Identification of Priority Areas for Conservation of Threatened Agamid Lizards of Sri Lanka Using Species Distribution Modeling

Iresha Wijerathne , Suranjan Karunarathna , Thilina Sursinghe , Dulan R. Vidanapathirana , Kanishka Ukuwela , Sriyani Wickramasinghe , Chaya Sarathchandra , Jagath Gunatilake , Aiwu Jiang , Eben Goodale , Suranjan Fernando

Integrative Conservation ›› 2025, Vol. 4 ›› Issue (2) : 188 -204.

PDF
Integrative Conservation ›› 2025, Vol. 4 ›› Issue (2) : 188 -204. DOI: 10.1002/inc3.70019
RESEARCH ARTICLE

Identification of Priority Areas for Conservation of Threatened Agamid Lizards of Sri Lanka Using Species Distribution Modeling

Author information +
History +
PDF

Abstract

To ensure the survival of threatened species, identifying biodiversity hotspots is essential for determining where and how conservation should be prioritized. Sri Lanka along with Western Ghats of India is a global biodiversity hotspot, with reptiles among its most threatened taxa. Agamid lizards in Sri Lanka are both threatened and evolutionarily distinct, with 19 of 22 species endemic to the island. We assessed the distribution of 14 threatened agamid lizard species using Species Distribution Modeling (SDM). The generated distribution maps were used to identify highly diverse target areas for agamid conservation, both within and outside protected areas. We assigned conservation priority ranks for species using different criteria such as IUCN status, the number of occurrence records, and the size of the estimated range. Our results indicated that agamid hotspots are primarily concentrated in the wet zone of Sri Lanka; specifically, Sinharaja Forest Reserve, the Peak Wilderness Sanctuary, and the Knuckles Mountain Range emerged as high priority conservation targets. Although all species targeted in our SDM had some portion of their range within protected areas, over 40% of high-priority agamid habitats remain unprotected. We advocate for the expanded use of SDM for hotspot identification and conservation planning, particularly for threatened and endangered species with poorly documented population status and geographic distribution.

Keywords

agamid lizards / conservation priority / land-use patterns / protected areas / species diversity / threatened species

Cite this article

Download citation ▾
Iresha Wijerathne, Suranjan Karunarathna, Thilina Sursinghe, Dulan R. Vidanapathirana, Kanishka Ukuwela, Sriyani Wickramasinghe, Chaya Sarathchandra, Jagath Gunatilake, Aiwu Jiang, Eben Goodale, Suranjan Fernando. Identification of Priority Areas for Conservation of Threatened Agamid Lizards of Sri Lanka Using Species Distribution Modeling. Integrative Conservation, 2025, 4(2): 188-204 DOI:10.1002/inc3.70019

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdelaal, M., M. Fois, G. Fenu, and G. Bacchetta. 2019. “Using MaxEnt Modeling to Predict the Potential Distribution of the Endemic Plant Rosa arabica Crép in Egypt.” Ecological Informatics 50: 68–75. https://doi.org/10.1016/j.ecoinf.2019.01.003.

[2]

Abeyarama, D. K., and S. S. Seneviratne. 2017. “Evolutionary Distinctness of Important Bird Areas (IBAs) of Sri Lanka: Do the Species-Rich Wet Zone Forests Safeguard Sri Lanka's Genetic Heritage?” Ceylon Journal of Science 46, no. 5: 89. https://doi.org/10.4038/cjs.v46i5.7456.

[3]

Acevedo, P., A. Jiménez-Valverde, J. M. Lobo, and R. Real. 2012. “Delimiting the Geographical Background in Species Distribution Modelling.” Journal of Biogeography 39, no. 8: 1383–1390. https://doi.org/10.1111/j.1365-2699.2012.02713.x.

[4]

Ahmadi, M., M. R. Hemami, M. Kaboli, and F. Shabani. 2023. “MaxEnt Brings Comparable Results When the Input Data Are Being Completed; Model Parameterization of Four Species Distribution Models.” Ecology and Evolution 13, no. 2: 1–13. https://doi.org/10.1002/ece3.9827.

[5]

Ashton, M. S., C. V. S. Gunatilleke, B. M. P. Singhakumara, and I. A. U. N. Gunatilleke. 2001. “Restoration Pathways for Rain Forest in Southwest Sri Lanka: A Review of Concepts and Models.” Forest Ecology and Management 154, no. 3: 409–430. https://doi.org/10.1016/S0378-1127(01)00512-6.

