Photochemical regulatory strategies for nucleic acid function and their biomedical applications

Menglu Hu , Yihui Wang , Xiaoming Zhou

Interdisciplinary Medicine ›› 2024, Vol. 2 ›› Issue (3) : e20240006

PDF
Interdisciplinary Medicine ›› 2024, Vol. 2 ›› Issue (3) : e20240006 DOI: 10.1002/inmd.20240006
REVIEW

Photochemical regulatory strategies for nucleic acid function and their biomedical applications

Author information +
History +
PDF

Abstract

Nucleic acids are not only essential biomolecules that drive critical life processes such as growth, development, reproduction, inheritance, and mutation, but also serve as significant markers for disease diagnosis, pathogen identification, and cancer screening. Nevertheless, several challenges have hindered the widespread use of nucleic acids in biomedicine, such as susceptibility to degradation, limited cellular uptake efficiency, potential toxicity, and uncontrollable activity. Photo-regulation offers an effective solution to address these challenges. It allows for the precise control of nucleic acid structure and function and enhances the stability and safety of their application in biomedicine. In this review, we systematically review the structural characteristics of the three primary photosensitive groups commonly used in the regulation of nucleic acid molecules (i.e., photocleavable molecules, photoisomerization molecules, and photo-crosslinking molecules) under light irradiation. Subsequently, recent research advances in the development and application of photo-modulation strategies based on these photosensitive molecules in antisense oligonucleotides, RNA interference, nucleic acid amplification, and CRISPR/Cas systems are outlined. Finally, we discuss the challenges faced in the widespread application of these photo-regulatory strategies and outline potential future directions for their development.

Keywords

nucleic acid / nucleic acid detection / photoactivation / photosensitive molecule

Cite this article

Download citation ▾
Menglu Hu, Yihui Wang, Xiaoming Zhou. Photochemical regulatory strategies for nucleic acid function and their biomedical applications. Interdisciplinary Medicine, 2024, 2(3): e20240006 DOI:10.1002/inmd.20240006

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a)J. Yang, H. Liu, X. Zhang, Biotechnol. Adv. 2014, 32, 804;b)D. Miyoshi, F. C. Simmel, S. Maiti, L. A. Marky, J. Nucleic Acids 2011, 2011, 547245;c)C. Teller, I. Willner, Curr. Opin. Biotechnol. 2010, 21, 376;d)M. Kuwahara, N. Sugimoto, Molecules 2010, 15, 5423.

[2]

M. He, N. Nandu, T. B. Uyar, M. Royzen, M. V. Yigit, Chem. Commun. 2020, 56, 7313.

[3]

K. S. Park, C. Y. Lee, H. G. Park, Chem. Commun. 2016, 52, 4868.

[4]

a)D. J. Sharkey, E. R. Scalice, K. G. Christy Jr., S. M. Atwood, J. L. Daiss, Nat. Biotechnol. 1994, 12, 506;b)M. B. Kermekchiev, A. Tzekov, W. M. Barnes, Nucleic Acids Res. 2003, 31, 6139;c)D. E. Kellogg, I. Rybalkin, S. Chen, N. Mukhamedova, T. Vlasik, P. D. Siebert, A. Chenchik, BioTechniques 1994, 16, 1134.

[5]

a)G. Mayer, A. Heckel, Angew. Chem. Int. Ed. 2006, 45, 4900;b)L. Chen, Y. Liu, W. Guo, Z. Liu, Exploration 2022, 2, 20210099;c)A. S. Lubbe, W. Szymanski, B. L. Feringa, Chem. Soc. Rev. 2017, 46, 1052;d)Q. Liu, A. Deiters, Acc. Chem. Res. 2014, 47, 45;e)Y. Wu, Z. Yang, Y. Lu, Curr. Opin. Chem. Biol. 2020, 57, 95;f)X. Tang, I. J. Dmochowski, Mol. Biosyst. 2007, 3, 100.

