Mini-review of developments in the chemical modification of plant-derived photosensitizing drug hypocrellin and its biomedical applications

Ying’ao Wu , Xiong Yin , Min Li

Interdisciplinary Medicine ›› 2024, Vol. 2 ›› Issue (4) : e20240027

PDF
Interdisciplinary Medicine ›› 2024, Vol. 2 ›› Issue (4) : e20240027 DOI: 10.1002/INMD.20240027
REVIEW

Mini-review of developments in the chemical modification of plant-derived photosensitizing drug hypocrellin and its biomedical applications

Author information +
History +
PDF

Abstract

Photodynamic and photothermal therapy have emerged as standard treatments for a range of tumors and microvascular diseases. However, a significant gap remains in the clinical availability of photosensitizers. Among the vast array of photosensitizers, hypocrellin–a plant-derived photosensitizing drug–stands out as a potential candidate. It boasts straightforward preparation and purification processes, high phototoxicity, low toxicity in the absence of light, and rapid metabolism within the body. However, hypocrellin's limited water solubility and weak absorption in the phototherapeutic window pose challenges to its use in treating solid tumors. Given the limited number of reviews on this subject, a thorough investigation of hypocrellin is essential. This review focuses on the efforts of scientists to address these challenges through chemical modifications of hypocrellin and its co-assembly with hydrophilic drug delivery vehicles. A notable advantage of hypocrellin over other photosensitizers is its amenability to modification, resulting in pure monomeric derivatives. Recent studies have shown that modifying specific functional groups on hypocrellin's parent ring can yield more potent derivatives, positioning it as a highly promising strategy in tumor therapy. Beyond its therapeutic potential, this review also explores the diverse applications of hypocrellin, including its role in bacterial and fungal inactivation, as well as its efficacy in treating malignant tumors. Additionally, the utilization of nanoparticles as carriers for modified hypocrellin presents new possibilities for clinical applications. This review offers a detailed examination of recent developments in hypocrellin modification, highlighting its potential to advance photodynamic therapy and a wider range of biomedical applications.

Keywords

biomedical application / chemical modification / drug delivery / hypocrellin / phototherapy

Cite this article

Download citation ▾
Ying’ao Wu, Xiong Yin, Min Li. Mini-review of developments in the chemical modification of plant-derived photosensitizing drug hypocrellin and its biomedical applications. Interdisciplinary Medicine, 2024, 2(4): e20240027 DOI:10.1002/INMD.20240027

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

W. Fan, B. Yung, P. Huang, X. Chen, Chem. Rev. 2017, 117, 13566.

[2]

G. Canti, A. De Simone, M. Korbelik, Photochem. Photobiol. Sci. 2002, 1, 79.

[3]

Q. Jia, J. Ge, W. Liu, X. Zheng, S. Chen, Y. Wen, H. Zhang, P. Wang, Adv. Mater. 2018, 30, 1706090.

[4]

E. Polat, K. Kang, Biomedicines 2021, 9, 584.

[5]

B. M. Luby, C. D. Walsh, G. Zheng, Angew. Chem. Int. Ed. 2019, 58, 2558.

[6]

X. Li, S. Lee, J. Yoon, Chem. Soc. Rev. 2018, 47, 1174.

[7]

F. Gao, M. Sun, W. Ma, X. Wu, L. Liu, H. Kuang, C. Xu, Adv. Mater. 2017, 29, 1606864.

[8]

M. A. Rajora, J. W. H. Lou, G. Zheng, Chem. Soc. Rev. 2017, 46, 6433.

[9]

J. M. Ang, I. B. Riaz, M. U. Kamal, G. Paragh, N. C. Zeitouni, Photodiagn. Photodyn. Ther. 2017, 19, 308.

[10]

W. Park, S. Cho, J. Han, H. Shin, K. Na, B. Lee, D. H. Kim, Biomater. Sci. 2017, 6, 79.

[11]

M. Overchuk, R. A. Weersink, B. C. Wilson, G. Zheng, ACS Nano. 2023, 17, 7979.

[12]

H. Abrahamse, M. R. Hamblin, Biochem. J. 2016, 473, 347.

[13]

E. P. Estey, K. Brown, Z. Diwu, J. Liu, J. W. Lown, G. G. Miller, R. B. Moore, J. Tulip, M. S. McPhee, Cancer Chemother. Pharmacol. 1996, 37, 343.

