Losing brain networks during death

Han Li , Yunting Xiang , Taicheng Huang , Ruojia Ren , Huichun Luo , Yi Zhang , Jin-Jun Ding , Jie Weng , Xiao-Na Zhu , Yonglan Du , Xiao Li , Yimeng Liu , Binglei Zhao , Zhongbin Su , Di Wen , Chengtao Li , Luyang Tao , Xu Wu , Xuemin Wang , Bo-Feng Zhu , Xuyun Hua , Jianguang Xu , Ti-Fei Yuan

Interdisciplinary Medicine ›› 2025, Vol. 3 ›› Issue (4) : e20250068

PDF
Interdisciplinary Medicine ›› 2025, Vol. 3 ›› Issue (4) : e20250068 DOI: 10.1002/INMD.20250068
RESEARCH ARTICLE

Losing brain networks during death

Author information +
History +
PDF

Abstract

Death represents the end of all living organisms. The pattern of brain activity disappearance following death, however, has not been fully elucidated. Here we investigated brain activity dynamics following cardiac arrest using ultra-high field 11.7 T magnetic resonance imaging (MRI) in longitudinal approach and multi-modal analyses. Initially, the functional connectivity (FC) analysis revealed a non-linear trajectory of whole-brain network disassembly. Subsequently, through dynamic FC analysis, we identified two discrete FC patterns in the whole brain that showed opposite changes from life to death, representing the dissipation process of local brain function specificity. In addition, the default mode network (DMN), sensorimotor network (SMN), and interoceptive network (IN) were identified during the live stage by independent component analysis. However, results of dynamic functional network connectivity analysis showed that SMN and IN preferentially disappeared after cardiopulmonary arrest, which is the critical turning point of death. Notably, the surviving DMN showed a decreased spatial map but stronger FC with the right dorsolateral thalamus, retrosplenial cortex, and corpus callosum during the near-death stage. This suggests that DMN may be the final regulator of systemic brain shutdown. This study aims to address the limited understanding of brain function changes during death from an imaging perspective and provides inspirations for the definition of death and the inference of death time.

Keywords

death process / default mode network / dynamic functional connectivity / fMRI / near-death stage

Cite this article

Download citation ▾
Han Li, Yunting Xiang, Taicheng Huang, Ruojia Ren, Huichun Luo, Yi Zhang, Jin-Jun Ding, Jie Weng, Xiao-Na Zhu, Yonglan Du, Xiao Li, Yimeng Liu, Binglei Zhao, Zhongbin Su, Di Wen, Chengtao Li, Luyang Tao, Xu Wu, Xuemin Wang, Bo-Feng Zhu, Xuyun Hua, Jianguang Xu, Ti-Fei Yuan. Losing brain networks during death. Interdisciplinary Medicine, 2025, 3(4): e20250068 DOI:10.1002/INMD.20250068

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. M. Greer, N. Engl. J. Med. 2021, 385, 2554.

[2]

R. D. Truog, F. G. Miller, S. D. Halpern, N. Engl. J. Med. 2013, 369, 1287.

[3]

President's Commission for the Study of Ethical Problems in Medicine, and Behavioral Research, Defining Death: Medical, Legal and Ethical Issues in the Determination of Death, Washington D.C 1981.

[4]

D. M. Greer, S. D. Shemie, A. Lewis, S. Torrance, P. Varelas, F. D. Goldenberg, J. L. Bernat, M. Souter, M. A. Topcuoglu, A. W. Alexandrov, M. Baldisseri, T. Bleck, G. Citerio, R. Dawson, A. Hoppe, S. Jacobe, A. Manara, T. A. Nakagawa, T. M. Pope, W. Silvester, D. Thomson, H. Al Rahma, R. Badenes, A. J. Baker, V. Cerny, C. Chang, T. R. Chang, E. Gnedovskaya, M. K. Han, S. Honeybul, E. Jimenez, Y. Kuroda, G. Liu, U. K. Mallick, V. Marquevich, J. Mejia-Mantilla, M. Piradov, S. Quayyum, G. S. Shrestha, Y. y. Su, S. D. Timmons, J. Teitelbaum, W. Videtta, K. Zirpe, G. Sung, JAMA 2020, 324, 1078.

[5]

J. Borjigin, U. Lee, T. Liu, D. Pal, S. Huff, D. Klarr, J. Sloboda, J. Hernandez, M. M. Wang, G. A. Mashour, Proc. Natl. Acad. Sci. USA 2013, 110, 14432.

[6]

G. Xu, T. Mihaylova, D. Li, F. Tian, P. M. Farrehi, J. M. Parent, G. A. Mashour, M. M. Wang, J. Borjigin, Proc. Natl. Acad. Sci. USA 2023, 120, e2216268120.

