Targeting SHMT2-mediated membrane phospholipid remodeling for enhanced anti-GCSCs treatment

Liping Yang , Fangli Liao , Yanran Tong , Tong Huang , Yan-e Du , Siyang Wen , Linshan Jiang , Lanlang Peng , Hua Sun , Gaoli Zhang , Weixian Chen

Interdisciplinary Medicine ›› 2025, Vol. 3 ›› Issue (3) : e20240106

PDF
Interdisciplinary Medicine ›› 2025, Vol. 3 ›› Issue (3) :e20240106 DOI: 10.1002/INMD.20240106
RESEARCH ARTICLE

Targeting SHMT2-mediated membrane phospholipid remodeling for enhanced anti-GCSCs treatment

Author information +
History +
PDF

Abstract

Cancer stem cells exhibit flexible metabolic profiles. However, the underlying mechanisms for differential metabolic pathways affecting stemness maintenance in gastric cancer are poorly understood. Here, we reveal the role of serine hydroxymethyltransferase-2 (SHMT2)/serine-mediated crosstalk between one-carbon metabolism and lipid metabolism in the stemness maintenance of gastric cancer. Clinically, SHMT2 was significantly highly expressed in Gastric cancer cells (GCs) and gastric cancer stem cells, and was associated with clinical malignant features and poor prognosis in gastric cancer patients. Mechanistically, inhibition of SHMT2 expression resulted in diminished serine levels in one-carbon metabolism, which subsequently modified the composition and fluidity of membrane phospholipids, leading to a reduction in lipid rafts within cellular membranes. The remodeling of membrane phospholipids hindered the localization of γ-secretase to lipid rafts, thereby inhibiting the cleavage of CD44 and the subsequent production of CD44-ICD. Consequently, the transcriptional regulation of c-Myc and KLF4 by CD44-ICD was reduced, ultimately disrupting the maintenance of stemness in gastric cancer cells. Together, these results provide compelling evidence for the metabolic adaptability of cancer stem cells, and the SHMT2/serine/lipid rafts signaling axis holds promise as a potential biomarker for the diagnosis and prognosis of gastric cancer. Furthermore, we synthesized HA-Exo-si SHMT2 to investigate targeted therapy for GC, offering a novel approach for the clinical treatment of gastric cancer.

Keywords

CD44-ICD / gastric cancer / membrane phospholipid / serine / SHMT2

Cite this article

Download citation ▾
Liping Yang, Fangli Liao, Yanran Tong, Tong Huang, Yan-e Du, Siyang Wen, Linshan Jiang, Lanlang Peng, Hua Sun, Gaoli Zhang, Weixian Chen. Targeting SHMT2-mediated membrane phospholipid remodeling for enhanced anti-GCSCs treatment. Interdisciplinary Medicine, 2025, 3(3): e20240106 DOI:10.1002/INMD.20240106

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. H. Guo, Y. B. Xie, P. J. Zhang, T. Jiang, World J. Gastrointest. Surg. 2022, 14, 1026.

[2]

K. Eun, S. W. Ham, H. Kim, BMB Rep. 2017, 50, 117.

[3]

Y. A. Shen, C. C. Chen, B. J. Chen, Y. T. Wu, J. R. Juan, L. Y. Chen, Y. C. Teng, Y. H. Wei, Cells 2021, 10, 1772.

[4]

D. Zhang, Y. Wang, Z. Shi, J. Liu, P. Sun, X. Hou, J. Zhang, S. Zhao, B. P. Zhou, J. Mi, Cell Rep. 2015, 10, 1335.

[5]

E. E. Wicks, G. L. Semenza, J. Clin. Invest. 2022, 132, e159839.

[6]

M. Zhao, Y. Hou, Y. E. Du, L. Yang, Y. Qin, M. Peng, S. Liu, X. Wan, Y. Qiao, H. Zeng, X. Cui, Y. Teng, M. Liu, Cancer Lett. 2020, 478, 8.

[7]

Y. Zeng, J. Zhang, M. Xu, F. Chen, R. Zi, J. Yue, Y. Zhang, N. Chen, Y. E. Chin, J. Cancer 2021, 12, 5888.

[8]

G. S. Ducker, J. D. Rabinowitz, Cell Metab. 2017, 25, 27.

[9]

T. Muthusamy, T. Cordes, M. K. Handzlik, L. You, E. W. Lim, J. Gengatharan, A. F. M. Pinto, M. G. Badur, M. J. Kolar, M. Wallace, A. Saghatelian, C. M. Metallo, Nature 2020, 586, 790.

[10]

I. Alecu, A. Tedeschi, N. Behler, K. Wunderling, C. Lamberz, M. A. Lauterbach, A. Gaebler, D. Ernst, P. P. Van Veldhoven, A. Al-Amoudi, E. Latz, A. Othman, L. Kuerschner, T. Hornemann, F. Bradke, C. Thiele, A. Penno, J. Lipid Res. 2017, 58, 42.

[11]

S. S. Skandalis, Cancers 2023, 15, 5041.

[12]

B. Wöhner, W. Li, S. Hey, A. Drobny, L. Werny, C. Becker-Pauly, R. Lucius, F. Zunke, S. Linder, P. Arnold, Front. Mol. Biosci. 2023, 10, 1026810.

[13]

T. Kong, R. Ahn, K. Yang, X. Zhu, Z. Fu, G. Morin, R. Bramley, N. C. Cliffe, Y. Xue, H. Kuasne, Q. Li, S. Jung, A. V. Gonzalez, S. Camilleri-Broet, M. C. Guiot, M. Park, J. Ursini-Siegel, S. Huang, Cancer Res. 2020, 80, 444.

