scRNA-seq reveals NAMPT-mediated macrophage polarization shapes smooth muscle cell plasticity in pulmonary arterial hypertension

Zuoshi Wen , Liujun Jiang , Fangcong Yu , Xiaodong Xu , Mengjia Chen , Chenxi Li , Zhangquan Ying , Jianing Xue , Pengwei Zhu , Mairedan Muhetarijiang , Qingbo Xu , Zhoubin Li , Ting Chen

Interdisciplinary Medicine ›› 2024, Vol. 2 ›› Issue (4) : e20240016

PDF
Interdisciplinary Medicine ›› 2024, Vol. 2 ›› Issue (4) : e20240016 DOI: 10.1002/INMD.20240016
RESEARCH ARTICLE

scRNA-seq reveals NAMPT-mediated macrophage polarization shapes smooth muscle cell plasticity in pulmonary arterial hypertension

Author information +
History +
PDF

Abstract

Phenotypic switching of smooth muscle cells (SMC) is a crucial process in the pathogenesis of pulmonary arterial hypertension (PAH). However, the underlying mechanism is unclear. Here, we performed single-cell RNA sequencing on pulmonary arteries obtained from lung transplantation to explore the cellular heterogeneity and gene expression profile of the main cell types. We identified three distinct SMC phenotypes, namely contractile, fibroblast-like, and chondroid-like, and observed an enhanced transition from contractile to fibroblast-like phenotype in PAH by pseudo-time analysis and in vitro. We also revealed a classically activated (M1) polarization of macrophages and an increased pro-inflammatory macrophage-SMC crosstalk in PAH via intercellular communication. Notably, Nicotinamide phosphoribosyltransferase (NAMPT) emerges as a key player in macrophage polarization. The macrophages overexpress Nampt in Sugen/hypoxia (Su/Hx) -induced PAH mice and significantly downregulate the pro-inflammation secretion pattern with Nampt interference. In a cellular coculture system, Nampt knockdown in macrophages significantly inhibits the fibroblast-like phenotypic switching of SMCs. Finally, we identified Ccl2/5 as a key cytokine for SMC phenotypic modulation. Collectively, these findings provide a cell atlas of normal human pulmonary arteries and demonstrate that NAMPT-driven M1 macrophage polarization promotes the fibroblast-like phenotypic switching of SMCs through CCR2/CCR5 cellular crosstalk in PAH.

Keywords

macrophage polarization / NAMPT / phenotypic switching / pulmonary arterial hypertension / single-cell RNA sequencing / smooth muscle cell

Cite this article

Download citation ▾
Zuoshi Wen, Liujun Jiang, Fangcong Yu, Xiaodong Xu, Mengjia Chen, Chenxi Li, Zhangquan Ying, Jianing Xue, Pengwei Zhu, Mairedan Muhetarijiang, Qingbo Xu, Zhoubin Li, Ting Chen. scRNA-seq reveals NAMPT-mediated macrophage polarization shapes smooth muscle cell plasticity in pulmonary arterial hypertension. Interdisciplinary Medicine, 2024, 2(4): e20240016 DOI:10.1002/INMD.20240016

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

N. F.Ruopp, B. A.Cockrill, JAMA 2022, 327, 1379.

[2]

L.Zhong, S.Leng, S.Alabed, P. Chai, L.Teo, W.Ruan, T.-T.Low, J. M.Wild, J. C. Allen, S. T.Lim, J. L.Tan, J. W.-L. Yip, A. J.Swift, D. G.Kiely, R.-S.Tan, JACC Cardiovasc. Imaging 2023, 16, 1022.

[3]

P. M.Hassoun, N. Engl. J. Med. 2021, 385, 2361.

[4]

A. A. RThompson, A. Lawrie, Trends Mol. Med. 2017, 23, 31.

[5]

M. M.Hoeper, M.Humbert, R.Souza, M.Idrees, S. M.Kawut, K.Sliwa-Hahnle, Z.-C.Jing, J. S. R. Gibbs, Lancet Respir. Med. 2016, 4, 306.

[6]

K. R.Stenmark, M. G.Frid, B. B.Graham, R. M. Tuder, Cardiovasc. Res. 2018, 114, 551.

[7]

R.Chakraborty, P.Chatterjee, J. M.Dave, A. C.Ostriker, D. M.Greif, E. M.Rzucidlo, K. A.Martin, JVS-Vascular Sci. 2021, 2, 79.

[8]

X.Chen, X.Wei, S.Ma, H.Xie, S.Huang, M. Yao, L.Zhang, Toxicol. Appl. Pharmacol. 2022, 457, 116319.

[9]

B.Lechartier, N.Berrebeh, A.Huertas, M.Humbert, C.Guignabert, L.Tu, Chest 2022, 161, 219.

[10]

B.Ma, Y.Cao, J.Qin, Z. Chen, G.Hu, Q.Li, Drug Discov. Today 2023, 28, 103559.