[6]

a)F. Ercole, T. P. Davis, R. A. Evans, Polym. Chem. 2010, 1, 37;b)J. Cui, A. Del Campo, in Smart Polymers and Their Applications (Eds: M. R. Aguilar, J. S. Román), Woodhead Publishing 2014, pp. 93–133;c)C. G. Bochet, J. Chem. Soc. Perkin Trans. 1 2002, 125.

[7]

a)X. J. Tang, S. Maegawa, E. S. Weinberg, I. J. Dmochowski, J. Am. Chem. Soc. 2007, 129, 11000;b)D. Matsunaga, H. Asanuma, M. Komiyama, J. Am. Chem. Soc. 2004, 126, 11452;c)J. P. Casey, R. A. Blidner, W. T. Monroe, Mol. Pharm. 2009, 6, 669;d)Y. Ji, J. Yang, L. Wu, L. Yu, X. Tang, Angew. Chem. Int. Ed. 2016, 55, 2152.

[8]

G. Leriche, L. Chisholm, A. Wagner, Bioorg. Med. Chem. 2012, 20, 571.

[9]

A. R. Bader, A. D. Kontowicz, J. Am. Chem. Soc. 1953, 75, 5416.

[10]

P. Ordoukhanian, J.-S. Taylor, Bioconjugate Chem. 2000, 11, 94.

[11]

S. Nadji, C. I. Wang, J. S. Taylor, J. Am. Chem. Soc. 1992, 114, 9266.

[12]

B. Giese, A. Dussy, C. Elie, P. Erdmann, U. Schwitter, Angew. Chem. Int. Ed. 1994, 33, 1861.

[13]

J. A. Barltrop, P. J. Plant, P. Schofield, Chem. Commun. 1966, 822.

[14]

J. H. Kaplan, B. Forbush III, J. F. Hoffman, Biochemistry 1978, 17, 1929.

[15]

J. W. Yang, D. Thomason, Biotechniques 1993, 15, 848.

[16]

H. Lusic, A. Deiters, ChemInform 2006, 37, 2147.

[17]

a)H. Ando, H. Okamoto, Methods Cell Sci. 2003, 25, 25;b)H. Ando, T. Furuta, R. Y. Tsien, H. Okamoto, Nat. Genet. 2001, 28, 317.

[18]

G. S. Hartley, Nature 1937, 140, 281.

[19]

J. Tian, L. Jin, H. Liu, Z. Hua, Front. Pharmacol. 2023, 14, 1326682.

[20]

a)R. Weinstain, T. Slanina, D. Kand, P. Klán, Chem. Rev. 2020, 120, 13135;b)Y. Zhou, Y. Wu, O. Pokholenko, M. Grimsrud, Y. Sham, V. Papper, R. Marks, T. Steele, Sens. Actuators B Chem. 2018, 257, 245.

[21]

A. Smakula, Z. Phys. Chem. 1934, 25B, 90.

[22]

A. Tavakoli, J.-H. Min, RSC Adv. 2022, 12, 6484.

[23]

M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Chem. Rev. 2014, 114, 12174.

[24]

M. Irie, M. Mohri, J. Org. Chem. 1988, 53, 803.

[25]

C. Beyer, H.-A. Wagenknecht, Synlett 2010, 2010, 1371.

[26]

E. Fischer, Y. Hirshberg, J. Am. Chem. Soc. 1952, 11, 4522.

[27]

a)B. Lukasak, K. Morihiro, A. Deiters, Sci. Rep. 2019, 9, 1470;b)C. Gao, Z. B. Fisher, K. J. Edgar, Cellulose 2019, 26, 445.

