Tape-casting electrode architecture permits low-temperature manufacturing of all-solid-state thin-film microbatteries

Bingyuan Ke , Congcong Zhang , Shoulin Cheng , Wangyang Li , Renming Deng , Hong Zhang , Jie Lin , Qingshui Xie , Baihua Qu , Dong-Liang Peng , Xinghui Wang

Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (4) : 621 -631.

PDF (4376KB)
Interdisciplinary Materials ›› 2024, Vol. 3 ›› Issue (4) : 621 -631. DOI: 10.1002/idm2.12174
RESEARCH ARTICLE

Tape-casting electrode architecture permits low-temperature manufacturing of all-solid-state thin-film microbatteries

Author information +
History +
PDF (4376KB)

Abstract

Along with the constantly evolving functional microsystems toward more diversification, the more rigorous design deliberation of pursuing higher mass-loading of electrode materials and low-temperature fabrication compatibility have imposed unprecedented demand on integrable all-solid-state thin-film microbatteries. While the classic thin-film intercalation cathode prepared by vacuum-based techniques inevitably encountered a post-annealing process, tape-casting technologies hold great merits both in terms of high-mass loading and low-temperature processing. In this work, a novel microbattery configuration is developed by the combination of traditional tape-casting thick electrodes and sputtered inorganic thin-film solid electrolytes (∼3 µm lithium phosphorus oxynitride). Enabled by physically pressed or vapor-deposited Li as an anode, solid-state batteries with tape-casted LiFePO4 electrodes exhibit outstanding cyclability and stability. To meet integration requirements, LiFePO4/LiPON/Si microbatteries were successfully fabricated at low temperatures and found to achieve a wide operating temperature range. This novel configuration has good prospects in promoting the thin-film microbattery enabling a paradigm shift and satisfying diversified requirements.

Keywords

all-solid-state batteries / lithium phosphorus oxynitride / on-chip integration / silicon anodes / tape-casting electrodes

Cite this article

Download citation ▾
Bingyuan Ke, Congcong Zhang, Shoulin Cheng, Wangyang Li, Renming Deng, Hong Zhang, Jie Lin, Qingshui Xie, Baihua Qu, Dong-Liang Peng, Xinghui Wang. Tape-casting electrode architecture permits low-temperature manufacturing of all-solid-state thin-film microbatteries. Interdisciplinary Materials, 2024, 3(4): 621-631 DOI:10.1002/idm2.12174

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhu Y, Gonzalez-Rosillo JC, Balaish M, Hood ZD, Kim KJ, Rupp JLM. Lithium-film ceramics for solid-state lithionic devices. Nat Rev Mater. 2021;6:313-331.

[2]

Xia Q, Zan F, Zhang Q, et al. All-solid-state thin film lithium/lithium-ion microbatteries for powering the Internet of things. Adv Mater. 2023;35:2200538.

[3]

Pearse A, Schmitt T, Sahadeo E, et al. Three-dimensional solid-state lithium-ion batteries fabricated by conformal vapor-phase chemistry. ACS Nano. 2018;12:4286-4294.

[4]

Moitzheim S, Put B, Vereecken PM. Advances in 3d thin-film Li-ion batteries. Adv Mater Interfaces. 2019;6:1900805.

[5]

Wang Y, Sun L, Xiao D, et al. Silicon-based 3d all-solid-state micro-supercapacitor with superior performance. ACS Appl Mater Interfaces. 2020;12:43864-43875.

[6]

Ke B, Cheng S, Zhang C, et al. Low-temperature flexible integration of all-solid-state thin-film lithium batteries enabled by spin-coating electrode architecture. Adv Energy Mater. 2024;14:2303757.

[7]

Zheng S, Wu Z-S, Zhou F, et al. All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance. Nano Energy. 2018;51:613-620.

[8]

Zhou C, Dong C, Wang W, et al. An ultrathin and crack-free metal-organic framework film for effective polysulfide inhibition in lithium–sulfur batteries. Interdiscip Mater. 2024;3:306-315.

[9]

Zheng S, Shi X, Das P, Wu ZS, Bao X. The road towards planar microbatteries and micro-supercapacitors: from 2d to 3d device geometries. Adv Mater. 2019;31:1900583.

[10]

Hallot M, Demortière A, Roussel P, et al. Sputtered LiMn1.5Ni0.5O4 thin films for Li-ion micro-batteries with high energy and rate capabilities. Energy Storage Mater. 2018;15:396-406.

[11]

Matsuda Y, Kuwata N, Kawamura J. Thin-film lithium batteries with 0.3–30 µm thick LiCoO2 films fabricated by high-rate pulsed laser deposition. Solid State Ion. 2018;320:38-44.

[12]

Labyedh N, Mattelaer F, Detavernier C, Vereecken PM. 3D LiMn2O4 thin-film electrodes for high rate all solid-state lithium and Li-ion microbatteries. J Mater Chem A. 2019;7:18996-19007.

