Natural Regeneration Outperforms Active Restoration in Enhancing Biodiversity and Biomass Along an Altitudinal Gradient in Chinese Savanna Ecosystems

Han Zhang , Boqin Zheng , Jie Zhang , Guojing Wen , Bo Tian , Defeng Feng , Chaolei Yang , Mingda Zhang , Yongyu Sun , Qinghai Song , Yanqiang Jin

Integrative Conservation ›› 2025, Vol. 4 ›› Issue (3) : 491 -502.

PDF
Integrative Conservation ›› 2025, Vol. 4 ›› Issue (3) : 491 -502. DOI: 10.1002/inc3.70023
RESEARCH ARTICLE

Natural Regeneration Outperforms Active Restoration in Enhancing Biodiversity and Biomass Along an Altitudinal Gradient in Chinese Savanna Ecosystems

Author information +
History +
PDF

Abstract

The decline in biodiversity and the reduction of carbon sinks resulting from ecosystem degradation have emerged as significant global challenges. The impact of passive and active restoration on biodiversity and carbon sinks has been well studied across biomes, but remains understudied in degraded savannas, especially regarding long-term outcomes. This study examines how species composition, biodiversity, and biomass accumulation in herbaceous communities respond to different restoration strategies across an altitudinal gradient in the degraded savannas of southwestern China. Fenced reserves significantly increased average height, cover, diversity, and biomass of herbaceous communities across elevation gradients, with a shift in species dominance toward Eulaliopsis binata. Acacia confusa forest increased herbaceous cover at low elevations and enhanced diversity across the gradient, whereas Leucaena leucocephala forest increased cover at high elevations but consistently reduced diversity at all elevations, leading to a single-species dominance. Both active restoration treatments resulted in lower herbaceous biomass compared to natural regeneration (fenced reserves). These results suggest that natural regeneration more effectively supports both biodiversity and biomass accumulation across elevation zones, while active restoration exhibits altitude-dependent efficacy and limited biomass accumulation capacity. This study provides a foundation for selecting context-appropriate restoration approaches to enhance biodiversity and carbon storage, and supports the optimization of ecological restoration strategies and forest management practices in savanna ecosystems.

Keywords

biomass allocation / community dynamics / dry-hot valley / plant functional groups

Cite this article

Download citation ▾
Han Zhang, Boqin Zheng, Jie Zhang, Guojing Wen, Bo Tian, Defeng Feng, Chaolei Yang, Mingda Zhang, Yongyu Sun, Qinghai Song, Yanqiang Jin. Natural Regeneration Outperforms Active Restoration in Enhancing Biodiversity and Biomass Along an Altitudinal Gradient in Chinese Savanna Ecosystems. Integrative Conservation, 2025, 4(3): 491-502 DOI:10.1002/inc3.70023

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arthan, W., L. T. Dunning, G. Besnard, et al. 2021. “Complex Evolutionary History of Two Ecologically Significant Grass Genera, Themeda and Heteropogon (Poaceae: Panicoideae: Andropogoneae).” Botanical Journal of the Linnean Society 196: 437–455. https://doi.org/10.1093/botlinnean/boab008.

[2]

Atkinson, J., L. A. Brudvig, M. Mallen-Cooper, S. Nakagawa, A. T. Moles, and S. P. Bonser. 2022. “Terrestrial Ecosystem Restoration Increases Biodiversity and Reduces Its Variability, but Not to Reference Levels: A Global Meta-Analysis.” Ecology Letters 25: 1725–1737. https://doi.org/10.1111/ele.14025.

[3]

Buitenwerf, R., A. M. Swemmer, and M. J. S. Peel. 2011. “Long-Term Dynamics of Herbaceous Vegetation Structure and Composition in Two African Savanna Reserves.” Journal of Applied Ecology 48: 238–246. https://doi.org/10.1111/j.1365-2664.2010.01895.x.

[4]

Cai, J., X. Pan, Y. Xiao, et al. 2024. “Below-Ground Root Nutrient-Acquisition Strategies Are More Sensitive to Long-Term Grazing Than Above-Ground Leaf Traits Across a Soil Nutrient Gradient.” Functional Ecology 38: 1475–1485. https://doi.org/10.1111/1365-2435.14565.