[28]

G. W. J Fleet, R. R. Porter, J. R. Knowles, Nature 1969, 224, 511.

[29]

E. Smith, I. Collins, Future Med. Chem. 2015, 7, 159.

[30]

R. A. G Smith, J. R. Knowles, J. Am. Chem. Soc. 1973, 95, 5072.

[31]

M. M. Hassan, O. O. Olaoye, Molecules 2020, 25, 2285.

[32]

R. E. Galardy, L. C. Craig, J. D. Jamieson, M. P. Printz, J. Biol. Chem. 1974, 249, 3510.

[33]

a)L. Weng, S. M. Horvat, C. H. Schiesser, M. M. Greenberg, Org. Lett. 2013, 15, 3618;b)G. Lin, L. Li, Angew. Chem. Int. Ed. 2013, 52, 5594;c)J. M. N. San Pedro, M. M. Greenberg, Org. Lett. 2012, 14, 2866.

[34]

A. Herner, J. Marjanovic, T. M. Lewandowski, V. Marin, M. Patterson, L. Miesbauer, D. Ready, J. Williams, A. Vasudevan, Q. Lin, J. Am. Chem. Soc. 2016, 138, 14609.

[35]

S. K. Choi, in Photonanotechnology for Therapeutics and Imaging (Ed: S. K. Choi), Elsevier 2020, Ch.9.

[36]

a)J. C. Anderson, C. B. Reese, Tetrahedron Lett. 1962, 3, 1;b)R. Orth, S. A. Sieber, J. Org. Chem. 2009, 74, 8476.

[37]

P. Ordoukhanian, J. S. Taylor, J. Am. Chem. Soc. 1995, 117, 9570.

[38]

J. Olejnik, E. Krzymanska-Olejnik, K. J. Rothschild, Nucleic Acids Res. 1998, 26, 3572.

[39]

X. Bai, Z. Li, S. Jockusch, N. J. Turro, J. Ju, Proc. Natl. Acad. Sci. USA 2003, 100, 409.

[40]

P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, J. Wirz, Chem. Rev. 2012, 113, 119.

[41]

S. G. Chaulk, A. M. MacMillan, Nucleic Acids Res. 1998, 26, 3173.

[42]

W. T. Monroe, M. M. McQuain, M. S. Chang, J. S. Alexander, F. R. Haselton, J. Biol. Chem. 1999, 274, 20895.

[43]

S. Shah, Ph.D. Thesis, University of Missouri -Kansas City (United States -Missouri) 2007.

[44]

L. Krock, A. Heckel, Angew. Chem. Int. Ed. 2005, 44, 471.

[45]

A. Heckel, G. Mayer, J. Am. Chem. Soc. 2005, 127, 822.

[46]

R. Ting, L. Lermer, D. M. Perrin, J. Am. Chem. Soc. 2004, 126, 12720.

[47]

H. Lusic, D. D. Young, M. O. Lively, A. Deiters, Org. Lett. 2007, 9, 1903.

[48]

J. M. Govan, D. D. Young, H. Lusic, Q. Liu, M. O. Lively, A. Deiters, Nucleic Acids Res. 2013, 41, 10518.

[49]

W. Szymanski, J. M. Beierle, H. A. Kistemaker, W. A. Velema, B. L. Feringa, Chem. Rev. 2013, 113, 6114.

[50]

a)H. M. Bandara, S. C. Burdette, Chem. Soc. Rev. 2012, 41, 1809;b)L. Niu, C. Zhong, Z. Chen, Z. Zhang, Z. Li, F. Zhang, Y. Tang, Sci. Bull. 2009, 54, 1169.

[51]

M. Hanazawa, R. Sumiya, Y. Horikawa, M. Irie, J. Chem. Soc. Chem. Commun. 1992, 206.

[52]

V. I. Minkin, Mol. Switches 2011, 1, 37.

[53]

S. A. Fleming, Tetrahedron 1995, 51, 12479.

[54]

A. Singh, E. R. Thornton, F. H. Westheimer, J. Biol. Chem. 1962, 237, PC3006.

[55]

a)G. W. Preston, A. J. Wilson, Chem. Soc. Rev. 2013, 42, 3289;b)D. P. Murale, S. C. Hong, M. M. Haque, J. S. Lee, Proteome Sci. 2016, 15, 14;c)S. S. Ge, B. Chen, Y. Y. Wu, Q. S. Long, Y. L. Zhao, P. Y. Wang, S. Yang, RSC Adv. 2018, 8, 29428.