[6]

Aukema, J. E., N. G. Pricope, G. J. Husak, and D. Lopez-Carr. 2017. “Biodiversity Areas Under Threat: Overlap of Climate Change and Population Pressures on the World's Biodiversity Priorities.” PLoS One 12, no. 1: e0170615. https://doi.org/10.1371/journal.pone.0170615.

[7]

Bahir, M. M., and T. D. Surasinghe. 2005. “A Conservation Assessment of the Sri Lankan Agamidae (Reptilia: Sauria).” Raffles Bulletin of Zoology 12: 407–412.

[8]

Bambaradeniya, C. N. B., J. P. Edirisinghe, D. N. De Silva, C. V. S. Gunatilleke, K. B. Ranawana, and S. Wijekoon. 2004. “Biodiversity Associated With an Irrigated Rice Agro-Ecosystem in Sri Lanka.” Biodiversity and Conservation 13, no. 9: 1715–1753. https://doi.org/10.1023/B:BIOC.0000029331.92656.de.

[9]

Barbet-Massin, M., F. Jiguet, C. H. Albert, and W. Thuiller. 2012. “Selecting Pseudo Absences for Species Distribution Models: How, Where and How Many?” Methods in Ecology and Evolution 3, no. 2: 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x.

[10]

Böhm, M., B. Collen, J. E. M. Baillie, et al. 2013. “The Conservation Status of the World's Reptiles.” Biological Conservation 157: 372–385. https://doi.org/10.1016/j.biocon.2012.07.015.

[11]

Booth, T. H.2022. “Checking Bioclimatic Variables That Combine Temperature and Precipitation Data Before Their Use in Species Distribution Models.” Austral Ecology 47, no. 7: 1506–1514. https://doi.org/10.1111/aec.13234.

[12]

Brooks, M. E., K. Kristensen, K. J. van Benthem, et al. 2017. “Glmmtmb Balances Speed and Flexibility Among Packages for Zero-Inflated Generalized Linear Mixed Modeling.” R Journal 9, no. 2: 378–400. https://doi.org/10.32614/rj-2017-066.

[13]

Brown, J. L., J. R. Bennett, and C. M. French. 2017. “SDMtoolbox 2.0: The Next Generation Python-Based GIS Toolkit for Landscape Genetic, Biogeographic and Species Distribution Model Analyses.” PeerJ 5, no. 12: e4095. https://doi.org/10.7717/peerj.4095.

[14]

Burt, T., and K. Weerasinghe. 2014. “Rainfall Distributions in Sri Lanka in Time and Space: An Analysis Based on Daily Rainfall Data.” Climate 2, no. 4: 242–263. https://doi.org/10.3390/cli2040242.

[15]

Chokkalingam, U., D. M. Bhat, and E. Kalimantan. 2001. “Secondary Forests Associated With the Rehabilitation of Degraded Lands in Tropical Asia: A Synthesis Promotion for Sustainable Forest Management in.” Journal of Tropical Forest Science 13, no. 4: 816–831. https://cgspace.cgiar.org/items/a21418e1-e000-4c65-b3fa-48b73428c651.

[16]

Costa, G. C., C. Nogueira, R. B. Machado, and G. R. Colli. 2010. “Sampling Bias and the Use of Ecological Niche Modeling in Conservation Planning: A Field Evaluation in a Biodiversity Hotspot.” Biodiversity and Conservation 19, no. 3: 883–899. https://doi.org/10.1007/s10531-009-9746-8.

[17]

Cox, N., B. E. Young, P. Bowles, et al. 2022. “A Global Reptile Assessment Highlights Shared Conservation Needs of Tetrapods.” Nature 605, no. 7909: 285–290. https://doi.org/10.1038/s41586-022-04664-7.

[18]

Crowther, T. W., H. B. Glick, K. R. Covey, et al. 2015. “Mapping Tree Density at a Global Scale.” Nature 525: 201–205. https://doi.org/10.1038/nature14967.

[19]

Darbyshire, I., S. Anderson, A. Asatryan, et al. 2017. “Important Plant Areas: Revised Selection Criteria for a Global Approach to Plant Conservation.” Biodiversity and Conservation 26, no. 8: 1767–1800. https://doi.org/10.1007/s10531-017-1336-6.

[20]

Dayananda, B., S. B. Bezeng, S. Karunarathna, and R. A. Jeffree. 2021. “Climate Change Impacts on Tropical Reptiles: Likely Effects and Future Research Needs Based on Sri Lankan Perspectives.” Frontiers in Ecology and Evolution 9: 688723. https://doi.org/10.3389/fevo.2021.688723.

