Enhance decoding of lower limb motor imagery-electroencephalography patterns by Riemannian clustering

Xinwei Sun , Tuo Liu , Kun Wang , Lincong Pan , Lin Meng , Xinmin Ding , Weibo Yi , Minpeng Xu , Dong Ming

Interdisciplinary Medicine ›› 2025, Vol. 3 ›› Issue (4) : e20250003

PDF
Interdisciplinary Medicine ›› 2025, Vol. 3 ›› Issue (4) : e20250003 DOI: 10.1002/INMD.20250003
RESEARCH ARTICLE

Enhance decoding of lower limb motor imagery-electroencephalography patterns by Riemannian clustering

Author information +
History +
PDF

Abstract

Brain-Computer Interface (BCI) based on motor imagery (MI) has attracted great interest as a new rehabilitation method for stroke. Riemannian geometry-based classification algorithms are widely used in MI-BCI due to their strong robustness and generalization capabilities. However, the clustering performance of current algorithms needs to be improved due to unsuitable clustering criteria for electroencephalography (EEG) characteristics of lower limbs. This study proposed two classification methods based on Riemannian clustering: margin based Riemannian clusters (MBRC) and statistics based Riemannian clusters (SBRC) to address this issue. Our methods divide all samples into subclusters based on the Riemannian distance and innovate clustering criteria. We introduced cluster margin distance and the Riemannian potato algorithm as two clustering criteria to achieve a more robust classification of lower limb MI-EEG. MBRC and SBRC were tested on an experimental dataset and a public Yi2014 dataset. For the experimental dataset, the average accuracies of MBRC and SBRC were 71.29% and 73.12%, respectively, higher than that of the baseline algorithms. For the Yi2014 dataset, MBRC and SBRC performed better than the comparison algorithms under different training sample numbers, particularly when the number of samples was limited. These findings suggest that the proposed algorithms are more effective for classifying lower limb MI EEGs.

Keywords

brain-computer interface (BCI) / motor imagery (MI) / Riemannian clustering / subcluster

Cite this article

Download citation ▾
Xinwei Sun, Tuo Liu, Kun Wang, Lincong Pan, Lin Meng, Xinmin Ding, Weibo Yi, Minpeng Xu, Dong Ming. Enhance decoding of lower limb motor imagery-electroencephalography patterns by Riemannian clustering. Interdisciplinary Medicine, 2025, 3(4): e20250003 DOI:10.1002/INMD.20250003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Katan, A. Luft, Semin. Neurol. 2018, 38, 208.

[2]

D. Kraus, G. Naros, R. Bauer, M. T. Leão, U. Ziemann, A. Gharabaghi, Neuroimage 2016, 125, 522.

[3]

J. Wolpaw, E. Wolpaw, in Brain-Computer Interfaces: Principles and Practice (Eds: J. R. Wolpaw, E. W. Wolpaw), Oxford University Press 2012, pp. 3-12.

[4]

J. N. Mak, Y. Arbel, J. W. Minett, L. M. McCane, B. Yuksel, D. Ryan, D. Thompson, L. Bianchi, D. Erdogmus, J. Neural Eng. 2011, 8, 025003.

[5]

Y. Zhang, S. Q. Xie, H. Wang, Z. Zhang, IEEE Sens. J. 2021, 21, 1124.

[6]

H. Wen, Y. Zhong, L. Yao, Y. Wang, Cyborg Bionic Syst. 2024, 5, 0118.

[7]

N. Padfield, J. Zabalza, H. Zhao, V. Masero, J. Ren, Sensors 2019, 19, 1423.

[8]

G. Alder, N. Signal, U. Rashid, S. Olsen, I. K. Niazi, D. Taylor, Sensors 2020, 20, 2427.

[9]

M. Jochumsen, I. K. Niazi, J. Neural Eng. 2020, 17, 035009.

[10]

R. Chaisaen, P. Autthasan, N. Mingchinda, P. Leelaarporn, N. Kunaseth, S. Tammajarung, P. Manoonpong, S. C. Mukhopadhyay, T. Wilaiprasitporn, IEEE Sens. J. 2020, 20, 13776.

[11]

H. Yuan, B. He, IEEE Trans. Biomed. Eng. 2014, 61, 1425.

[12]

B. Blankertz, C. Sannelli, S. Halder, E. M. Hammer, A. Kübler, K. R. Müller, G. Curio, T. Dickhaus, Neuroimage 2010, 51, 1303.

[13]

A. Singh, A. A. Hussain, S. Lal, H. W. Guesgen, Sensors 2021, 21, 2173.

[14]

F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rakotomamonjy, F. Yger, J. Neural Eng. 2018, 15, 031005.

