Construction strategies for 3D printed cardiac tissue repair materials and their application potential

Mingru Kong , Zhen Wu , Zeliang Zheng , Binrui Zhang , Yuting Zeng , Hao Deng , Dongyi Feng , Wenjun Zhang , Congru Li , Xiaodong Fu , Leyu Wang

Interdisciplinary Medicine ›› 2025, Vol. 3 ›› Issue (3) : e20240085

PDF
Interdisciplinary Medicine ›› 2025, Vol. 3 ›› Issue (3) :e20240085 DOI: 10.1002/INMD.20240085
REVIEW

Construction strategies for 3D printed cardiac tissue repair materials and their application potential

Author information +
History +
PDF

Abstract

As a major cause of death worldwide, heart disease has significant limitations in traditional treatments. However, 3D printing technology, with its personalized, precise, and multifunctional features, provides a new idea for developing cardiac tissue repair materials. This review analyzes the three core advantages of 3D printing technology in cardiac repair materials: the realization of personalized medicine, the intelligent construction of complex tissue structures, and the optimization of the functions of multi-material combinations. Combined with specific research cases, this review reveals the progress of 3D printing in heart valve replacement, heart patches, vascular stent manufacturing, and composite material development, especially the potential of carbon-based conductive materials, biomass-based materials, and bio-based materials in cardiac tissue repair. In addition, this review discusses the innovative applications of advanced 3D printing technologies in the design of prosthetic materials, including coaxial printing, microfluidic extrusion printing, stereospecific rapid prototyping, and two-photon printing. Finally, this review summarizes the significant advantages of 3D printing technology in cardiac tissue repair and proposes future research directions. It emphasizes the importance of combining 3D printing technology with the study of cardiac tissue engineering to further improve the performance and repair effectiveness of cardiac repair materials. Meanwhile, the potentials of single-cell technology, spatial genomics, and protein prediction technology in optimizing the biocompatibility and functionality of repair cardiac repair materials are envisioned to provide scientific support for more efficient cardiac tissue repair through precise regulation of cell behavior, remodeling of the tissue microenvironment, and the development of personalized materials.

Keywords

3D printing / cardiac repair materials / cardiac tissue engineering / intelligent construction / personalized medicine

Cite this article

Download citation ▾
Mingru Kong, Zhen Wu, Zeliang Zheng, Binrui Zhang, Yuting Zeng, Hao Deng, Dongyi Feng, Wenjun Zhang, Congru Li, Xiaodong Fu, Leyu Wang. Construction strategies for 3D printed cardiac tissue repair materials and their application potential. Interdisciplinary Medicine, 2025, 3(3): e20240085 DOI:10.1002/INMD.20240085

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. A. Gurbel, K. A. A. Fox, U. S. Tantry, H. Ten Cate, J. I. Weitz, Circulation 2019, 139, 2170.

[2]

Ş. Arıcı, A. R. Kamali, D. Ege, Biofabrication 2024, 17, 015025.

[3]

E. Sodupe-Ortega, A. Sanz-Garcia, A. Pernia-Espinoza, C. Escobedo-Lucea, Materials 2018, 11, 1402.

[4]

A. Lee, A. R. Hudson, D. J. Shiwarski, J. W. Tashman, T. J. Hinton, S. Yerneni, J. M. Bliley, P. G. Campbell, A. W. Feinberg, Science 2019, 365, 482.

[5]

X. Jia, W. Liu, Y. Ai, S. Cheung, W. Hu, Y. Wang, X. Shi, J. Zhou, Z. Zhang, Q. Liang, Adv. Mater. 2024, 36, 2404071.

[6]

A. A. Giannopoulos, D. Mitsouras, S. J. Yoo, P. P. Liu, Y. S. Chatzizisis, F. J. Rybicki, Nat. Rev. Cardiol. 2016, 13, 701.

[7]

M. Gallo, A. D’Onofrio, G. Tarantini, E. Nocerino, F. Remondino, G. Gerosa, Int. J. Cardiol. 2016, 210, 139.

[8]

I. Mayoral, E. Bevilacqua, G. Gómez, A. Hmadcha, I. González-Loscertales, E. Reina, J. Sotelo, A. Domínguez, P. Pérez-Alcántara, Y. Smani, P. González-Puertas, A. Mendez, S. Uribe, T. Smani, A. Ordoñez, I. Valverde, Mater. Today Bio 2022, 14, 100252.

[9]

N. Noor, A. Shapira, R. Edri, I. Gal, L. Wertheim, T. Dvir, Adv. Sci. 2019, 6, 1900344.

[10]

Y. Chen, Z. Zou, T. Fu, Z. Li, Z. Zhang, M. Zhu, Q. Gao, S. Wu, G. Fu, Y. He, J. Fu, Int. J. Extrem. Manuf. 2024, 6, 035503.

[11]

Q. Wu, R. Xue, Y. Zhao, K. Ramsay, E. Y. Wang, H. Savoji, T. Veres, S. H. Cartmell, M. Radisic, Bioact. Mater. 2024, 33, 46.

