In situ detection of piRNA-651 in exosomes and cells for cancer diagnosis by a new gold nanoparticle nucleic acid probe

Qin-Xin Gao , Qian-Qian Wu , Zhi-Ying Dong , Xiao-Yuan Qin , Lin-Yan Zhai , Bao-Ping Xie , Wen-Jun Duan

Interdisciplinary Medicine ›› 2025, Vol. 3 ›› Issue (1) : e20240058

PDF
Interdisciplinary Medicine ›› 2025, Vol. 3 ›› Issue (1) : e20240058 DOI: 10.1002/INMD.20240058
RESEARCH ARTICLE

In situ detection of piRNA-651 in exosomes and cells for cancer diagnosis by a new gold nanoparticle nucleic acid probe

Author information +
History +
PDF

Abstract

Increasing studies have demonstrated that PIWI-interacting RNAs (piRNAs) in circulating exosomes can serve as novel molecular biomarkers for tumor liquid biopsy. However, methods for in situ detection of piRNAs encased in exosomes are limited. In this study, we designed a spherical nucleic acid probe named piR-651, which can enter exosomes simply by incubating with them for 2 h and in situ detect piR-651 with a detection limit of 5 × 107 particles/µL. Based on this probe, we established a liquid biopsy method for the in situ detection of piR-651 in plasma exosomes. The assay could distinguish the expression levels of piR-651 between 21 breast cancer patients and 22 healthy individuals. The receiver operating characteristic curve shows an area under the curve as 0.9931 and the diagnostic sensitivity and specificity at the best cutoff are 85.7% and 100%, respectively. The probe can also easily perform in situ imaging of piR-651 in living cells. To avoid low sensitivity and kinetics in detecting large-sized PIWI-interacting RNA complexes, we rationally designed the structure and detection scheme of piR-651 probe, which was synthesized by modifying 13-nm gold particles with high-density Anchor-Report DNA duplexes through the butanol dehydration method. The new design of the gold nanoparticle nucleic acid probe can be applied to the fabrication of nucleic acid probes targeting other large-volume nucleic acids for developing more molecular biomarker-based liquid biopsy for cancer diagnosis.

Keywords

breast cancer diagnosis / in situ detection / piR-651 / plasma exosomes / spherical nucleic acid

Cite this article

Download citation ▾
Qin-Xin Gao, Qian-Qian Wu, Zhi-Ying Dong, Xiao-Yuan Qin, Lin-Yan Zhai, Bao-Ping Xie, Wen-Jun Duan. In situ detection of piRNA-651 in exosomes and cells for cancer diagnosis by a new gold nanoparticle nucleic acid probe. Interdisciplinary Medicine, 2025, 3(1): e20240058 DOI:10.1002/INMD.20240058

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Saudi Med. J. 2024, 45, 326.

[2]

E. Wellings, L. Vassiliades, R. Abdalla, Cureus 2016, 8, e945.

[3]

M. Nikanjam, S. Kato, R. Kurzrock, J. Hematol. Oncol. 2022, 15, 131.

[4]

C. Alix-Panabières, K. Pantel, Cancer Discov. 2021, 11, 858.

[5]

M. Ignatiadis, G. W. Sledge, S. S. Jeffrey, Nat. Rev. Clin. Oncol. 2021, 18, 297.

[6]

P. Pinzani, V. D’Argenio, M. Del Re, C. Pellegrini, F. Cucchiara, F. Salvianti, S. Galbiati, Clin. Chem. Lab. Med. 2021, 59, 1181.

[7]

R. Kalluri, V. S. LeBleu, Science 2020, 367, 6977.

[8]

J. J. Lai, Z. L. Chau, S. Y. Chen, J. J. Hill, K. V. Korpany, N. W. Liang, L. H. Lin, Y. H. Lin, J. K. Liu, Y. C. Liu, R. Lunde, W. T. Shen, Adv. Sci. 2022, 9, 2103222.