[14]

H. Deng, X. Liang, J. Liu, X. Zheng, T. Fan, Y. Cai, Front. Microbiol. 2022, 13, 1070110.

[15]

X. Wan, Y. Chen, Sci. Bull. 1980, 24, 1148.

[16]

Y. Zhang, J. Xie, L. Zhang, C. Li, H. Chen, Y. Gu, J. Zhao, Photochem. Photobiol. Sci. 2009, 8, 1676.

[17]

H. Zhao, R. Yin, D. Chen, J. Ren, Y. Wang, J. Zhanga, H. Deng, Y. Wang, H. Qiu, N. Huang, Q. Zou, J. Zhao, Y. Gu, Photodiagn. Photodyn. Ther. 2014, 11, 204.

[18]

H. Deng, T. Li, J. Xie, N. Huang, Y. Gu, J. Zhao, Dyes Pigments 2013, 99, 930.

[19]

M. Li, J. Xia, R. Tian, J. Wang, J. Fan, J. Du, S. Long, X. Song, J. W. Foley, X. Peng, J. Am. Chem. Soc. 2018, 140, 14851.

[20]

X. Liu, J. Xie, L. Zhang, H. Chen, Y. Gu, J. Zhao, J. Photochem. Photobiol. B 2009, 94, 171.

[21]

C. McEwan, C. Fowley, N. Nomikou, B. McCaughan, A. P. McHale, J. F. Callan, Langmuir 2014, 30, 14926.

[22]

X. Wang, W. Wang, L. Yu, Y. Tang, J. Cao, Y. Chen, J. Mater. Chem. B 2017, 5, 4579.

[23]

Z. Ou, G. Liu, Y. Gao, S. Li, H. Li, Y. Li, X. Wang, G. Yang, X. Wang, Photochem. Photobiol. Sci. 2014, 13, 1529.

[24]

M. Ishikawa, Y. Hashimoto, J. Med. Chem. 2011, 54, 1539.

[25]

H. Deng, X. Liu, J. Xie, R. Yin, N. Huang, Y. Gu, J. Zhao, J. Med. Chem. 2012, 55, 1910.

[26]

G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti, G. Roncucci, Lasers Surg. Med. 2006, 38, 468.

[27]

L. Zhou, X. Ge, J. Liu, J. Zhou, S. Wei, F. Li, J. Shen, Bioorg. Med. Chem. Lett. 2013, 23, 5317.

[28]

J. Ma, J. Zhao, L. Jiang, New J. Chem. 2001, 25, 847.

[29]

J. Zhou, J. Liu, S. Xia, X. Wang, B. Zhang, J. Phys. Chem. B 2005, 109, 19529.

[30]

Y. Zhang, L. Song, J. Xie, H. Qiu, Y. Gu, J. Zhao, Photochem. Photobiol. 2010, 86, 667.

[31]

Y. Sun, Y. Hou, Q. Zhou, W. Lei, J. Chen, X. Wang, B. Zhang, Inorg. Chem. 2010, 49, 10108.

[32]

W. Xie, S. Wei, J. Liu, X. Ge, L. Zhou, J. Zhou, J. Shen, Dyes Pigments 2014, 101, 43.

[33]

Y. He, J. An, L. Jiang, Free Radic Biol Med. 1999, 27, 203.

[34]

Z.-Z. Ou, J.-R. Chen, X.-S. Wang, B.-W. Zhang, Y. Cao, New J. Chem. 2002, 26, 1130.

[35]

Y.-Y. He, J.-Y. An, L.-J. Jiang, Dyes Pigments 1999, 41, 93.

[36]

S. Xu, S. Chen, M. Zhang, T. Shen, Bioorg. Med. Chem. Lett. 2004, 14, 1499.

[37]

Y.-J. Tang, H.-Y. Liu, J.-Y. An, R. Han, Photochem. Photobiol. 2007, 74, 201.

[38]

X. Zheng, J. Ge, J. Wu, W. Liu, L. Guo, Q. Jia, Y. Ding, H. Zhang, P. Wang, Biomaterials 2018, 185, 133.

[39]

F. Meng, J. Wang, Q. Ping, Y. Yeo, ACS Nano 2018, 12, 6458.

[40]

X. Zheng, W. Liu, J. Ge, Q. Jia, F. Nan, Y. Ding, J. Wu, W. Zhang, C. S. Lee, P. Wang, ACS Appl. Mater. Interfaces 2019, 11, 18178.

[41]

J. Nicolas, S. Mura, D. Brambilla, N. Mackiewicz, P. Couvreur, Chem. Soc. Rev. 2013, 42, 1147.

[42]

C. Zhang, J. Wu, W. Liu, X. Zheng, P. Wang, ACS Appl. Mater. Interfaces 2019, 11, 44989.

[43]

R. W. Redmond, J. N. Gamlin, Photochem. Photobiol. 2008, 70, 391.

[44]

G. Yang, S. Z. F. Phua, W. Q. Lim, R. Zhang, L. Feng, G. Liu, H. Wu, A. K. Bindra, D. Jana, Z. Liu, Y. Zhao, Adv. Mater. 2019, 31, 1901513.