[12]

X. Zhang, C. Song, H. Nong, K. Xu, X. Wu, W. Zhong, M. Xing, L. Wang, Adv. Funct. Mater. 2023, 33, 2300866.

[13]

M. Izadifar, D. Chapman, P. Babyn, X. Chen, M. E. Kelly, Tissue Eng. C Methods 2018, 24, 74.

[14]

F. Oveissi, S. Naficy, T. Y. L. Le, D. F. Fletcher, F. Dehghani, ACS Appl. Bio Mater. 2018, 1, 2073.

[15]

Z. Li, Q. Li, W. Cao, J. Zhan, Y. He, X. Xing, C. Ding, L. Wang, X. Qiu, Adv. Funct. Mater. 2024, 34, 2312631.

[16]

Y. Tsukamoto, T. Akagi, M. Akashi, Sci. Rep. 2020, 10, 5484.

[17]

A. Cochis, L. Bonetti, R. Sorrentino, N. Contessi Negrini, F. Grassi, M. Leigheb, L. Rimondini, S. Farè, Materials 2018, 11, 579.

[18]

A. des Rieux, B. Ucakar, B. P. Mupendwa, D. Colau, O. Feron, P. Carmeliet, V. Préat, J. Contr. Release 2011, 150, 272.

[19]

W. Zhang, Y. Hou, S. Yin, Q. Miao, K. Lee, X. Zhou, Y. Wang, J. Nanobiotechnol. 2024, 22, 376.

[20]

X. Jiang, T. Feng, B. An, S. Ren, J. Meng, K. Li, S. Liu, H. Wu, H. Zhang, C. Zhong, Adv. Mater. 2022, 34, 2201411.

[21]

J. Shen, S. Zhang, X. Fang, S. Salmon, Gels 2022, 8, 460.

[22]

S. Iwanaga, Y. Hamada, Y. Tsukamoto, K. Arai, T. Kurooka, S. Sakai, M. Nakamura, Materials 2022, 15, 7928.

[23]

S. Lee, D. W. Lee, N. Rajput, T. Levato, A. Shanti, T. Y. Kim, ACS Omega 2023, 8, 26775.

[24]

H. Wu, F. Xu, H. Jin, M. Xue, W. Zhang, J. Yang, J. Huang, Y. Jiang, B. Qiu, B. Lin, Q. Gao, S. Chen, D. Sun, ACS Biomater. Sci. Eng. 2024, 10, 7256.

[25]

Z. Wang, S. J. Lee, H. J. Cheng, J. J. Yoo, A. Atala, Acta Biomater. 2018, 70, 48.

[26]

S. Lee, E. S. Sani, A. R. Spencer, Y. Guan, A. S. Weiss, N. Annabi, Adv. Mater. 2020, 32, 2003915.

[27]

L. Gao, M. E. Kupfer, J. P. Jung, L. Yang, P. Zhang, Y. Da Sie, Q. Tran, V. Ajeti, B. T. Freeman, V. G. Fast, P. J. Campagnola, B. M. Ogle, J. Zhang, Circ. Res. 2017, 120, 1318.

[28]

M. A. C. Williams, D. B. Mair, W. Lee, E. Lee, D. H. Kim, Tissue Eng. Part B, Reviews 2022, 28, 336.

[29]

W. He, C. Li, S. Zhao, Z. Li, J. Wu, J. Li, H. Zhou, Y. Yang, Y. Xu, H. Xia, Bioact. Mater. 2024, 34, 338.

[30]

P. P. Stankey, K. T. Kroll, A. J. Ainscough, D. S. Reynolds, A. Elamine, B. T. Fichtenkort, S. G. M. Uzel, J. A. Lewis, Adv. Mater. 2024, 36, 2401528.

[31]

Y. Zhu, S. Liu, X. Mei, Z. Lin, T. V. Pulido, J. Hou, S. A. Remani, D. Patil, M. T. Sobczak, A. Ramanathan, S. V. Thummalapalli, L. B. Chambers, C. Yu, S. Guo, Y. Zhao, Y. Liu, X. Wang, J. N. Lancaster, Y. S. Zhang, X. Chen, K. Song, Small Struct. 2025, 6, 2400323.

[32]

C. Yu, X. Ma, W. Zhu, P. Wang, K. L. Miller, J. Stupin, A. Koroleva-Maharajh, A. Hairabedian, S. Chen, Biomaterials 2019, 194, 1.

[33]

Y. W. Lee, S. Chun, D. Son, X. Hu, M. Schneider, M. Sitti, Adv. Mater. 2022, 34, 2109325.

[34]

F. Maiullari, M. Costantini, M. Milan, V. Pace, M. Chirivì, S. Maiullari, A. Rainer, D. Baci, H. E. Marei, D. Seliktar, C. Gargioli, C. Bearzi, R. Rizzi, Sci. Rep. 2018, 8, 13532.

[35]

R. Sodian, M. Loebe, A. Hein, D. P. Martin, S. P. Hoerstrup, E. V. Potapov, H. Hausmann, T. Lueth, R. Hetzer, ASAIO J. 2002, 48, 12.

[36]

P. Wang, J. Li, W. Zhang, Y. Ren, J. Ma, S. Li, X. Tan, B. Chi, Chem. Eng. J. 2023, 469, 143892.

[37]

C. Michas, M. Karakan, P. Nautiyal, J. G. Seidman, C. E. Seidman, A. Agarwal, K. Ekinci, J. Eyckmans, A. E. White, C. S. Chen, Sci. Adv. 2022, 8, eabm3791.

RIGHTS & PERMISSIONS

2025 The Author(s). Interdisciplinary Medicine published by Wiley-VCH GmbH on behalf of Nanfang Hospital, Southern Medical University.

AI Summary AI Mindmap
PDF

73

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/