[56]

A. Rodrigues-Correia, M. B. Koeppel, F. Schäfer, K. B. Joshi, T. Mack, A. Heckel, Anal. Bioanal. Chem. 2011, 399, 441.

[57]

a)F. P. Weissenboeck, H. Schepers, A. Rentmeister, Angew. Chem. Int. Ed. 2023, 62, e202301778;b)N. Klöcker, F. P. Weissenboeck, M. van Dülmen, P. Špaček, S. Hüwel, A. Rentmeister, Nat. Chem. 2022, 14, 905.

[58]

a)N. Kasyanenko, I. Unksov, V. Bakulev, S. Santer, Molecules 2018, 23, 1576;b)Y. Zakrevskyy, A. Kopyshev, N. Lomadze, E. Morozova, L. Lysyakova, N. Kasyanenko, S. Santer, Phys. Rev. 2011, 84, 021909;c)A.-L. M. Le Ny, C. T. Lee, J. Am. Chem. Soc. 2006, 128, 6400.

[59]

a)N. Goyal, P. Narayanaswami, Muscle Nerve 2018, 57, 356;b)C. Rinaldi, M. J. A. Wood, Nat. Rev. Neurosci. 2018, 14, 9;c)T. Wang, Y. Tang, Y. Tao, H. Zhou, D. Ding, Interdiscip. Med. 2024, 2, e20230041.

[60]

P. C. Zamecnik, M. L. Stephenson, Proc. Natl. Acad. Sci. USA 1978, 75, 280.

[61]

C. F. Bennett, E. E. Swayze, Annu. Rev. Pharmacol. Toxicol. 2010, 50, 259.

[62]

a)F. Muntoni, M. J. A. Wood, Nat. Rev. Drug Discov. 2011, 10, 621;b)J. B. Opalinska, A. M. Gewirtz, Nat. Rev. Drug Discov. 2002, 1, 503.

[63]

a)X. Tang, M. Su, L. Yu, C. Lv, J. Wang, Z. Li, Nucleic Acids Res. 2010, 38, 3848;b)J. L. Richards, X. Tang, A. Turetsky, I. J. Dmochowski, Bioorg. Med. Chem. Lett. 2008, 18, 6255;c)Y. Masaki, A. Tabira, S. Hattori, S. Wakatsuki, K. Seio, Org. Biomol. Chem. 2022, 20, 8917.

[64]

a)D. D. Young, H. Lusic, M. O. Lively, J. A. Yoder, A. Deiters, ChemBioChem 2008, 9, 2937;b)D. Hartmann, M. J. Booth, Commun. Chem. 2023, 6, 59.

[65]

G. Mazzotti, D. Hartmann, M. J. Booth, J. Am. Chem. Soc. 2023, 145, 9481.

[66]

a)L. Yang, H. B. Kim, J. Y. Sul, S. B. Yeldell, J. H. Eberwine, I. J. Dmochowski, ChemBioChem 2018, 19, 1250;b)D. Hartmann, M. J. Booth, Chem. Commun. 2023, 59, 5685;c)S. Pattanayak, B. R. Sarode, A. Deiters, J. K. Chen, ChemBioChem 2022, 23, e202200374;d)K. Darrah, J. Wesalo, B. Lukasak, M. Tsang, J. K. Chen, A. Deiters, J. Am. Chem. Soc. 2021, 143, 18665;e)A. Bardhan, A. Deiters, C. A. Ettensohn, Dev. Biol. 2021, 475, 21;f)D. Deodato, T. M. Dore, Molecules 2020, 25, 2078;g) M. J. O’Connor, L. L. Beebe, D. Deodato, R. E. Ball, A. T. Page, A. J. VanLeuven, K. T. Harris, S. Park, V. Hariharan, J. D. Lauderdale, T. M. Dore, ACS Chem. Neurosci. 2019, 10, 266.