[45]

Y. Ding, W. Liu, J. Wu, X. Zheng, J. Ge, H. Ren, W. Zhang, C. S. Lee, P. Wang, Chem. Asian J. 2020, 15, 3462.

[46]

C. Zhang, J. Wu, W. Liu, X. Zheng, W. Zhang, C. S. Lee, P. Wang, ACS Appl. Bio Mater. 2020, 3, 3817.

[47]

S. A. C Lima, S. Reis, Polymers 2021, 13, 1261.

[48]

J. Ge, M. Lan, B. Zhou, W. Liu, L. Guo, H. Wang, Q. Jia, G. Niu, X. Huang, H. Zhou, X. Meng, P. Wang, C. S. Lee, W. Zhang, X. Han, Nat. Commun. 2014, 5, 4596.

[49]

D. Depan, J. Shah, R. D. K. Misra, MateSci Eng. C. 2011, 31, 1305.

[50]

L. Zhou, H. Jiang, S. Wei, X. Ge, J. Zhou, J. Shen, Carbon 2012, 50, 5594.

[51]

X. Zheng, S. N. Lei, Z. Gao, X. Dong, H. Xiao, W. Liu, C. H. Tung, L. Z. Wu, P. Wang, H. Cong, Chem. Sci. 2023, 14, 3523.

[52]

L. Gao, J. Fei, J. Zhao, H. Li, Y. Cui, J. Li, ACS Nano 2012, 6, 8030.

[53]

Y. Xia, W. Li, C. M. Cobley, J. Chen, X. Xia, Q. Zhang, M. Yang, E. C. Cho, P. K. Brown, Acc. Chem. Res. 2011, 44, 914.

[54]

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, X. Li, Nano Lett. 2007, 7, 1318.

[55]

M. J. Webber, R. Langer, Chem. Soc. Rev. 2017, 46, 6600.

[56]

X. Liang, Y. Cai, X. Liao, K. Wu, L. Wang, D. Zhang, Q. Meng, Microbiol. Res. 2009, 164, 9.

[57]

Y. Su, J. Sun, S. Rao, Y. Cai, Y. Yang, J. Photochem. Photobiol. B 2011, 103, 29.

[58]

Y. Jiang, A. W. Leung, X. Wang, H. Zhang, C. Xu, Photodiagn. Photodyn. Ther. 2013, 10, 600.

[59]

L. Guo, S. Yan, X. Tao, Q. Yang, Q. Li, T. Wang, S. Yu, S. Chen, Mater. Sci. Eng. C 2020, 106, 110230.

[60]

X. Liu, R. Fang, R. Feng, Q. Li, M. Su, C. Hou, K. Zhuang, Y. Dai, N. Lei, Y. Jiang, Y. Liu, Y. Ran, Drug Resist. Updat. 2022, 65, 100887.

[61]

X. Liu, C. Guo, K. Zhuang, W. Chen, M. Zhang, Y. Dai, L. Tan, Y. Ran, PLoS Pathog. 2022, 18, 1010534.

[62]

H. Tsuru, H. Shibaguchi, M. Kuroki, Y. Yamashita, M. Kuroki, Free Radic. Biol. Med. 2012, 53, 464.

[63]

P. Wang, C. S. Xu, J. Xu, X. Wang, A. W. Leung, Ultrasound Med. Biol. 2010, 36, 336.

[64]

Y. Jiang, A. W. N. Leung, J. Y. Xiang, C. S. Xu, Int. J. Photoenergy 2012, 2012, 186752.

[65]

A. Nowak-Stepniowska, M. Malecki, K. Wiktorska, A. Romiszewska, A. Padzik-Graczyk, Photodiagn. Photodyn. Ther. 2011, 8, 39.

[66]

Y. Jiang, X. Xia, A. W. Leung, J. Xiang, C. Xu, Photodiagn. Photodyn. Ther. 2012, 9, 337.

[67]

C. Alifieris, D. T. Trafalis, Pharmacol. Ther. 2015, 152, 63.

[68]

T. D. Azad, J. Pan, I. D. Connolly, A. Remington, C. M. Wilson, G. A. Grant, Neurosurg. Focus 2015, 38, E9.

[69]

Q. Zhu, X. Ling, Y. Yang, J. Zhang, Q. Li, X. Niu, G. Hu, B. Chen, H. Li, Y. Wang, Z. Deng, Adv. Sci. 2019, 6, 1801899.

RIGHTS & PERMISSIONS

2024 The Author(s). Interdisciplinary Medicine published by Wiley-VCH GmbH on behalf of Nanfang Hospital, Southern Medical University.

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/