[5]

Campbell, S., W. Vogler, D. Brazier, J. Vitelli, and S. Brooks. 2019. “Weed Leucaena and Its Significance, Implications and Control.” Tropical Grasslands-Forrajes Tropicales 7: 280–289. https://doi.org/10.17138/tgft(7)280-289.

[6]

Cava, M. G. B., N. A. L. Pilon, M. C. Ribeiro, and G. Durigan. 2018. “Abandoned Pastures Cannot Spontaneously Recover the Attributes of Old-Growth Savannas.” Journal of Applied Ecology 55: 1164–1172. https://doi.org/10.1111/1365-2664.13046.

[7]

Charles-Dominique, T., G. F. Midgley, K. W. Tomlinson, and W. J. Bond. 2018. “Steal the Light: Shade vs Fire Adapted Vegetation in Forest-Savanna Mosaics.” New Phytologist 218: 1419–1429. https://doi.org/10.1111/nph.15117.

[8]

Chen, C., T. Park, X. Wang, et al. 2019. “China and India Lead in Greening of the World Through Land-Use Management.” Nature Sustainability 2: 122–129. https://doi.org/10.1038/s41893-019-0220-7.

[9]

Chikorowondo, G., J. Muvengwi, M. Mbiba, and E. Gandiwa. 2017. “Influence of Abandoned Cattle Enclosures on Plant Assemblages and Herbivory in a Semi-Arid Savanna.” Ecological Research 32: 1023–1033. https://doi.org/10.1007/s11284-017-1522-8.

[10]

Deng, J., S. Fang, X. Fang, et al. 2023. “Forest Understory Vegetation Study: Current Status and Future Trends.” Forestry Research 3: 6. https://doi.org/10.48130/FR-2023-0006.

[11]

Dobson, A., G. Hopcraft, S. Mduma, et al. 2022. “Savannas Are Vital but Overlooked Carbon Sinks.” Science 375: 392. https://doi.org/10.1126/science.abn4482.

[12]

Dudley, N., L. Eufemia, M. Fleckenstein, M. E. Periago, I. Petersen, and J. F. Timmers. 2020. “Grasslands and Savannahs in the UN Decade on Ecosystem Restoration.” Restoration Ecology 28: 1313–1317. https://doi.org/10.1111/rec.13272.

[13]

Edwards, D. P., and G. R. Cerullo. 2024. “Biodiversity Is Central for Restoration.” Current Biology 34: R371–R379. https://doi.org/10.1016/j.cub.2024.02.032.

[14]

Evans, A. W., B. D. Woodward, A. C. Wyckoff, et al. 2023. “Livestock Grazing Is an Effective Conservation Tool for Californian Coastal Grassland Ecology: An Eight-Year Study on Vegetation Dynamics.” Applied Vegetation Science 26: e12736. https://doi.org/10.1111/avsc.12736.

[15]

Haddad, T. M., N. A. L. Pilon, G. Durigan, and R. A. G. Viani. 2021. “Restoration of the Brazilian Savanna After Pine Silviculture: Pine Clearcutting Is Effective but Not Enough.” Forest Ecology and Management 491: 119158. https://doi.org/10.1016/j.foreco.2021.119158.

[16]

Holl, K. D., and T. M. Aide. 2011. “When and Where to Actively Restore Ecosystems?” Forest Ecology and Management 261: 1558–1563. https://doi.org/10.1016/j.foreco.2010.07.004.

[17]

Hutley, L. B., and S. A. Setterfield. 2019. “ Savanna.” In Encyclopedia of Ecology (Second Edition), edited by B. Fath, 623–633. Elsevier.

[18]

IPBES. 2019. Global Assessment Report on Biodiversity And Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, IPBES. edited by Brondizio, J. S., S. Díaz and H. T. Ngo. IPBES Secretariat.

[19]

Jin, Y., J. Li, C. Liu, et al. 2019. “Precipitation Reduction Alters Herbaceous Community Structure and Composition in a Savanna.” Journal of Vegetation Science 30: 821–831. https://doi.org/10.1111/jvs.12766.

[20]

Jin, Y., C. Liu, S. S. Qian, et al. 2022. “Large-Scale Patterns of Understory Biomass and Its Allocation Across China's Forests.” Science of the Total Environment 804: 150169. https://doi.org/10.1016/j.scitotenv.2021.150169.