[7]

J. P. Dreier, S. Major, B. Foreman, M. K. L. Winkler, E. Kang, D. Milakara, C. L. Lemale, V. DiNapoli, J. M. Hinzman, J. Woitzik, N. Andaluz, A. Carlson, J. A. Hartings, Ann. Neurol. 2018, 83, 295.

[8]

A. P. Carlson, C. W. Shuttleworth, S. Major, C. L. Lemale, J. P. Dreier, J. A. Hartings, J. Neurosurg. 2019, 131, 1773.

[9]

L. Bellingacci, J. Canonichesi, A. Mancini, L. Parnetti, M. Di Filippo, Neural Regen. Res. 2023, 18, 2569.

[10]

D. Lyu, J. R. Stieger, C. Xin, E. Ma, Z. Lusk, M. K. Aparicio, K. Werbaneth, C. M. Perry, K. Deisseroth, V. Buch, J. Parvizi, Neuron 2023, 111, 2502.

[11]

A. I. Luppi, M. M. Craig, I. Pappas, P. Finoia, G. B. Williams, J. Allanson, J. D. Pickard, A. M. Owen, L. Naci, D. K. Menon, E. A. Stamatakis, Nat. Commun. 2019, 10, 4616.

[12]

S. Ogawa, T. M. Lee, A. R. Kay, D. W. Tank, Proc. Natl. Acad. Sci. USA 1990, 87, 9868.

[13]

J. C. Gore, J. Clin. Investig. 2003, 112, 4.

[14]

M. G. Preti, T. A. Bolton, D. Van De Ville, Neuroimage 2017, 160, 41.

[15]

R. Hindriks, M. Adhikari, Y. Murayama, M. Ganzetti, D. Mantini, N. Logothetis, G. Deco, Neuroimage 2016, 127, 242.

[16]

G. Olivito, L. Serra, C. Marra, C. Di Domenico, C. Caltagirone, S. Toniolo, M. Cercignani, M. Leggio, M. Bozzali, Neurobiol. Aging 2020, 89, 32.

[17]

Z. Fu, Y. Tu, X. Di, Y. Du, G. Pearlson, J. Turner, B. B. Biswal, Z. Zhang, V. Calhoun, Neuroimage 2018, 180, 619.

[18]

R. Weber, P. Ramos-Cabrer, D. Wiedermann, N. van Camp, M. Hoehn, Neuroimage 2006, 29, 1303.

[19]

V. Pallarés, J. Moya, F. J. Samper-Belda, S. Canals, D. Moratal, Comput. Methods Programs Biomed. 2015, 121, 66.

[20]

S. Tambalo, L. Peruzzotti-Jametti, R. Rigolio, S. Fiorini, P. Bontempi, G. Mallucci, B. Balzarotti, P. Marmiroli, A. Sbarbati, G. Cavaletti, S. Pluchino, P. Marzola, J. Neurosci. 2015, 35, 10088.

[21]

Y. T. Xiang, X. X. Xing, X. Y. Hua, Y. W. Zhang, X. Xue, J. J. Wu, M. X. Zheng, H. Wang, J. G. Xu, Neurosurgery 2023, 93, 233.

[22]

J. Kim, M. Criaud, S. S. Cho, M. Díez-Cirarda, A. Mihaescu, S. Coakeley, C. Ghadery, M. Valli, M. F. Jacobs, S. Houle, A. P. Strafella, Brain 2017, 140, 2955.

[23]

E. Fiorenzato, A. P. Strafella, J. Kim, R. Schifano, L. Weis, A. Antonini, R. Biundo, Brain 2019, 142, 2860.

[24]

J. Friedman, T. Hastie, R. Tibshirani, Biostatistics 2008, 9, 432.

[25]

E. A. Allen, E. Damaraju, S. M. Plis, E. B. Erhardt, T. Eichele, V. D. Calhoun, Cereb. Cortex 2014, 24, 663.

[26]

C. C. Aggarwal, A. Hinneburg, D. A. Keim, On the Surprising Behavior of Distance Metrics in High Dimensional Spaces, in Proceedings of the 8th International Conference on Database Theory, Springer-Verlag 2001, pp. 420-434.

[27]

J. Himberg, A. Hyvärinen, F. Esposito, Neuroimage 2004, 22, 1214.

[28]

C. Wang, H. Cai, X. Sun, L. Si, M. Zhang, Y. Xu, Y. Qian, J. Zhu, Neural Plast. 2020, 2020, 8894868.

[29]

S. F. Jiang, J. Y. Shi, Z. T. Yang, L. Zhang, H. J. Chen, Eur. J. Radiol. 2020, 132, 109324.

[30]

M. Díez-Cirarda, A. P. Strafella, J. Kim, J. Peña, N. Ojeda, A. Cabrera-Zubizarreta, N. Ibarretxe-Bilbao, Neuroimage Clin. 2018, 17, 847.

