NIR-II emissive biohybrid nanovesicles as mildtemperature photothermal antibiofilm agents against acute bacterial skin and skin-structure infections

Ji Wang , Zhihao Wu , Xiaoxi Ma , Zhihui Huang , Haorong Dong , Jinxin Zhang , Xiaoming Liu , Pengfei Zhang , Shuhuai Yao

Interdisciplinary Medicine ›› 2025, Vol. 3 ›› Issue (1) : e20240053

PDF
Interdisciplinary Medicine ›› 2025, Vol. 3 ›› Issue (1) : e20240053 DOI: 10.1002/INMD.20240053
RESEARCH ARTICLE

NIR-II emissive biohybrid nanovesicles as mildtemperature photothermal antibiofilm agents against acute bacterial skin and skin-structure infections

Author information +
History +
PDF

Abstract

The emergence of antibiotic-resistant bacteria poses a significant challenge to the prompt and appropriate treatment of pathogenic bacteria infections, such as acute bacterial skin and skin-structure infections (ABSSSI), especially in the presence of biofilms. Bacterial biofilms are naturally resistant to antibiotics and the human immune system, making biofilm-based infections extremely difficult to treat. Therefore, developing new antibacterial therapies targeting biofilms is crucial. Aggregation-induced emission luminogens with fluorescence in the second near-infrared window (NIR-II AIEgens), which can be activated by a near-infrared laser to generate heat, offer an effective and precise photothermal therapy (PTT) approach for treating deep-tissue bacterial infections. However, the presence of biofilms impedes the entry of photosensitizers into the infected area, requiring higher drug doses and increasing the risk of PTT. Herein, we developed a biocompatible AIEgen-based biohybrid nano formulation that incorporates the BPBBT (NIR-II AIEgen) and antibiofilm α-amylase into a red blood cell (RBC) membrane-derived nanovesicle carrier for a PTT/biofilm degradation combination therapy. The synergistic effect of this new formulation enhances both the photothermal capability of BPBBT and the biofilm degradation compared to traditional individual treatments. The new combination therapy demonstrated significant improvement in treating severe Staphylococcus aureus infections caused by biofilms in vitro and in vivo, presenting a promising alternative to traditional antibiotic therapy.

Keywords

aggregation-induced emission / anti-biofilm materials / biofilm / nanovesicle / photothermal therapy

Cite this article

Download citation ▾
Ji Wang, Zhihao Wu, Xiaoxi Ma, Zhihui Huang, Haorong Dong, Jinxin Zhang, Xiaoming Liu, Pengfei Zhang, Shuhuai Yao. NIR-II emissive biohybrid nanovesicles as mildtemperature photothermal antibiofilm agents against acute bacterial skin and skin-structure infections. Interdisciplinary Medicine, 2025, 3(1): e20240053 DOI:10.1002/INMD.20240053

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Golan, Clin. Infect. Dis. 2019, 68, S206.

[2]

M. Shah, H. D. Shah, Indian J. Dermatol. 2011, 56, 510.

[3]

P. M. Bennett, Br. J. Pharmacol. 2008, 153, S347.

[4]

J. Davies, D. Davies, Microbiol. Mol. Biol. Rev. 2010, 74, 417.

[5]

D. Lahiri, M. Nag, R. Banerjee, D. Mukherjee, S. Garai, T. Sarkar, A. Dey, H. I. Sheikh, S. K. Pathak, H. A. Edinur, S. Pati, R. R. Ray, Front. Cell. Infect. Microbiol. 2021, 11, 660048.

[6]

C. W. Hall, T. Mah, FEMS Microbiol. Rev. 2017, 41, 276.

[7]

S. Sharma, J. Mohler, S. D. Mahajan, S. A. Schwartz, L. Bruggemann, R. Aalinkeel, Microorganisms 2023, 11, 1614.

[8]

G. Hughes, M. A. Webber, Br. J. Pharmacol. 2017, 174, 2237.

[9]

P. S. Stewart, J. W. Costerton, Lancet 2001, 358, 135.

[10]

O. Al-Fawares, A. Alshweiat, R. O Al-Khresieh, K. Z. Alzarieni, A. H. B. Rashaid, Saudi Pharmaceut. J. 2024, 32, 101918.

[11]

X. Liu, Y. Yang, M. Han, J. Guo, H. Liu, Y. Liu, J. Xu, S. Ji, X. Chen, Adv. Healthcare Mater. 2022, 11, 2201091.

[12]

M. Di Giulio, R. Zappacosta, S. Di Lodovico, E. Di Campli, G. Siani, A. Fontana, L. Cellini, Antimicrob. Agents Chemother. 2018, 62, 10.

[13]

S. He, X. Jia, S. Feng, J. Hu, Small 2023, 19, 2300078.

[14]

T. Dubey, S. Chinnathambi, Cytoskeleton 2021, 78, 232.

[15]

H. Huang, A. Ali, Y. Liu, H. Xie, S. Ullah, S. Roy, Z. Song, B. Guo, J. Xu, Adv. Drug Deliv. Rev. 2023, 192, 114634.

[16]

Y. Liu, P. Bhattarai, Z. Dai, X. Chen, Chem. Soc. Rev. 2019, 48, 2053.

[17]

J. Xu, K. Yao, Z. Xu, Nanoscale 2019, 11, 8680.

[18]

T. Nguyen, H. T. Duong, R. Selvanayagam, C. Boyer, N. Barraud, Sci. Rep. 2015, 5, 18385.

[19]

A. Maleki, J. He, S. Bochani, V. Nosrati, M. Shahbazi, B. Guo, ACS Nano 2021, 15, 18895.

[20]

X. Chen, H. Gao, Y. Deng, Q. Jin, J. Ji, D. Ding, ACS Nano 2020, 14, 5121.

[21]

X. Gu, R. T. Kwok, J. W. Lam, B. Z. Tang, Biomaterials 2017, 146, 115.

[22]

Y. Hong, J. W. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361.

[23]

R. Zhang, Y. Duan, B. Liu, Nanoscale 2019, 11, 19241.

[24]

Z. Zhao, H. Zhang, J. W. Lam, B. Z. Tang, Angew. Chem. Int. Ed. 2020, 59, 9888.

[25]

Z. Zhang, M. Kang, H. Tan, N. Song, M. Li, P. Xiao, D. Yan, L. Zhang, D. Wang, B. Z. Tang, Chem. Soc. Rev. 2022, 51, 1983.