[21]

Jin, Y. Q., J. Li, Y. T. Liu, et al. 2017. “Effects of Exclosure on Species Diversity and Biomass Allocation of Understory Vegetation of Savanna Ecosystem in Yuanjiang Dry-Hot Valley, Yunnan, Southwest China.” Chinese Journal of Ecology 36: 343–348. https://doi.org/10.13292/j.1000-4890.201702.025.

[22]

Jin, Z. Z., and X. K. Ou. 2000. Vegetations in the Dry-Hot Valleys: Yuanjiang, Nujiang, Jinshajiang, Lancangjiang River. Yunnan University Press.

[23]

Kroepfl, A. I., G. A. Cecchi, N. M. Villasuso, and R. A. Distel. 2013. “Degradation and Recovery Processes in Semi-Arid Patchy Rangelands of Northern Patagonia, Argenyina.” Land Degradation & Development 24: 393–399. https://doi.org/10.1002/ldr.1145.

[24]

Lehmann, C. E. R., S. A. Archibald, W. A. Hoffmann, and W. J. Bond. 2011. “Deciphering the Distribution of the Savanna Biome.” New Phytologist 191: 197–209. https://doi.org/10.1111/j.1469-8137.2011.03689.x.

[25]

Lenth, R. V. 2021. “emmeans: Estimated Marginal Means, Aka Least-Squares Means. R package version 1.5.5-1,” https://CRAN.R-project.org/package=emmeans.

[26]

Lewis, K., F. V. Barros, P. W. Moonlight, et al. 2023. “Identifying Hotspots for Ecosystem Restoration Across Heterogeneous Tropical Savannah-Dominated Regions.” Philosophical Transactions of the Royal Society, B: Biological Sciences 378: 20210075. https://doi.org/10.1098/rstb.2021.0075.

[27]

Li, B. V., and B. Jiang. 2021. “Responses of Forest Structure, Functions, and Biodiversity to Livestock Disturbances: A Global Meta-Analysis.” Global Change Biology 27: 4745–4757. https://doi.org/10.1111/gcb.15781.

[28]

Liang, M., N. G. Smith, J. Chen, et al. 2021. “Shifts in Plant Composition Mediate Grazing Effects on Carbon Cycling in Grasslands.” Journal of Applied Ecology 58: 518–527. https://doi.org/10.1111/1365-2664.13824.

[29]

Linder, H. P., C. E. R. Lehmann, S. Archibald, C. P. Osborne, and D. M. Richardson. 2018. “Global Grass (Poaceae) Success Underpinned by Traits Facilitating Colonization, Persistence and Habitat Transformation.” Biological Reviews 93: 1125–1144. https://doi.org/10.1111/brv.12388.

[30]

Monsarrat, S., N. Fernández, H. M. Pereira, and J.-C. Svenning. 2022. “Supporting the Restoration of Complex Ecosystems Requires Long-Term and Multi-Scale Perspectives.” Ecography 2022: e06354. https://doi.org/10.1111/ecog.06354.

[31]

R Core Team. 2021. “R: A Language and Environment for Statistical Computing. Version 4.0.5.” R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

[32]

Salete Capellesso, E., A. Cequinel, R. Marques, T. Luisa Sausen, C. Bayer, and M. C. M. Marques. 2021. “Co-Benefits in Biodiversity Conservation and Carbon Stock During Forest Regeneration in a Preserved Tropical Landscape.” Forest Ecology and Management 492: 119222. https://doi.org/10.1016/j.foreco.2021.119222.

[33]

Sharma, P., A. Kaur, D. R. Batish, S. Kaur, and B. S. Chauhan. 2022. “Critical Insights Into the Ecological and Invasive Attributes of Leucaena Leucocephala, a Tropical Agroforestry Species.” Frontiers in Agronomy 4: 890992. https://doi.org/10.3389/fagro.2022.890992.

[34]

Shi, X., C. Fan, C. Li, S. Zhao, B. Sun, and M. Gui. 2015. “Soil Hydrological Characteristics of Different Grazing System Grassland in Hulun-Beier.” Journal of Soil and Water Conservation 29: 145–149. 214. https://doi.org/10.13870/j.cnki.stbcxb.2015.02.027.