[11]

S.Abid, E.Marcos, A.Parpaleix, V.Amsellem, M.Breau, A.Houssaini, N. Vienney, M.Lefevre, G.Derumeaux, S.Evans, C.Hubeau, M. Delcroix, R.Quarck, S.Adnot, L.Lipskaia, Eur. Respir. J. 2019, 54, 1802308.

[12]

T. B.Dahl, S.Holm, P.Aukrust, B. Halvorsen, Annu. Rev. Nutr. 2012, 32, 229.

[13]

L.Zhou, S.Zhang, E.Bolor-Erdene, L.Wang, D.Tian, Y.Mei, Oxid. Med. Cell. Longev. 2020, 2020, 1974265.

[14]

A.Dakroub, S. A.Nasser, F.Kobeissy, H. M.Yassine, A.Orekhov, J.Sharifi-Rad, R.Iratni, A. FEl-Yazbi, A. H.Eid, J. Cell. Physiol. 2021, 236, 6282.

[15]

J.Chen, J. R.Sysol, S.Singla, S. Zhao, A.Yamamura, D.Valdez-Jasso, T.Abbasi, K. M.Shioura, S.Sahni, V.Reddy, A.Sridhar, H. Gao, J.Torres, S. M.Camp, H.Tang, S. Q.Ye, S. Comhair, R.Dweik, P.Hassoun, J. X.-J. Yuan, J. G. N.Garcia, R. F.Machado, Circulation 2017, 135, 1532.

[16]

Y.Wu, J.Wharton, R.Walters, E.Vasilaki, J.Aman, L.Zhao, M. R. Wilkins, C. J.Rhodes, Eur. Respir. J. 2021, 58, 2004172.

[17]

K.Asosingh, S.Comhair, L.Mavrakis, W.Xu, D.Horton, I.Taylor, S.Tkachenko, B.Hu, S.Erzurum, Sci. Rep. 2021, 11, 14714.

[18]

S.Crnkovic, F.Valzano, E.Fließer, J.Gindlhuber, H.Thekkekara Puthenparampil, M.Basil, M. P.Morley, J. Katzen, E.Gschwandtner, W.Klepetko, E.Cantu, H.Wolinski, H. Olschewski, J.Lindenmann, Y.-Y.Zhao, E. E.Morrisey, L. M.Marsh, G.Kwapiszewska, JCI Insight 2022, 7, e153471.

[19]

L.Corcoran, D.Emslie, T.Kratina, W.Shi, S.Hirsch, N.Taubenheim, S.Chevrier, Front. Immunol. 2014, 5, 108.

[20]

Z.Hu, T. V.Zhao, T.Huang, S. Ohtsuki, K.Jin, I. N.Goronzy, B.Wu, M. P.Abdel, J. W. Bettencourt, G. J.Berry, J. J.Goronzy, C. M.Weyand, Nat. Metab. 2022, 4, 759.

[21]

A.Shapouri-Moghaddam, S. Mohammadian, H.Vazini, M.Taghadosi, S.-A.Esmaeili, F.Mardani, B.Seifi, A.Mohammadi, J. T.Afshari, A.Sahebkar, J. Cell. Physiol. 2018, 233, 6425.

[22]

Y.Sun, L.Wu, Y.Zhong, K. Zhou, Y.Hou, Z.Wang, Z.Zhang, J.Xie, C. Wang, D.Chen, Y.Huang, X.Wei, Y.Shi, Z. Zhao, Y.Li, Z.Guo, Q.Yu, L.Xu, G.Volpe, S.Qiu, J. Zhou, C.Ward, H.Sun, Y.Yin, X.Xu, X.Wang, M. A.Esteban, H.Yang, J.Wang, M.Dean, Y. Zhang, S.Liu, X.Yang, J.Fan, Cell 2021, 184, 404.

[23]

V.Amsellem, L.Lipskaia, S.Abid, L.Poupel, A.Houssaini, R.Quarck, E.Marcos, N.Mouraret, A.Parpaleix, R.Bobe, G.Gary-Bobo, M.Saker, J.-L.Dubois-Randé, M. T.Gladwin, K. A.Norris, M.Delcroix, C.Combadière, S. Adnot, Circulation 2014, 130, 880.

[24]

V.Amsellem, S.Abid, L.Poupel, A. Parpaleix, M.Rodero, G.Gary-Bobo, M.Latiri, J.-L.Dubois-Rande, L.Lipskaia, C.Combadiere, S.Adnot, Am. J. Respir. Cell Mol. Biol. 2017, 56, 597.

[25]

C.-S.Lin, P.-S.Hsieh, L.-L.Hwang, Y.-H. Lee, S.-H.Tsai, Y.-C.Tu, Y.-W.Hung, C.-C.Liu, Y.-P. Chuang, M.-T.Liao, S.Chien, M.-C.Tsai, Cell. Physiol. Biochem. 2018, 47, 707.