[21]

Deraniyagala, P. E. P. 1955. A Colored Atlas of Some Vertebrates From Ceylon. Ceylon Government Press.

[22]

Dunne, J. A., R. J. Williams, and N. D. Martinez. 2002. “Network Structure and Biodiversity Loss in Food Webs: Robustness Increases With Connectance.” Ecology Letters 5, no. 4: 558–567. https://doi.org/10.1046/j.1461-0248.2002.00354.x.

[23]

Eken, G., L. Bennun, T. M. Brooks, et al. 2004. “Key Biodiversity Areas as Site Conservation Targets.” Bioscience 54, no. 12: 1110–1118. https://doi.org/10.1641/0006-3568(2004)054[1110:KBAASC]2.0.CO;2.

[24]

Elith, J., C. H. Graham, R. P. Anderson, et al. 2006. “Novel Methods Improve Prediction of Species' Distributions From Occurrence Data.” Ecography 29, no. 2: 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x.

[25]

Erdelen, W.1988. “Forest Ecosystems and Nature Conservation in Sri Lanka.” Biological Conservation 43, no. 2: 115–135. https://doi.org/10.1016/0006-3207(88)90086-9.

[26]

Erdelen, W. R.2012. “Conservation of Biodiversity in a Hotspot: Sri Lanka's Amphibians and Reptiles.” Amphibian & Reptile Conservation 5, no. 2: 33–51.

[27]

Farr, T. G., P. A. Rosen, E. Caro, et al. 2007. “The Shuttle Radar Topography Mission.” Reviews of Geophysics 45, no. 2: RG2004. https://doi.org/10.1029/2005RG000183.

[28]

Feng, X., D. S. Park, C. Walker, A. T. Peterson, C. Merow, and M. Papeş. 2019. “A Checklist for Maximizing Reproducibility of Ecological Niche Models.” Nature Ecology & Evolution 3, no. 10: 1382–1395. https://doi.org/10.1038/s41559-019-0972-5.

[29]

Fernando, G. W. A. R., and P. N. Ranasinghe. 2009. “Dieback in Tropical Montane Forests of Sri Lanka: Anthropogenic or Natural Phenomenon?” Journal of Geological Society of Sri Lanka 13: 27–52.

[30]

Fick, S. E., and R. J. Hijmans. 2017. “WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas.” International Journal of Climatology 37, no. 12: 4302–4315. https://doi.org/10.1002/joc.5086.

[31]

Fielding, A. H., and J. F. Bell. 1997. “A Review of Methods for the Assessment of Prediction Errors in Conservation Presence/Absence Models.” Environmental Conservation 24, no. 1: 38–49. https://doi.org/10.1017/S0376892997000088.

[32]

Fishpool, L. D. C., and I. M. Evans. 2003. The Canadian Field-Naturalist (Vol. 117, 4). Biology and Wildlife Department, University of Alaska. https://doi.org/10.22621/cfn.v117i4.786.

[33]

Fourcade, Y., J. O. Engler, J. Secondi, and J. Secondi. 2014. “Mapping Species Distributions With MaxEnt Using a Geographically Biased Sample of Presence Data: A Performance Assessment of Methods for Correcting Sampling Bias.” PLoS One 9, no. 5: e97122. https://doi.org/10.1371/journal.pone.0097122.

[34]

Gafna, D. J., J. A. Obando, J. M. Kalwij, K. Dolos, and S. Schmidtlein. 2023. “Climate Change Impacts on the Availability of Anti-Malarial Plants in Kenya.” Climate Change Ecology 5, no. 1: 30–44. https://doi.org/10.1016/j.ecochg.2023.100070.

[35]

Gamage, S. N., D. K. Weerakoon, and A. Gunawardena. 2011. “Current Status of Vertebrate Diversity in Anthropogenic and Natural Ecosystems in South-western Sri Lanka.” Journal of the National Science Foundation of Sri Lanka 39, no. 4: 383–389. https://doi.org/10.4038/jnsfsr.v39i4.3886.

[36]

Gibson, C., A. de Silva, M. F. Tognelli, and S. Karunarathna. 2020. Assess to Plan: Conservation Action Planning for the Snakes and Lizards of Sri Lanka. IUCN Conservation Planning Specialist Group.