[35]

Springer, J. D., M. T. Stoddard, K. C. Rodman, et al. 2024. “Increases in Understory Plant Cover and Richness Persist Following Restoration Treatments in Pinus ponderosa Forests.” Journal of Applied Ecology 61: 25–35. https://doi.org/10.1111/1365-2664.14538.

[36]

Strassburg, B. B. N., A. Iribarrem, H. L. Beyer, et al. 2020. “Global Priority Areas for Ecosystem Restoration.” Nature 586: 724–729. https://doi.org/10.1038/s41586-020-2784-9.

[37]

Tessema, Z. K., W. F. de Boer, R. M. T. Baars, and H. H. T. Prins. 2011. “Changes in Soil Nutrients, Vegetation Structure and Herbaceous Biomass in Response to Grazing in a Semi-Arid Savanna of Ethiopia.” Journal of Arid Environments 75: 662–670. https://doi.org/10.1016/j.jaridenv.2011.02.004.

[38]

Tulloch, A. I. T., A. Healy, J. Silcock, et al. 2023. “Long-Term Livestock Exclusion Increases Plant Richness and Reproductive Capacity in Arid Woodlands.” Ecological Applications 33: e2909. https://doi.org/10.1002/eap.2909.

[39]

Wagner, T. C., J. Richter, D. F. Joubert, and C. Fischer. 2018. “A Dominance Shift in Arid Savanna: An Herbaceous Legume Outcompetes Local C4 Grasses.” Ecology and Evolution 8: 6779–6787. https://doi.org/10.1002/ece3.4188.

[40]

Yang, L., N. Liu, H. Ren, and J. Wang. 2009. “Facilitation by Two Exotic Acacia: Acacia auriculiformis and Acacia mangium as Nurse Plants in South China.” Forest Ecology and Management 257: 1786–1793. https://doi.org/10.1016/j.foreco.2009.01.033.

[41]

Yu, H., R. Gao, W. Yang, et al. 2022. “Carbon, Nitrogen, and Phosphorus Contents of Leaf, Root, and Soil and Their Relationships in Dominant Herbaceous Plants in Dry-Hot Valley.” Chinese Journal of Applied & Environmental Biology 28: 727–735. https://doi.org/10.19675/j.cnki.1006-687x.2021.01008.

[42]

Zerbo, I., K. Hahn, M. Bernhardt-Römermann, O. Ouédraogo, and A. Thiombiano. 2017. “Dispersal Potential of Herbaceous Species According to Climate, Land Use and Habitat Conditions in West African Savannah.” Bois & Forets Des Tropiques 332: 69–87. https://doi.org/10.19182/bft2017.332.a31334.

[43]

Zhang, X., X. Ni, P. Heděnec, et al. 2022. “Litter Facilitates Plant Development but Restricts Seedling Establishment During Vegetation Regeneration.” Functional Ecology 36: 3134–3147. https://doi.org/10.1111/1365-2435.14200.

[44]

Zhang, X., T. Xu, P. Tan, Y. Geng, H. Liu, and S. Xu. 2019. “Effect of Seasonal Grazing on Plant Community and Biomass of Alpine Steppe.” Acat Agriculturae Boreali-Occidentalis Sinica 28: 1576–1582. https://doi.org/10.7606/j.issn.1004-1389.2019.10.003.

[45]

Zhao, L., Z. Shi, G. He, L. He, W. Xi, and Q. Jiang. 2023. “Land Use Change and Landscape Ecological Risk Assessment Based on Terrain Gradients in Yuanmou Basin.” Land 12: 1759. https://doi.org/10.3390/land12091759.

[46]

Zuo, X., E. S. Gornish, S. E. Koerner, F. van der Plas, S. Wang, and M. Liang. 2023. “Dominant Species Determine Grazing Effects on the Stability of Herbaceous Community Production at Multiple Scales in Drylands.” Journal of Applied Ecology 60: 1917–1928. https://doi.org/10.1111/1365-2664.14469.

RIGHTS & PERMISSIONS

2025 The Author(s). Integrative Conservation published by John Wiley & Sons Australia, Ltd on behalf of Xishuangbanna Tropical Botanical Garden (XTBG).

AI Summary AI Mindmap
PDF

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/