[13]

Hallot M, Nikitin V, Lebedev OI, et al. 3D LiMn2O4 thin film deposited by ALD: a road toward high-capacity electrode for 3D Li-ion microbatteries. Small. 2022;18:2107054.

[14]

Ke B, Wang X, Cheng S, et al. Ultrahigh-power iron oxysulfide thin films for microbatteries. Sci China Mater. 2023;66:118-126.

[15]

Li L, Liu S, Zhou H, Lei Q, Qian K. All solid-state thin-film lithium-ion battery with Ti/ZnO/LiPON/LiMn2O4/Ti structure fabricated by magnetron sputtering. Mater Lett. 2018;216:135-138.

[16]

Zhu Z, Kan R, Hu S, et al. Recent advances in high-performance microbatteries: construction, application, and perspective. Small. 2020;16:2003251.

[17]

Xia Q, Ni M, Chen M, Xia H. Low-temperature synthesized self-supported single-crystalline LiCoO2 nanoflake arrays as advanced 3D cathodes for flexible lithium-ion batteries. J Mater Chem A. 2019;7:6187-6196.

[18]

Xia Q, Zhang Q, Sun S, et al. Tunnel intergrowth LixMnO2 nanosheet arrays as 3D cathode for high-performance all-solid-state thin film lithium microbatteries. Adv Mater. 2021;33:2003524.

[19]

Gockeln M, Glenneberg J, Busse M, Pokhrel S, Mädler L, Kun R. Flame aerosol deposited Li4Ti5O12 layers for flexible, thin film all-solid-state Li-ion batteries. Nano Energy. 2018;49:564-573.

[20]

Chen X, Sastre J, Rumpel M, et al. Photonic methods for rapid crystallization of LiMn2O4 cathodes for solid-state thin-film batteries. J Power Sources. 2021;495:229424.

[21]

Deng R, Ke B, Xie Y, et al. All-solid-state thin-film lithium-sulfur batteries. Nano Micro Lett. 2023;15:73.

[22]

Susantyoko RA, Wang X, Sun L, Sasangka W, Fitzgerald E, Zhang Q. Influences of annealing on lithium-ion storage performance of thick germanium film anodes. Nano Energy. 2015;12:521-527.

[23]

Randau S, Weber DA, Kötz O, et al. Benchmarking the performance of all-solid-state lithium batteries. Nat Energy. 2020;5:259-270.

[24]

Guo Y, Jiang Y, Zhang Q, Wan D, Huang C. Directional LiFePO4 cathode structure by freeze tape casting to improve lithium ion diffusion kinetics. J Power Sources. 2021;506:230052.

[25]

Chaturvedi P, Kanagaraj AB, Alhammadi A, Al Shibli H, Choi DS. Fabrication of PVDF-HFP-based microporous membranes by the tape casting method as a separator for flexible Li-ion batteries. Bull Mater Sci. 2021;44:161.

[26]

Xie Y, Zheng W, Ao J, et al. Multifunctional Ni-doped CoSe2 nanoparticles decorated bilayer carbon structures for polysulfide conversion and dendrite-free lithium toward high-performance Li-S full cell. Energy Storage Mater. 2023;62:102925.

[27]

Xie Y, Ao J, Zhang L, et al. Multi-functional bilayer carbon structures with micrometer-level physical encapsulation as a flexible cathode host for high-performance lithium-sulfur batteries. Chem Eng J. 2023;451:139017.

[28]

Zhang S, Liang T, Wang D, et al. A stretchable and safe polymer electrolyte with a protecting-layer strategy for solid-state lithium metal batteries. Adv Sci. 2021;8:2003241.

[29]

Xiao C-F, Kim JH, Cho S-H, et al. Ensemble design of electrode–electrolyte interfaces: toward high-performance thin-film all-solid-state Li–metal batteries. ACS Nano. 2021;15:4561-4575.

[30]

Liu Y, Yu W-B, Xu B-X. Impedance modelling of all-solid-state thin film batteries: influence of the reaction kinetics. J Mater Chem A. 2022;10:313-325.

[31]

Glenneberg J, Kasiri G, Bardenhagen I, La Mantia F, Busse M, Kun R. Investigations on morphological and electrochemical changes of all-solid-state thin film battery cells under dynamic mechanical stress conditions. Nano Energy. 2019;57:549-557.

[32]

Larfaillou S, Guy-Bouyssou D, Le Cras F, Franger S. Comprehensive characterization of all-solid-state thin films commercial microbatteries by electrochemical impedance spectroscopy. J Power Sources. 2016;319:139-146.

[33]

Shimizu R, Cheng D, Weaver JL, et al. Unraveling the stable cathode electrolyte interface in all solid-state thin-film battery operating at 5 V. Adv Energy Mater. 2022;12:2201119.