[37]

Goodale, E., S. W. Kotagama, T. R. S. Raman, et al. 2014. “The Response of Birds and Mixed-Species Bird Flocks to Human-Modified Landscapes in Sri Lanka and Southern India.” Forest Ecology and Management 329: 384–392. https://doi.org/10.1016/j.foreco.2013.08.022.

[38]

Gray, C. L., S. L. L. Hill, T. Newbold, et al. 2016. “Local Biodiversity Is Higher Inside Than Outside Terrestrial Protected Areas Worldwide.” Nature Communications 7: 12306. https://doi.org/10.1038/ncomms12306.

[39]

Greig-Smith, P. 1964. Quantitative Plant Ecology. Butterworths.

[40]

Guisan, A., and W. Thuiller. 2005. “Predicting Species Distribution: Offering More Than Simple Habitat Models.” Ecology Letters 8, no. 9: 993–1009. https://doi.org/10.1111/j.14610248.2005.00792.x.

[41]

Gunatilleke, C. V. S., and P. S. Ashton. 1987. “New Light on the Plant Geography of Ceylon. II. The Ecological Biogeography.” Journal of Biogeography 14, no. 4: 295–327. https://doi.org/10.2307/2844940.

[42]

Gunatilleke, N., S. Gunatilleke, and P. S. Ashton. 2017. “South-West Sri Lanka: A Floristic Refugium in South Asia.” Ceylon Journal of Science 46, no. 5: 65–78. https://doi.org/10.4038/cjs.v46i5.7454.

[43]

Gunatilleke, N., B. Madurapperuma, I. A. U. N. Gunatilleke, C. V. S. Gunatilleke, and M. A. A. B. Dilhan. 2005. “Plant Biogeography and Conservation of the South-Western Hill Forests of Sri Lanka.” Raffles Bulletin of Zoology 12: 9–22.

[44]

Gunatilleke, N., R. Pethiyagoda, and S. Gunatilleke. 2017. “Biodiversity of Sri Lanka.” Journal of National Science Foundation 36: 25–62. https://doi.org/10.4038/jnsfsr.v36i0.8047.

[45]

Hanski, I.2011. “Habitat Loss, the Dynamics of Biodiversity, and a Perspective on Conservation.” Ambio 40, no. 3: 248–255. https://doi.org/10.1007/s13280-011-0147-3.

[46]

Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. “Very High Resolution Interpolated Climate Surfaces for Global Land Areas.” International Journal of Climatology 25, no. 15: 1965–1978. https://doi.org/10.1002/joc.1276.

[47]

Hirzel, A. H., and G. Le Lay. 2008. “Habitat Suitability Modelling and Niche Theory.” Journal of Applied Ecology 45, no. 5: 1372–1381. https://doi.org/10.1111/j.1365-2664.2008.01524.x.

[48]

Hirzel, A. H., G. Le Lay, V. Helfer, C. Randin, and A. Guisan. 2006. “Evaluating the Ability of Habitat Suitability Models to Predict Species Presences.” Ecological Modelling 199, no. 2: 142–152. https://doi.org/10.1016/j.ecolmodel.2006.05.017.

[49]

Ishwar, N. M., R. Chellam, A. Kumar, and B. R. Noon. 2003. “The Response of Agamid Lizards to Rainforest Fragmentation in the Southern Western Ghats, India.” Conservation and Society 1, no. 2: 69–86.

[50]

Jayasekara, D., D. Mahaulpatha, E. Jayasekara, and A. De Silva. 2018. “Habitat Utilization of Endangered Rhino Horned Lizard (Ceratophora stoddartii) (Sauria: Agamidae) in the Horton Plains National Park, Sri Lanka.” Journal of Entomology and Zoology Studies 6, no. 4: 1544–1549.

[51]

Jeliazkov, A., Y. Gavish, C. J. Marsh, et al. 2022. “Sampling and Modelling Rare Species: Conceptual Guidelines for the Neglected Majority.” Global Change Biology 28, no. 12: 3754–3777. https://doi.org/10.1111/gcb.16114.

[52]

Johnson, C. J., and M. P. Gillingham. 2005. “An Evaluation of Mapped Species Distribution Models Used for Conservation Planning.” Environmental Conservation 32, no. 2: 117–128. https://doi.org/10.1017/S0376892905002171.

[53]

Johnston, G. R., M. S. Y. Lee, and T. D. Surasinghe. 2013. “Morphology and Allometry Suggest Multiple Origins of Rostral Appendages in Sri Lankan Agamid Lizards.” Journal of Zoology 289, no. 1: 1–9. https://doi.org/10.1111/j.1469-7998.2012.00962.x.