[15]

F. Lotte, C. Guan, IEEE Trans. Biomed. Eng. 2011, 58, 355.

[16]

K. K. Ang, Z. Y. Chin, H. Zhang, C. Guan, in 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), IEEE 2008, pp. 2390.

[17]

S.-H. Park, S.-G. Lee, IEEE Sens. J. 2017, 17, 2977.

[18]

S. H. Park, D. Lee, S. G. Lee, IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 498.

[19]

A. Craik, Y. He, J. L. Contreras-Vidal, J. Neural. Eng. 2019, 16, 031001.

[20]

Y. Xie, K. Wang, J. Meng, J. Yue, L. Meng, W. Yi, T. P. Jung, M. Xu, D. Ming, J. Neural Eng. 2023, 20, 056037.

[21]

M. Congedo, A. Barachant, R. Bhatia, Brain-Computer Inter. 2017, 4, 155.

[22]

A. Barachant, S. Bonnet, M. Congedo, C. Jutten, IEEE Trans. Biomed. Eng. 2012, 59, 920.

[23]

W. Liu, C. Guo, C. Gao, Expert Syst. Appl. 2024, 237, 121612.

[24]

W. Qian, A. Zhou, J. Softw. 2002, 13, 1382.

[25]

APR Workshop on Artificial Neural Networks in Pattern Recognition. Cham: Springer, 2014: 1.

[26]

Barachant, A., A. Andreev, and M. Congedo. The Riemannian Potato: An Automatic and Adaptive Artifact Detection Method for Online Experiments Using Riemannian Geometry. 2013.

[27]

X. Duan, S. Xie, X. Xie, K. Obermayer, Y. Cui, Z. Wang, Front. Hum. Neurosci. 2021, 15, 625983.

[28]

J. E. Huggins, D. Krusienski, M. J. Vansteensel, D. Valeriani, A. Thelen, S. Stavisky, J. J. Norton, A. Nijholt, G. Müller-Putz, N. Kosmyna, L. Korczowski, C. Kapeller, C. Herff, S. Halder, C. Guger, M. Grosse-Wentrup, R. Gaunt, A. N. Dusang, P. Clisson, R. Chavarriaga, C. W. Anderson, B. Allison, T. Aksenova, E. Aarnoutse, Brain Comput. Inter. (Abingdon) 2022, 9, 69.

[29]

W. Yi, S. Qiu, K. Wang, H. Qi, L. Zhang, P. Zhou, F. He, D. Ming, PLoS One 2014, 9, e114853.

[30]

F. Yger, M. Berar, F. Lotte, IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1753.

[31]

L. Pan, K. Wang, L. Xu, X. Sun, W. Yi, M. Xu, D. Ming, J. Neural Eng. 2023, 20, 066011.

[32]

H. Ramoser, J. Müller-Gerking, G. Pfurtscheller, IEEE Trans. Rehab Eng. 2000, 8, 441.

[33]

V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, B. J. Lance, J. Neural Eng. 2018, 15, 56013.

[34]

H. Altaheri, G. Muhammad, M. Alsulaiman, IEEE Trans. Ind. Inf. 2023, 19, 2249.

[35]

M. Wimpff, L. Gizzi, J. Zerfowski, B. Yang, J. Neural Eng. 2024, 21, 036020.

[36]

S. Ding, T. Saha, L. Yin, R. Liu, M. I. Khan, A. Y. Chang, H. Lee, H. Zhao, Y. Liu, A. S. Nazemi, J. Zhou, C. Chen, Z. Li, C. Zhang, S. Earney, S. Tang, O. Djassemi, X. Chen, M. Lin, S. S. Sandhu, J. M. Moon, C. Moonla, P. Nandhakumar, Y. Park, K. Mahato, S. Xu, J. Wang, Nat. Electron. 2024, 7, 788.

[37]

P. Wu, C. K. Yiu, X. Huang, J. Li, G. Xu, Y. Gao, K. Yao, L. Chow, G. Zhao, Y. Yang, Y. Jiao, X. Yu, Soft Sci. 2023, 3, 35.

[38]

C. Chen, S. Ding, J. Wang, Nat. Med. 2023, 29, 1623.

[39]

M. Zhang, Z. Chi, Z. Yang, S. Mohammed, J. Huang, Cyborg Bionic Syst. 2024, 5, 0085.

RIGHTS & PERMISSIONS

2025 The Author(s). Interdisciplinary Medicine published by Wiley-VCH GmbH on behalf of Nanfang Hospital, Southern Medical University.

AI Summary AI Mindmap
PDF

32

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/