[26]

Y. Huang, D. Li, D. Wang, X. Chen, L. Ferreira, M. C. L. Martins, Y. Wang, Q. Jin, D. Wang, B. Z. Tang, J. Ji, Biomaterials 2022, 286, 121579.

[27]

W. Wang, Y. Gao, M. Zhang, Y. Li, B. Z. Tang, ACS Nano 2023, 17, 7394.

[28]

T. Cui, S. Wu, Y. Sun, J. Ren, X. Qu, Nano Lett. 2020, 20, 7350.

[29]

D. Hu, L. Zou, B. Li, M. Hu, W. Ye, J. Ji, ACS Biomater. Sci. Eng. 2019, 5, 5169.

[30]

Y. Zhou, Z. Zhou, X. Wu, Z. Wang, W. Qi, J. Yang, L. Qing, J. Tang, L. Deng, Int. J. Nanomed. 2023, 18, 4805.

[31]

L. Yuwen, H. Xiao, P. Lu, X. Chen, J. Li, W. Xiu, S. Gan, D. Yang, L. Wang, Biomater. Sci. 2023, 11, 63.

[32]

J. Huo, Q. Jia, H. Huang, J. Zhang, P. Li, X. Dong, W. Huang, Chem. Soc. Rev. 2021, 50, 8762.

[33]

A. Mahdavi, R. Sajedi, M. Rassa, V. Jafarian, Iran. J. Biotechnol. 2010, 8, 103.

[34]

Y. Alhamhoom, G. Kakinani, M. Rahamathulla, R. A. M. Osmani, U. Hani, K. Y. Thajudeen, G. K. Raj, D. V. Gowda, Saudi Pharmaceut. J. 2023, 31, 279.

[35]

A. Fernández-Borbolla, L. García-Hevia, M. L. Fanarraga, Int. J. Mol. Sci. 2024, 25, 2071.

[36]

Q. Le, J. Lee, H. Lee, G. Shim, Y. Oh, Acta Pharm. Sin. B 2021, 11, 2096.

[37]

C. Xu, D. Ju, X. Zhang, Front. Immunol. 2022, 13, 923598.

[38]

S. Malhotra, S. Dumoga, N. Singh, WIREs Nanomed. Nanobiotechnol. 2022, 14, e1776.

[39]

G. Qian, B. Dai, M. Luo, D. Yu, J. Zhan, Z. Zhang, D. Ma, Z. Y. Wang, Chem. Mater. 2008, 20, 6208.

[40]

S. Gao, G. Wei, S. Zhang, B. Zheng, J. Xu, G. Chen, M. Li, S. Song, W. Fu, Z. Xiao, W. Lu, Nat. Commun. 2019, 10, 2206.

[41]

X. Yang, T. Yang, Q. Liu, X. Zhang, X. Yu, R. T. Kwok, L. Hai, P. Zhang, B. Z. Tang, L. Cai, P. Gong, Adv. Funct. Mater. 2022, 32, 2206346.

[42]

R. Hu, E. Lager, A. Aguilar-Aguilar, J. Liu, J. W. Lam, H. H. Sung, I. D. Williams, Y. Zhong, K. S. Wong, E. Pena-Cabrera, B. Z. Tang, J. Phys. Chem. C 2009, 113, 15845.

[43]

Y. Yu, Z. Xu, Z. Zhao, H. Zhang, D. Ma, J. W. Lam, A. Qin, B. Z. Tang, ACS Omega 2018, 3, 16347.

[44]

L. Shi, Y. Liu, K. Li, A. Sharma, K. Yu, M. S. Ji, L. Li, Q. Zhou, H. Zhang, J. S. Kim, X. Yu, Angew. Chem. Int. Ed. 2020, 59, 9962.

[45]

X. Zheng, D. Wang, W. Xu, S. Cao, Q. Peng, B. Z. Tang, Mater. Horiz. 2019, 6, 216.

[46]

L. Tan, J. Li, X. Liu, Z. Cui, X. Yang, S. Zhu, Z. Li, X. Yuan, Y. Zheng, K. W. K. Yeung, H. Pan, X. Wang, S. Wu, Adv. Mater. 2018, 30, 1801808.

[47]

Z. Yuan, B. Tao, Y. He, J. Liu, C. Lin, X. Shen, Y. Ding, Y. Yu, C. Mu, P. Liu, K. Cai, Biomaterials 2019, 217, 119290.

[48]

N. Malachowa, S. D. Kobayashi, K. R. Braughton, F. R. DeLeo, in Mouse Models of Innate Immunity, Vol. 1031 (Ed: I. Allen), Humana Press, Totowa, NJ 2013, pp. 109–116.

RIGHTS & PERMISSIONS

2024 The Author(s). Interdisciplinary Medicine published by Wiley-VCH GmbH on behalf of Nanfang Hospital, Southern Medical University.

AI Summary AI Mindmap
PDF

203

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/