[54]

Karunarathna, D. M. S. S., and A. A. T. Amarasinghe. 2011. “Reptile Diversity of a Fragmented Lowland Rain Forest Patch in Kukulugala, Ratnapura District, Sri Lanka.” Taprobanica 2, no. 2: 86–94. https://doi.org/10.4038/tapro.v2i2.3146.

[55]

Karunarathna, D. M. S. S., and A. A. T. Amarasinghe. 2012. “Reptile Diversity in Beraliya Mukalana Proposed Forest Reserve, Galle District, Sri Lanka.” Taprobanica 4, no. 1: 20–26. https://doi.org/10.4038/tapro.v4i1.4378.

[56]

Karunarathna, S., N. A. Poyarkov, C. Amarasinghe, et al. 2020. “A New Species of the Genus Ceratophora Gray, 1835 (Reptilia: Agamidae) From a Lowland Rainforest in Sri Lanka, With Insights on Rostral Appendage Evolution in Sri Lankan Agamid Lizards.” Amphibian & Reptile Conservation 14, no. 3: 103–126. https://doi.org/10.5281/zenodo.13258697.

[57]

Kass, J. M., R. Muscarella, P. J. Galante, et al. 2021. “ENMeval 2.0: Redesigned for Customizable and Reproducible Modeling of Species’ Niches and Distributions.” Methods in Ecology and Evolution 12, no. 9: 1602–1608. https://doi.org/10.1111/2041-210X.13628.

[58]

Kottawa-Arachchi, J. D., and M. A. Wijeratne. 2017. “Climate Change Impacts on Biodiversity and Ecosystems in Sri Lanka: A Eeview.” Nature Conservation Research 2, no. 3: 2–22. https://doi.org/10.24189/ncr.2017.042.

[59]

Krebs, C. J. 1989. Ecological Methodology, 654. Harper and Row Publishers Inc.

[60]

Liu, C., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. “Selecting Thresholds of Occurrence in the Prediction of Species Distributions.” Ecography 28, no. 3: 385–393. https://doi.org/10.1111/j.0906-7590.2005.03957.x.

[61]

Lovejoy, T. E.2006. “Protected Areas: A Prism for a Changing World.” Trends in Ecology & Evolution 21, no. 6: 329–333. https://doi.org/10.1016/j.tree.2006.04.005.

[62]

Macey, J. R., J. A. Schulte, A. Larson, et al. 2000. “Evaluating Trans-Tethys Migration: An Example Using Acrodont Lizard Phylogenetics.” Systematic Biology 49, no. 2: 233–256. https://doi.org/10.1093/sysbio/49.2.233.

[63]

MacKenzie, D. I., and J. D. Nichols. 2004. “Occupancy as a Surrogate for Abundance Estimation.” Animal Biodiversity and Conservation, 27, no. 1: 461–467. https://doi.org/10.32800/abc.2004.27.0461.

[64]

Margules, C. R., and R. L. Pressey. 2000. “Systematic Conservation Planning.” Nature 405: 243–253. https://doi.org/10.1038/35012251.

[65]

McCoy, E. D., and S. S. Bell. 1991. Habitat Structure: The Evolution and Diversification of a Complex Topic. Integrative Biology Faculty and Staff Publications. https://doi.org/10.1007/978-94-011-3076-9_1.

[66]

Megía-Palma, R., L. Arregui, I. Pozo, et al. 2020. “Geographic Patterns of Stress in Insular Lizards Reveal Anthropogenic and Climatic Signatures.” Science of the Total Environment 749: 141655. https://doi.org/10.1016/j.scitotenv.2020.141655.

[67]

Mendes, P., S. J. E. Velazco, A. F. A. Andrade, and P. De Marco. 2020. “Dealing With Overprediction in Species Sistribution Models: How Adding Distance Constraints Can Improve Model Accuracy.” Ecological Modelling 431: 109180. https://doi.org/10.1016/j.ecolmodel.2020.109180.

[68]

Merow, C., M. J. Smith, and J. A. Silander. 2013. “A Practical Guide to MaxEnt for Modeling Species' Distributions: What It Does, and Why Inputs and Settings Matter.” Ecography 36, no. 10: 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x.

[69]

Miththapala, S.2016. “Conservation Revisited.” Ceylon Journal of Science 44, no. 2: 1–26. https://doi.org/10.4038/cjsbs.v44i2.7347.