[9]

A. Girard, R. Sachidanandam, G. J. Hannon, M. A. Carmell, Nature 2006, 442, 199.

[10]

S. T. Grivna, E. Beyret, Z. Wang, H. Lin, Genes Dev. 2006, 20, 1709.

[11]

T. Watanabe, A. Takeda, T. Tsukiyama, K. Mise, T. Okuno, H. Sasaki, N. Minami, H. Imai, Genes Dev. 2006, 20, 1732.

[12]

D. M. Ozata, I. Gainetdinov, A. Zoch, D. O’Carroll, P. D. Zamore, Nat. Rev. Genet. 2019, 20, 89.

[13]

H. Y. Ku, H. Lin, Natl. Sci. Rev. 2014, 1, 205.

[14]

B. Czech, M. Munafò, F. Ciabrelli, E. L. Eastwood, M. H. Fabry, E. Kneuss, G. J. Hannon, Annu. Rev. Genet. 2018, 52, 131.

[15]

Y. Lin, J. Zheng, D. Lin, Semin. Cancer Biol. 2020, 104, 111.

[16]

P. Maleki Dana, M. A. Mansournia, S. M. Mirhashemi, Cell Biosci. 2020, 10, 44.

[17]

Y. Liu, M. Dou, X. Song, Y. Dong, S. Liu, H. Liu, J. Tao, W. Li, X. Yin, W. Xu, Mol. Cancer 2019, 18, 123.

[18]

T. Liu, J. Wang, L. Sun, M. Li, X. He, J. Jiang, Q. Zhou, Cell Cycle 2021, 20, 1603.

[19]

Y. J. Lee, S. U. Moon, M. G. Park, W. Y. Jung, Y. K. Park, S. K. Song, J. G. Ryu, Y. S. Lee, H. J. Heo, H. N. Gu, S. J. Cho, B. A. Ali, A. A Al-Khedhairy, I. Lee, S. Kim, Biomaterials 2016, 101, 143.

[20]

R. Jia, X. He, W. Ma, Y. Lei, H. Cheng, H. Sun, J. Huang, K. Wang, Anal. Chem. 2019, 91, 15107.

[21]

L. M. Zhang, Q. X. Gao, J. Chen, B. Li, M. M. Li, L. Zheng, J. X. Chen, W. J. Duan, Anal. Chim. Acta 2022, 1192, 339382.

[22]

L. M. Zhang, Q. X. Gao, B. P. Xie, J. Chen, W. J. Duan, Chem. Commun. 2022, 58, 5793.

[23]

Q. X. Gao, L. M. Zhang, Q. Q. Wu, F. F. Guo, J. Chen, M. M. Li, Y. Y. Wu, B. P. Xie, W. J. Duan, Sensor. Actuator. B. Chem. 2023, 393, 134272.

[24]

L. Y. Zhai, M. X. Li, W. L. Pan, Y. Chen, M. M. Li, J. X. Pang, L. Zheng, J. X. Chen, W. J. Duan, ACS Appl. Mater. Interfaces 2018, 10, 39478.

[25]

Y. Li, J. Deng, Z. Han, C. Liu, F. Tian, R. Xu, D. Han, S. Zhang, J. Sun, J. Am. Chem. Soc. 2021, 143, 1290.

[26]

J. Li, J. Wang, S. Liu, N. Xie, K. Quan, Y. Yang, X. Yang, J. Huang, K. Wang, Angew. Chem. Int. Ed. 2020, 59, 20104.

[27]

J. Liu, Y. Lu, Nat. Protoc. 2006, 1, 246.

[28]

Y. Hao, Y. J. Li, L. Song, Z. X. Deng, J. Am. Chem. Soc. 2021, 143, 3065.

[29]

D. S. Seferos, D. A. Giljohann, H. D. Hill, A. E. Prigodich, C. A. Mirkin, J. Am. Chem. Soc. 2007, 129, 15477.

[30]

A. Purushothaman, in The Extracellular Matrix, Vol. 1952 (Eds: D. Vigetti, A.D. Theocharis), Humana Press, New York, NY 2019, 1952, pp. 233–244.

[31]

Y. Chen, L. Y. Zhai, L. M. Zhang, X. S. Ma, Z. Liu, M. M. Li, J. X. Chen, W. J. Duan, Analyst 2021, 146, 2264.

[32]

P. Maleki Dana, M. A. Mansournia, S. M. Mirhashemi, Cell Biosci. 2020, 10, 44.

RIGHTS & PERMISSIONS

2025 The Author(s). Interdisciplinary Medicine published by Wiley-VCH GmbH on behalf of Nanfang Hospital, Southern Medical University.

AI Summary AI Mindmap
PDF

250

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/