, e202300663.
CrossRef Google scholar
[98]
Y. Zhang, X. Ling, X. Su, S. Zhang, J. Wang, P. Zhang, W. Feng, Y. Y. Zhu, T. Liu, X. Tang, Angew. Chem. Int. Ed. 2020, 59, 20895.
CrossRef Google scholar
[99]
H. Deng, H. Xu, Y. Wang, R. Jia, X. Ma, Y. Feng, H. Chen, Nucleic Acids Res. 2023, 51, 4064.
CrossRef Google scholar
[100]
a)Y. J. Sun, W. D. Chen, J. Liu, J. J. Li, Y. Zhang, W. Q. Cai, L. Liu, X. J. Tang, J. Hou, M. Wang, L. Cheng, Angew. Chem. Int. Ed. 2023, 62, e202212413; b)D. Zhang, L. Liu, S. Jin, E. Tota, Z. Li, X. Piao, X. Zhang, X. D. Fu, N. K. Devaraj, J. Am. Chem. Soc. 2022, 144, 4487.
CrossRef Google scholar
[101]
J. Carlson-Stevermer, R. Kelso, A. Kadina, S. Joshi, N. Rossi, J. Walker, R. Stoner, T. Maures, Nat. Commun. 2020, 11, 5041.
CrossRef Google scholar
[102]
R. S. Zou, Y. Liu, B. Wu, T. Ha, Mol. Cell 2021, 81, 1553.
CrossRef Google scholar
[103]
H. P. Nguyen, S. Stewart, M. N. Kukwikila, S. F. Jones, D. Offenbartl-Stiegert, S. Mao, S. Balasubramanian, S. Beck, S. Howorka, Angew. Chem. Int. Ed. 2019, 58, 6620.
CrossRef Google scholar
[104]
J. R. Kumita, O. S. Smart, G. A. Woolley, Proc. Natl. Acad. Sci. USA 2000, 97, 3803.
CrossRef Google scholar
[105]
J. Wang, Y. Liu, Y. Liu, S. Zheng, X. Wang, J. Zhao, F. Yang, G. Zhang, C. Wang, P. R. Chen, Nature 2019, 569, 509.
CrossRef Google scholar
[106]
K. E. Darrah, A. Deiters, Chem. Soc. Rev. 2021, 50, 13253.
CrossRef Google scholar
[107]
C. Hamerla, P. Mondal, R. Hegger, I. Burghardt, Phys. Chem. Chem. Phys. 2023, 25, 26132.
CrossRef Google scholar
[108]
M. Pawlicki, H. A. Collins, R. G. Denning, H. L. Anderson, Angew. Chem. Int. Ed. 2009, 48, 3244.
CrossRef Google scholar
[109]
S. Guha, J. Graf, B. Göricke, U. Diederichsen, J. Pept. Sci. 2013, 19, 415.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Authors. Interdisciplinary Medicine published by Wiley-VCH GmbH on behalf of Nanfang Hospital, Southern Medical University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/