[70]

MOE. 2012. The National Red List 2012 of Sri Lanka: Conservation Status of the Fauna and Flora. Ministry of Environment.

[71]

Muscarella, R., P. J. Galante, M. Soley-Guardia, et al. 2014. “ENMeval: An R Package for Conducting Spatially Independent Evaluations and Estimating Optimal Model Complexity for Maxent Ecological Niche Models.” Methods in Ecology and Evolution 5, no. 11: 1198–1205. https://doi.org/10.1111/2041-210X.12261.

[72]

Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, and J. Kent. 2000. “Biodiversity Hotspots for Conservation Priorities.” Nature 403, no. 6772: 853–858. https://doi.org/10.1038/35002501.

[73]

Neate-Clegg, M. H. C., and M. W. Tingley. 2023. “Building a Mechanistic Understanding of Climate-Driven Elevational Shifts in Birds.” PLoS Climate 2, no. 3: e0000174. https://doi.org/10.1371/journal.pclm.0000174.

[74]

Nekaris, K., A. Arnell, and M. Svensson. 2015. “Selecting a Conservation Surrogate Species for Small Fragmented Habitats Using Ecological Niche Modelling.” Animals 5, no. 1: 27–40. https://doi.org/10.3390/ani5010027.

[75]

Nichols, J. D., L. L. Bailey, A. F. O'Connell , et al. 2008. “Multi-Scale Occupancy Estimation and Modelling Using Multiple Detection Methods.” Journal of Applied Ecology 45, no. 5: 1321–1329. https://doi.org/10.1111/j.1365-2664.2008.01509.x.

[76]

Olson, D. M., and E. Dinerstein. 1998. “The Global 200: A Representation Approach to Conserving the Earth's Most Biologically Valuable Ecoregions.” Conservation Biology 12, no. 3: 502–515. https://doi.org/10.1046/j.1523-1739.1998.012003502.x.

[77]

Oro, D., M. Genovart, G. Tavecchia, M. S. Fowler, and A. Martínez-Abraín. 2013. “Ecological and Evolutionary Implications of Food Subsidies From Humans.” Ecology Letters 16, no. 12: 1501–1514. https://doi.org/10.1111/ele.12187.

[78]

Otto, C. R. V., and G. J. Roloff. 2011. “Using Multiple Methods to Assess Detection Probabilities of Forest-floor Wildlife.” Journal of Wildlife Management 75, no. 2: 423–431. https://doi.org/10.1002/jwmg.63.

[79]

Parmesan, C., and G. Yohe. 2003. “A Globally Coherent Fingerprint of Climate Change Impacts Across Natural Systems.” Nature 421: 37–42. https://doi.org/10.1038/nature01286.

[80]

Pawar, S., M. S. Koo, C. Kelley, M. F. Ahmed, S. Chaudhuri, and S. Sarkar. 2007. “Conservation Assessment and Prioritization of Areas in Northeast India: Priorities for Amphibians and Reptiles.” Biological Conservation 136, no. 3: 346–361. https://doi.org/10.1016/j.biocon.2006.12.012.

[81]

Pearce, J., and S. Ferrier. 2001. “The Practical Value of Modelling Relative Abundance of Species for Regional Conservation Planning: A Case Study.” Biological Conservation 98, no. 1: 33–43. https://doi.org/10.1016/S0006-3207(00)00139-7.

[82]

Pearson, R. G.2016. “Reasons to Conserve Nature.” Trends in Ecology & Evolution 31, no. 5: 366–371. https://doi.org/10.1016/j.tree.2016.02.005.

[83]

Pearson, R. G., C. J. Raxworthy, M. Nakamura, and A. Townsend Peterson. 2007. “Original article: Predicting Species Distributions From Small Numbers of Occurrence Records: A Test Case Using Cryptic Geckos in Madagascar.” Journal of Biogeography 34, no. 1: 102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x.

[84]

Perera, A.2001. “Secondary Forest Situation in Sri Lanka: A Review.” Journal of Tropical Forest Science 13, no. 4: 768–785.

[85]

Peterson, A. T.2001. “Predicting Species' Geographic Distributions Based on Ecological Niche Modeling.” Condor 103, no. 3: 599–605. https://doi.org/10.1093/condor/103.3.599.

[86]

Pethiyagoda, R.1994. “Threats to the Indigenous Freshwater Fishes of Sri Lanka and Remarks on Their Conservation.” Hydrobiologia 285: 189–201. https://doi.org/10.1007/978-94-011-0958-1_19.