[67]

a)X. Tang, I. J. Dmochowski, Angew. Chem. Int. Ed. 2006, 118, 3603;b)X. Tang, J. Swaminathan, A. M. Gewirtz, I. J. Dmochowski, Nucleic Acids Res. 2008, 36, 559;c)X. Tang, I. J. Dmochowski, Nat. Protoc. 2006, 1, 3041.

[68]

A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, C. C. Mello, Nature 1998, 391, 806.

[69]

Y. L. Chiu, T. M. Rana, Mol. Cell 2002, 10, 549.

[70]

Q. N. Nguyen, R. V. Chavli, J. T. Marques, P. G. Conrad Jr., D. Wang, W. He, B. E. Belisle, A. Zhang, L. M. Pastor, F. R. Witney, M. Morris, F. Heitz, G. Divita, B. R. Williams, G. K. McMaster, Biochim. Biophys. Acta 2006, 1758, 394.

[71]

P. K. Jain, S. Shah, S. H. Friedman, J. Am. Chem. Soc. 2011, 133, 440.

[72]

S. Shah, S. H. Friedman, Oligonucleotides 2007, 17, 35.

[73]

V. Mikat, A. Heckel, RNA 2007, 13, 2341.

[74]

a)M. L. Hammill, C. Isaacs-Trépanier, J.-P. Desaulniers, ChemistrySelect 2017, 2, 9810;b)M. L. Hammill, A. Patel, M. A. Alla, J.-P. Desaulniers, Bioorg. Med. Chem. Lett. 2018, 28, 3613;c)M. L. Hammill, G. Islam, J.-P. Desaulniers, Org. Biomol. Chem. 2020, 18, 41.

[75]

a)M. L. Hammill, G. Islam, J.-P. Desaulniers, ChemBioChem 2020, 21, 2367;b)M. L. Hammill, K. Tsubaki, Y. Wang, G. Islam, M. Kitamura, T. Okauchi, J.-P. Desaulniers, ChemBioChem 2022, 23, e202200386.

[76]

L. Chen, Y. Sun, J. Li, Y. Zhang, Chem. Commun. 2020, 56, 627.

[77]

W. Brown, A. Bardhan, K. Darrah, M. Tsang, A. Deiters, J. Am. Chem. Soc. 2022, 144, 16819.

[78]

K. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn, H. Erlich, Cold Spring Harbor Symp. Quant. Biol. 1986, 51, 263.

[79]

a)A. Heim, C. Ebnet, G. Harste, P. Pring-Akerblom, J. Med. Virol. 2003, 70, 228;b)M. Kubista, J. M. Andrade, M. Bengtsson, A. Forootan, J. Jonak, K. Lind, R. Sindelka, R. Sjoback, B. Sjogreen, L. Strombom, A. Stahlberg, N. Zoric, Mol. Aspects Med. 2006, 27, 95.

[80]

P. Gill, A. Ghaemi, Nucleosides, Nucleotides Nucleic Acids 2008, 27, 224.

[81]

B. Deiman, P. van Aarle, P. Sillekens, Mol. Biotechnol. 2002, 20, 163.

[82]

a)T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, T. Hase, Nucleic Acids Res. 2000, 28, e63;b)K. Nagamine, Y. Kuzuhara, T. Notomi, Biochem. Biophys. Res. Commun. 2002, 290, 1195;c)Y. Mori, K. Nagamine, N. Tomita, T. Notomi, Biochem. Biophys. Res. Commun. 2001, 289, 150.

[83]

O. Piepenburg, C. H. Williams, D. L. Stemple, N. A. Armes, PLoS Biol. 2006, 4, 1115.

[84]

M. Nilsson, H. Malmgren, M. Samiotaki, M. Kwiatkowski, B. P. Chowdhary, U. Landegren, Science 1994, 265, 2085.

[85]

a)G. T. Walker, M. C. Little, J. G. Nadeau, D. D. Shank, Proc. Natl. Acad. Sci. USA 1992, 89, 392;b)G. T. Walker, M. S. Fraiser, J. L. Schram, M. C. Little, J. G. Nadeau, D. P. Malinowski, Nucleic Acids Res. 1992, 20, 1691.