[31]

J. Paasonen, P. Stenroos, R. A. Salo, V. Kiviniemi, O. Gröhn, Neuroimage 2018, 172, 9.

[32]

S. Parnia, T. Keshavarz Shirazi, J. Patel, L. Tran, N. Sinha, C. O'Neill, E. Roellke, A. Mengotto, S. Findlay, M. McBrine, R. Spiegel, T. Tarpey, E. Huppert, I. Jaffe, A. M. Gonzales, J. Xu, E. Koopman, G. D. Perkins, A. Vuylsteke, B. M. Bloom, H. Jarman, H. Nam Tong, L. Chan, M. Lyaker, M. Thomas, V. Velchev, C. B. Cairns, R. Sharma, E. Kulstad, E. Scherer, T. O'Keeffe, M. Foroozesh, O. Abe, C. Ogedegbe, A. Girgis, D. Pradhan, C. D. Deakin, Resuscitation 2023, 191, 109903.

[33]

K. Hornby, L. Hornby, S. D. Shemie, Crit. Care Med. 2010, 38, 1246.

[34]

S. E. Gisvold, F. Sterz, N. S. Abramson, G. Bar-Joseph, U. Ebmeyer, H. Gervais, M. Ginsberg, L. M. Katz, P. M. Kochanek, K. Kuboyama, B. Miller, W. Obrist, R. O. Roine, P. Safar, K. M. Sim, K. Vandevelde, R. J. White, F. Xiao, Crit. Care Med. 1996, 24, S69.

[35]

C. Martial, H. Cassol, S. Laureys, O. Gosseries, Trends Cogn. Sci. 2020, 24, 173.

[36]

J. Liu, H. J. Lee, A. J. Weitz, Z. Fang, P. Lin, M. Choy, R. Fisher, V. Pinskiy, A. Tolpygo, P. Mitra, N. Schiff, J. H. Lee, Elife 2015, 4, e09215.

[37]

W. Xi, D. Su, B. Nie, Y. Yu, B. Shan, Q. Chen, M. Tian, H. Zhang, J. Nucl. Med. 2013, 54, 1969.

[38]

A. S. Alexander, R. Place, M. J. Starrett, E. R. Chrastil, D. A. Nitz, Neuron 2023, 111, 150.

[39]

J. L. Vincent, G. H. Patel, M. D. Fox, A. Z. Snyder, J. T. Baker, D. C. Van Essen, J. M. Zempel, L. H. Snyder, M. Corbetta, M. E. Raichle, Nature 2007, 447, 83.

[40]

H. Lu, Q. Zou, H. Gu, M. E. Raichle, E. A. Stein, Y. Yang, Proc. Natl. Acad. Sci. USA 2012, 109, 3979.

[41]

J. M. Stafford, B. R. Jarrett, O. Miranda-Dominguez, B. D. Mills, N. Cain, S. Mihalas, G. P. Lahvis, K. M. Lattal, S. H. Mitchell, S. V. David, J. D. Fryer, J. T. Nigg, D. A. Fair, Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 18745.

[42]

M. E. Raichle, Annu. Rev. Neurosci. 2015, 38, 433.

[43]

I. Fredriksson, P. J. Tsai, A. Shekara, Y. Duan, S. V. Applebey, H. Lu, J. M. Bossert, Y. Shaham, Y. Yang, Proc. Natl. Acad. Sci. USA 2021, 118

[44]

L. Xiong, R. A. Rauch, N. Hagino, J. R. Jinkins, Investig. Radiol. 1993, 28, 46.

[45]

P. van Lommel, R. van Wees, V. Meyers, I. Elfferich, Lancet 2001, 358, 2039.

[46]

S. G. Kim, S. Ogawa, J. Cereb. Blood Flow Metab. 2012, 32, 1188.

[47]

D. Lee, T. T. Le, G. H. Im, S. G. Kim, J. Cereb. Blood Flow Metab. 2022, 42, 2270.

[48]

A. J. Bellingham, J. C. Detter, C. Lenfant, J. Clin. Investig. 1971, 50, 700.

[49]

J. F. Schenck, Med. Phys. 1996, 23, 815.

[50]

K. Ghassaban, S. Liu, C. Jiang, E. M. Haacke, Neuroimage 2019, 187, 77.

[51]

C. Palmiere, P. Mangin, Int. J. Leg. Med 2013, 127, 93.

RIGHTS & PERMISSIONS

2025 The Author(s). Interdisciplinary Medicine published by Wiley-VCH GmbH on behalf of Nanfang Hospital, Southern Medical University.

AI Summary AI Mindmap
PDF

31

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/