[34]

Aribia A, Sastre J, Chen X, et al. Unlocking stable multi-electron cycling in NCM811 thin-films between 1.5–4.7 V. Adv Energy Mater. 2022;12:2201750.

[35]

Wang C, Deng T, Fan X, et al. Identifying soft breakdown in all-solid-state lithium battery. Joule. 2022;6:1770-1781.

[36]

Xu L, Lu Y, Zhao CZ, et al. Toward the scale-up of solid-state lithium metal batteries: the gaps between lab-level cells and practical large-format batteries. Adv Energy Mater. 2021;11:2002360.

[37]

Kim KJ, Balaish M, Wadaguchi M, Kong L, Rupp JLM. Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv Energy Mater. 2021;11:2002689.

[38]

Xu L, Li J, Deng W, et al. Garnet solid electrolyte for advanced all-solid-state Li batteries. Adv Energy Mater. 2021;11:2000648.

[39]

Shen C, Yan M, Liao X, et al. Nanotrench superfilling facilitates embedded lithium anode for high-areal-capacity solid-state batteries. ACS Nano. 2024;18:5068-5078.

[40]

Banerjee A, Wang X, Fang C, Wu EA, Meng YS. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev. 2020;120:6878-6933.

[41]

Cheng D, Wynn TA, Wang X, et al. Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy. Joule. 2020;4:2484-2500.

[42]

Westover AS, Sacci RL, Dudney N. Electroanalytical measurement of interphase formation at a Li metal–solid electrolyte interface. ACS Energy Lett. 2020;5:3860-3867.

[43]

Westover AS, Dudney NJ, Sacci RL, Kalnaus S. Deposition and confinement of Li metal along an artificial lipon–lipon interface. ACS Energy Lett. 2019;4:651-655.

[44]

Yu Y, Gong M, Dong C, Xu X. Thin-film deposition techniques in surface and interface engineering of solid-state lithium batteries. Next Nanotechnol. 2023;3-4:100028.

[45]

Wu W, Luo W, Huang Y. Less is more: a perspective on thinning lithium metal towards high-energy-density rechargeable lithium batteries. Chem Soc Rev. 2023;52:2553-2572.

[46]

Cras FL, Pecquenard B, Dubois V, Phan VP, Guy-Bouyssou D. All-solid-state lithium-ion microbatteries using silicon nanofilm anodes: high performance and memory effect. Adv Energy Mater. 2015;5:1501061.

[47]

Huang Y, Shao B, Wang Y, Han F. Solid-state silicon anode with extremely high initial Coulombic efficiency. Energy Environ Sci. 2023;16:1569-1580.

[48]

Cao Z, Zheng X, Zhou M, et al. Electrolyte solvation engineering toward high-rate and low-temperature silicon-based batteries. ACS Energy Lett. 2022;7:3581-3592.

[49]

Cao D, Sun X, Li Y, Anderson A, Lu W, Zhu H. Long-cycling sulfide-based all-solid-state batteries enabled by electrochemo-mechanically stable electrodes. Adv Mater. 2022;34:2200401.

[50]

Wang X, Sun L, Susantyoko RA, Zhang Q. A hierarchical 3D carbon nanostructure for high areal capacity and flexible lithium ion batteries. Carbon. 2016;98:504-509.

[51]

Tan DHS, Chen Y-T, Yang H, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science. 2021;373:1494-1499.

[52]

Cangaz S, Hippauf F, Reuter FS, et al. Enabling high-energy solid-state batteries with stable anode interphase by the use of columnar silicon anodes. Adv Energy Mater. 2020;10:2001320.

[53]

Chen C, Oudenhoven JFM, Danilov DL, et al. Origin of degradation in Si-based all-solid-state Li-ion microbatteries. Adv Energy Mater. 2018;8:1801430.

[54]

Sepúlveda A, Criscuolo F, Put B, Vereecken PM. Effect of high temperature LiPON electrolyte in all solid state batteries. Solid State Ionics. 2019;337:24-32.

[55]

Li D, Ma Z, Xu J, Li Y, Xie K. High temperature property of all-solid-state thin film lithium battery using LiPON electrolyte. Mater Lett. 2014;134:237-239.

[56]

Wu J, Yuan L, Zhang W, Li Z, Xie X, Huang Y. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ Sci. 2021;14:12-36.

[57]

Doux JM, Nguyen H, Tan DHS, et al. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries. Adv Energy Mater. 2020;10:1903253.

[58]

Li J, Ma C, Chi M, et al. Solid electrolyte: the key for high-voltage lithium batteries. Adv Energy Mater. 2014;5:1401408.

RIGHTS & PERMISSIONS

2024 The Authors. Interdisciplinary Materials published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF (4376KB)

256

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/