[86]

A. Louwrier, A. van der Valk, Enzyme Microb. Technol. 2005, 36, 947.

[87]

Y. Lin, S. D. Jayasena, J. Mol. Biol. 1997, 271, 100.

[88]

a)D. D. Young, W. F. Edwards, H. Lusic, M. O. Lively, A. Deiters, Chem. Commun. 2008, 462;b)C. Chou, D. D. Young, A. Deiters, Angew. Chem. Int. Ed. 2009, 48, 5950;c)M. Z. Kesici, P. Tinnefeld, A. M. Vera, Nucleic Acids Res. 2022, 50, e31.

[89]

a)K. Tanaka, H. Katada, N. Shigi, A. Kuzuya, M. Komiyama, ChemBioChem 2008, 9, 2120;b)A. Kuzuya, K. Tanaka, H. Katada, M. Komiyama, Molecules 2011, 17, 328.

[90]

B. Cheng, H. Kashida, N. Shimada, A. Maruyama, H. Asanuma, Chem. Commun. 2019, 55, 1080.

[91]

T. T. Cai, C. L. Zhong, Y. D. He, Y. Q. Chen, J. Q. Wang, J. Q. Wang, K. W. Zheng, Sens. Actuators B Chem. 2023, 388, 133797.

[92]

a)P. Horvath, R. Barrangou, Science 2010, 327, 167;b)K. S. Makarova, D. H. Haft, R. Barrangou, S. J. Brouns, E. Charpentier, P. Horvath, S. Moineau, F. J. Mojica, Y. I. Wolf, A. F. Yakunin, J. van der Oost, E. V. Koonin, Nat. Rev. Microbiol. 2011, 9, 467;c)R. Sorek, C. M. Lawrence, B. Wiedenheft, Annu. Rev. Biochem. 2013, 82, 237.

[93]

a)J. D. Sander, J. K. Joung, Nat. Biotechnol. 2014, 32, 347;b)P. D. Hsu, E. S. Lander, F. Zhang, Cell 2014, 157, 1262;c)G. Liu, Q. Lin, S. Jin, C. Gao, Mol. Cell 2022, 82, 333;d)W. Tang, J. Liu, B. Ding, Interdiscip. Med. 2022, 1, e220220014.

[94]

a)D. S. Chertow, Science 2018, 360, 381;b)Y. Li, S. Li, J. Wang, G. Liu, Trends Biotechnol. 2019, 37, 730;c)M. M. Kaminski, O. O. Abudayyeh, J. S. Gootenberg, F. Zhang, J. J. Collins, Nat. Biomed. Eng. 2021, 5, 643.

[95]

a)C. Y. Zhuo, J. B. Zhang, J. H. Lee, J. Jiao, D. Cheng, L. Liu, H. W. Kim, Y. Tao, M. Q. Li, Signal Transduction Targeted Ther. 2021, 6, 238;b)A. E. Modell, S. U. Siriwardena, V. M. Shoba, X. Li, A. Choudhary, Curr. Opin. Chem. Biol. 2021, 60, 113;c)W. Zhou, A. Deiters, Angew. Chem. Int. Ed. 2016, 55, 5394.

[96]

a)P. K. Jain, V. Ramanan, A. G. Schepers, N. S. Dalvie, A. Panda, H. E. Fleming, S. N. Bhatia, Angew. Chem. Int. Ed. 2016, 55, 12440;b)M. Hu, Z. Qiu, Z. Bi, T. Tian, Y. Jiang, X. Zhou, Proc. Natl. Acad. Sci. USA 2022, 119, e2202034119; c)Y. Chen, X. Xu, J. Wang, Y. Zhang, W. Zeng, Y. Liu, X. Zhang, Anal. Chem. 2022, 94, 9724.