[14]

K. E. Miletti-González, K. Murphy, M. N. Kumaran, A. K. Ravindranath, R. P. Wernyj, S. Kaur, G. D. Miles, E. Lim, R. Chan, M. Chekmareva, D. S. Heller, D. Foran, W. Chen, M. Reiss, E. V. Bandera, K. Scotto, L. Rodríguez-Rodríguez, J. Biol. Chem. 2012, 287, 18995.

[15]

L. T. Senbanjo, M. A. Chellaiah, Front. Cell Dev. Biol. 2017, 5, 18.

[16]

J. Deng, H. Ke, OncoImmunology 2023, 12, 2152635.

[17]

W. Meng, C. He, Y. Hao, L. Wang, L. Li, G. Zhu, Drug Deliv. 2020, 27, 585.

[18]

S. El-Andaloussi, Y. Lee, S. Lakhal-Littleton, J. Li, Y. Seow, C. Gardiner, L. Alvarez-Erviti, I. L. Sargent, M. J. Wood, Nat. Protoc. 2012, 7, 2112.

[19]

C. Aslan, S. Maralbashi, F. Salari, H. Kahroba, F. Sigaroodi, T. Kazemi, P. Kharaziha, J. Cell. Physiol. 2019, 234, 16885.

[20]

T. Huang, X. Ding, G. Xu, G. Chen, Y. Cao, C. Peng, S. Shen, Y. Lv, L. Wang, X. Zou, Cell Death Dis. 2019, 10, 602.

[21]

Q. Ye, Y. Liu, G. Zhang, H. Deng, X. Wang, L. Tuo, C. Chen, X. Pan, K. Wu, J. Fan, Q. Pan, K. Wang, A. Huang, N. Tang, Nat. Commun. 2023, 14, 1402.

[22]

L. Yang, Y. Hou, Y. E. Du, Q. Li, F. Zhou, Y. Li, H. Zeng, T. Jin, X. Wan, S. Guan, R. Wang, M. Liu, Cell Death Differ. 2021, 28, 2708.

[23]

L. Xi, M. Peng, S. Liu, Y. Liu, X. Wan, Y. Hou, Y. Qin, L. Yang, S. Chen, H. Zeng, Y. Teng, X. Cui, M. Liu, J. Extracell. Vesicles 2021, 10, e12146.

[24]

M. J. McBride, C. J. Hunter, Z. Zhang, T. TeSlaa, X. Xu, G. S. Ducker, J. D. Rabinowitz, Cell Metab. 2024, 36, 103.

[25]

Y. Qiu, X. Wang, Y. Sun, T. Jin, R. Tang, X. Zhou, M. Xu, Y. Gan, R. Wang, H. Luo, M. Liu, X. Tang, Cancer Res. 2024, 84, 1856.

[26]

Y. J. Choi, G. Lee, S. H. Yun, W. Lee, J. Yu, S. K. Kim, B. H. Lee, Amino Acids 2022, 54, 823.

[27]

A. Ghrayeb, A. C. Finney, B. Agranovich, D. Peled, S. K. Anand, M. P. McKinney, M. Sarji, D. Yang, N. Weissman, S. Drucker, S. I. Fernandes, J. Fernández-García, K. Mahan, Z. Abassi, L. Tan, P. L. Lorenzi, J. Traylor, J. Zhang, I. Abramovich, Y. E. Chen, O. Rom, I. Mor, E. Gottlieb, Cell Metab. 2024, 36, 116.

[28]

J. Bi, T. A. Ichu, C. Zanca, H. Yang, W. Zhang, Y. Gu, S. Chowdhry, A. Reed, S. Ikegami, K. M. Turner, W. Zhang, G. R. Villa, S. Wu, O. Quehenberger, W. H. Yong, H. I. Kornblum, J. N. Rich, T. F. Cloughesy, W. K. Cavenee, F. B. Furnari, B. F. Cravatt, P. S. Mischel, Cell Metab. 2019, 30, 525.

[29]

Y. F. Yang, Y. H. Jan, Y. P. Liu, C. J. Yang, C. Y. Su, Y. C. Chang, T. C. Lai, J. Chiou, H. Y. Tsai, J. Lu, C. N. Shen, J. Y. Shew, P. J. Lu, Y. F. Lin, M. S. Huang, M. Hsiao, Am. J. Respir. Crit. Care Med. 2014, 190, 675.

[30]

I. M. Jou, T. T. Wu, C. C. Hsu, C. C. Yang, J. S. Huang, Y. K. Tu, J. S. Lee, F. C. Su, Y. L. Kuo, J. Biomed. Mater. Res. B Appl. Biomater. 2021, 109, 673.

[31]

D. Li, Y. Park, H. Hemati, X. Liu, J. Biol. Chem. 2023, 299, 105377.

[32]

R. Gao, D. Li, J. Xun, W. Zhou, J. Li, J. Wang, C. Liu, X. Li, W. Shen, H. Qiao, D. G. Stupack, N. Luo, Theranostics 2018, 8, 6248.

[33]

H. Zhang, Y. Wang, M. Bai, J. Wang, K. Zhu, R. Liu, S. Ge, J. Li, T. Ning, T. Deng, Q. Fan, H. Li, W. Sun, G. Ying, Y. Ba, Cancer Sci. 2018, 109, 629.

RIGHTS & PERMISSIONS

2025 The Author(s). Interdisciplinary Medicine published by Wiley-VCH GmbH on behalf of Nanfang Hospital, Southern Medical University.

AI Summary AI Mindmap
PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/