[87]

Pethiyagoda, R.2012. “Biodiversity Conservation in Sri Lanka's Novel Ecosystems.” Ceylon Journal of Science 41, no. 1: 1–10. https://doi.org/10.4038/cjsbs.v41i1.4532.

[88]

Pethiyagoda Jr., R. S., and K. Manamendra-Arachchi. 2012. “Endangered Anurans in a Novel Forest in the Highlands of Sri Lanka.” Wildlife Research 39, no. 7: 641–648. https://doi.org/10.1071/WR12079.

[89]

Phillips, S. J., and R. E. Schapire. 2004. “ A Maximum Entropy Approach to Species Distribution Modeling.” In Proceedings of the Twenty-First International Conference on Machine Learning. Association for Computing Machinery. https://doi.org/10.1145/1015330.1015412.

[90]

Pressey, R. L., M. Cabeza, M. E. Watts, R. M. Cowling, and K. A. Wilson. 2007. “Conservation Planning in a Changing World.” Trends in Ecology & Evolution 22, no. 11: 583–592. https://doi.org/10.1016/j.tree.2007.10.001.

[91]

Radosavljevic, A., and R. P. Anderson. 2014. “Making Better Maxent Models of Species Distributions: Complexity, Overfitting and Evaluation.” Journal of Biogeography 41, no. 4: 629–643. https://doi.org/10.1111/jbi.12227.

[92]

Ranasinghe, P. N., C. B. Dissanayake, D. V. N. Samarasinghe, and R. Galappatti. 2007. “The Relationship Between Soil Geochemistry and Die Back of Montane Forests in Sri Lanka: A Case Study.” Environmental Geology 51, no. 6: 1077–1088. https://doi.org/10.1007/s00254-006-0399-6.

[93]

Razgour, O., J. Hanmer, and G. Jones. 2011. “Using Multi-Scale Modelling to Predict Habitat Suitability for Species of Conservation Concern: The Grey Long-Eared Bat as a Case Study.” Biological Conservation 144, no. 12: 2922–2930. https://doi.org/10.1016/j.biocon.2011.08.010.

[94]

Remya, K., A. Ramachandran, and S. Jayakumar. 2015. “Predicting the Current and Future Suitable Habitat Distribution of Myristica dactyloides Gaertn. Using MaxEnt Model in the Eastern Ghats, India.” Ecological Engineering 82: 184–188. https://doi.org/10.1016/j.ecoleng.2015.04.053.

[95]

Roberts, D. R., V. Bahn, S. Ciuti, et al. 2017. “Cross-Validation Strategies for Data With Temporal, Spatial, Hierarchical, or Phylogenetic Structure.” Ecography 40, no. 8: 913–929. https://doi.org/10.1111/ecog.02881.

[96]

Rodrigues, A. S. L., H. R. Akçakaya, S. J. Andelman, et al. 2004. “Global Gap Analysis: Priority Regions for Expanding the Global Protected-Area Network.” Bioscience 54, no. 12: 1092–1100. https://doi.org/10.1641/0006-3568(2004)054[1092:GGAPRF]2.0.CO;2.

[97]

Rodrigues, A. S. L., S. J. Andelman, M. I. Bakarr, et al. 2004. “Effectiveness of the Global Protected Area Network in Representing Species Diversity.” Nature 428, no. 6983: 640–643. https://doi.org/10.1038/nature02422.

[98]

Roll, U., A. Feldman, M. Novosolov, et al. 2017. “The Global Distribution of Tetrapods Reveals a Need for Targeted Reptile Conservation.” Nature Ecology & Evolution 1, no. 11: 1677–1682. https://doi.org/10.1038/s41559-017-0332-2.

[99]

Rubenstein, M. A., S. R. Weiskopf, R. Bertrand, et al. 2023. “Climate Change and the Global Redistribution of Biodiversity: Substantial Variation in Empirical Support for Expected Range Shifts.” Environmental Evidence 12, no. 7: 7. https://doi.org/10.1186/s13750-023-00296-0.

[100]

Scherr, S. J., and J. A. McNeely. 2008. “Biodiversity Conservation and Agricultural Sustainability: Towards a New Paradigm of ‘Eco Agriculture’ Landscapes.” Philosophical Transactions of the Royal Society, B: Biological Sciences 363, no. 1491: 477–494. https://doi.org/10.1098/rstb.2007.2165.