[97]

a)Y. Liu, R. S. Zou, S. He, Y. Nihongaki, X. Li, S. Razavi, B. Wu, T. Ha, Science 2020, 368, 1265;b) E. V. Moroz-Omori, D. Satyapertiwi, M. C. Ramel, H. Hogset, I. K. Sunyovszki, Z. Liu, J. P. Wojciechowski, Y. Zhang, C. L. Grigsby, L. Brito, L. Bugeon, M. J. Dallman, M. M. Stevens, ACS Cent. Sci. 2020, 6, 695;c)Y. Wang, Y. Liu, F. Xie, J. Lin, L. Xu, Chem. Sci. 2020, 11, 11478;d)W. Y. Zhou, W. Brown, A. Bardhan, M. Delaney, A. S. Ilk, R. R. Rauen, S. I. Kahn, M. Tsang, A. Deiters, Angew. Chem. Int. Ed. 2020, 59, 8998;e)M. Hu, R. Liu, Z. Qiu, F. Cao, T. Tian, Y. X. Lu, Y. Jiang, X. Zhou, Angew. Chem. Int. Ed. 2023, 62, e202300663.

[98]

Y. Zhang, X. Ling, X. Su, S. Zhang, J. Wang, P. Zhang, W. Feng, Y. Y. Zhu, T. Liu, X. Tang, Angew. Chem. Int. Ed. 2020, 59, 20895.

[99]

H. Deng, H. Xu, Y. Wang, R. Jia, X. Ma, Y. Feng, H. Chen, Nucleic Acids Res. 2023, 51, 4064.

[100]

a)Y. J. Sun, W. D. Chen, J. Liu, J. J. Li, Y. Zhang, W. Q. Cai, L. Liu, X. J. Tang, J. Hou, M. Wang, L. Cheng, Angew. Chem. Int. Ed. 2023, 62, e202212413; b)D. Zhang, L. Liu, S. Jin, E. Tota, Z. Li, X. Piao, X. Zhang, X. D. Fu, N. K. Devaraj, J. Am. Chem. Soc. 2022, 144, 4487.

[101]

J. Carlson-Stevermer, R. Kelso, A. Kadina, S. Joshi, N. Rossi, J. Walker, R. Stoner, T. Maures, Nat. Commun. 2020, 11, 5041.

[102]

R. S. Zou, Y. Liu, B. Wu, T. Ha, Mol. Cell 2021, 81, 1553.

[103]

H. P. Nguyen, S. Stewart, M. N. Kukwikila, S. F. Jones, D. Offenbartl-Stiegert, S. Mao, S. Balasubramanian, S. Beck, S. Howorka, Angew. Chem. Int. Ed. 2019, 58, 6620.

[104]

J. R. Kumita, O. S. Smart, G. A. Woolley, Proc. Natl. Acad. Sci. USA 2000, 97, 3803.

[105]

J. Wang, Y. Liu, Y. Liu, S. Zheng, X. Wang, J. Zhao, F. Yang, G. Zhang, C. Wang, P. R. Chen, Nature 2019, 569, 509.

[106]

K. E. Darrah, A. Deiters, Chem. Soc. Rev. 2021, 50, 13253.

[107]

C. Hamerla, P. Mondal, R. Hegger, I. Burghardt, Phys. Chem. Chem. Phys. 2023, 25, 26132.

[108]

M. Pawlicki, H. A. Collins, R. G. Denning, H. L. Anderson, Angew. Chem. Int. Ed. 2009, 48, 3244.

[109]

S. Guha, J. Graf, B. Göricke, U. Diederichsen, J. Pept. Sci. 2013, 19, 415.

RIGHTS & PERMISSIONS

2024 The Authors. Interdisciplinary Medicine published by Wiley-VCH GmbH on behalf of Nanfang Hospital, Southern Medical University.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/