[26]

T.Hashimoto-Kataoka, N. Hosen, T.Sonobe, Y.Arita, T.Yasui, T.Masaki, M. Minami, T.Inagaki, S.Miyagawa, Y.Sawa, M.Murakami, A. Kumanogoh, K.Yamauchi-Takihara, M.Okumura, T.Kishimoto, I.Komuro, M.Shirai, Y.Sakata, Y.Nakaoka, Proc. Natl. Acad. Sci. USA 2015, 112, E2677.

[27]

A.Zawia, N. D.Arnold, L.West, J. A.Pickworth, H.Turton, J.Iremonger, A. T.Braithwaite, J. Cañedo, S. A.Johnston, A. A. R.Thompson, G.Miller, A.Lawrie, Arterioscler. Thromb. Vasc. Biol. 2021, 41, 430.

[28]

J.Koga, M.Aikawa, Vasc. Pharmacol. 2012, 57, 24.

[29]

A.Ntokou, J. M.Dave, A. C.Kauffman, M.Sauler, C.Ryu, J.Hwa, E. L. Herzog, I.Singh, W. M.Saltzman, D. M.Greif, JCI Insight 2021, 6, e139067.

[30]

S. K.Wculek, G.Dunphy, I.Heras-Murillo, A.Mastrangelo, D.Sancho, Cell. Mol. Immunol. 2022, 19, 384.

[31]

A.Yurdagul, Arterioscler. Thromb. Vasc. Biol. 2022, 42, 372.

[32]

V.Rai, H.Singh, D. K.Agrawal, Int. J. Mol. Sci. 2022, 23, 12012.

[33]

D.Yerabolu, A.Weiss, B.Kojonazarov, M.Boehm, B. C.Schlueter, C.Ruppert, A.Günther, D.Jonigk, F.Grimminger, H.-A.Ghofrani, W.Seeger, N.Weissmann, R. T.Schermuly, Am. J. Respir. Cell Mol. Biol. 2021, 64, 100.

[34]

P.-L.Chi, C.-C.Cheng, C.-C.Hung, M.-T. Wang, H.-Y.Liu, M.-W.Ke, M.-C.Shen, K.-C.Lin, S.-H. Kuo, P.-P.Hsieh, S.-R.Wann, W.-C.Huang, Int. J. Biol. Sci. 2022, 18, 331.

[35]

E.van der Veer, C.Ho, C.O’Neil, N.Barbosa, R.Scott, S. P.Cregan, J. G. Pickering, J. Biol. Chem. 2007, 282, 10841.

[36]

N. M.Borradaile, J. G. Pickering, Aging Cell 2009, 8, 100.

[37]

X.Sun, B. L.Sun, A.Babicheva, R. Vanderpool, R. C.Oita, N.Casanova, H.Tang, A.Gupta, H. Lynn, G.Gupta, F.Rischard, S.Sammani, C. L.Kempf, L.Moreno-Vinasco, M. Ahmed, S. M.Camp, J.Wang, A. A.Desai, J. X.-J.Yuan, J. G. N.Garcia, Am. J. Respir. Cell Mol. Biol. 2020, 63, 92.

[38]

Y.Li, Y.Zhang, B.Dorweiler, D. Cui, T.Wang, C. W.Woo, C. S.Brunkan, C.Wolberger, S.Imai, I.Tabas, J. Biol. Chem. 2008, 283, 34833.

[39]

P.Wang, W.-L.Li, J.-M.Liu, C.-Y. Miao, J. Cardiovasc. Pharmacol. 2016, 67, 474.

[40]

A.Sica, L.Strauss, F. M.Consonni, C.Travelli, A.Genazzani, C.Porta, Cytokine Growth Factor Rev. 2017, 35, 27.

[41]

B.Bermudez, T. B.Dahl, I.Medina, M. Groeneweg, S.Holm, S.Montserrat-de la Paz, M.Rousch, J.Otten, V.Herias, L. M. Varela, T.Ranheim, A.Yndestad, A.Ortega-Gomez, R.Abia, L.Nagy, P.Aukrust, F. J. G.Muriana, B.Halvorsen, E. A. L. Biessen, Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1157.

[42]

V.Audrito, S.Serra, D.Brusa, F. Mazzola, F.Arruga, T.Vaisitti, M.Coscia, R.Maffei, D.Rossi, T.Wang, G.Inghirami, M. Rizzi, G.Gaidano, J. G. N.Garcia, C.Wolberger, N.Raffaelli, S.Deaglio, Blood 2015, 125, 111.

RIGHTS & PERMISSIONS

2024 The Author(s). Interdisciplinary Medicine published by Wiley-VCH GmbH on behalf of Nanfang Hospital, Southern Medical University.

AI Summary AI Mindmap
PDF

341

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/