[101]

Schnase, J. L., M. L. Carroll, R. L. Gill, et al. 2021. “Toward a Monte Carlo Approach to Selecting Climate Variables in MaxEnt.” PLoS One 16, no. 3: e0237208. https://doi.org/10.1371/journal.pone.0237208.

[102]

Schulte, J. A., J. R. Macey, R. Pethiyagoda, and A. Larson. 2002. “Rostral Horn Evolution Among Agamid Lizards of the Genus Ceratophora Endemic to Sri Lanka.” Molecular Phylogenetics and Evolution 22, no. 1: 111–117. https://doi.org/10.1006/mpev.2001.1041.

[103]

Senadheera, D. K. L., W. M. P. S. B. Wahala, and S. Weragoda. 2019. “Livelihood and Ecosystem Benefits of Carbon Credits Through Rainforests: A Case Study of Hiniduma Bio-Link, Sri Lanka.” Ecosystem Services 37: 100933. https://doi.org/10.1016/j.ecoser.2019.100933.

[104]

Somaweera, R., N. Wijayathilaka, G. Bowatte, and M. Meegaskumbura. 2015. “Conservation in a Changing Landscape: Habitat Occupancy of the Critically Endangered Tennent's Leaf-nosed Lizard (Ceratophora tennentii) in Sri Lanka.” Journal of Natural History 49, no. 31/32: 1961–1985. https://doi.org/10.1080/00222933.2015.1006280.

[105]

Surasinghe, T., R. Kariyawasam, H. Sudasinghe, and S. Karunarathna. 2020. “Challenges in Biodiversity Conservation in a Highly Modified Tropical River Basin in Sri Lanka.” Water 12, no. 1: 26. https://doi.org/10.3390/w12010026.

[106]

Surasinghe, T. D.2009. “Conservation and Distribution Status of Amphibian Fauna in Sri Lanka.” Biodiversity 10, no. 1: 3–17. https://doi.org/10.1080/14888386.2009.9712632.

[107]

Tobeña, M., R. Prieto, M. Machete, and M. A. Silva. 2016. “Modeling the Potential Distribution and Richness of Cetaceans in the Azores From Fisheries Observer Program Data.” Frontiers in Marine Science 3: 202. https://doi.org/10.3389/fmars.2016.00202.

[108]

UNEP-WCMC and IUCN. 2020. Protected Planet Report 2020. UNEP-WCMC and IUCN. https://protectedplanetreport2020.protectedplanet.net/.

[109]

Valavi, R., G. Guillera-Arroita, J. J. Lahoz-Monfort, and J. Elith. 2022. “Predictive Performance of Presence-Only Species Distribution Models: A Benchmark Study With Reproducible Code.” Ecological Monographs 92, no. 1: e01486. https://doi.org/10.1002/ecm.1486.

[110]

Walther, G. R., E. Post, P. Convey, et al. 2002. “Ecological Responses to Recent Climate Change.” Nature 416: 389–395. https://doi.org/10.1038/416389a.

[111]

Whitford, A. M., B. R. Shipley, and J. L. McGuire. 2024. “The Influence of the Number and Distribution of Background Points in Presence-Background Species Distribution Models.” Ecological Modelling 488: 110604. https://doi.org/10.1016/j.ecolmodel.2023.110604.

[112]

Wijerathne, I., Y. Deng, E. Goodale, et al. 2025. “The Vulnerability of Endemic Vertebrates in Sri Lanka to Climate Change.” Global Ecology and Conservation 59: e03515. https://doi.org/10.1016/j.gecco.2025.e03515.

[113]

Wilson, K. A., M. I. Westphal, H. P. Possingham, and J. Elith. 2005. “Sensitivity of Conservation Planning to Different Approaches to Using Predicted Species Distribution Data.” Biological Conservation 122, no. 1: 99–112. https://doi.org/10.1016/j.biocon.2004.07.004.

[114]

Wisz, M. S., R. J. Hijmans, J. Li, et al. 2008. “Effects of Sample Size on the Performance of Species Distribution Models.” Diversity and Distributions 14, no. 5: 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x.

[115]

Zhang, Z., J. M. Kass, S. Mammola, et al. 2021. “Lineage-Level Distribution Models Lead to More Realistic Climate Change Predictions for a Threatened Crayfish.” Diversity and Distributions 27, no. 4: 684–695. https://doi.org/10.1111/ddi.13225.

RIGHTS & PERMISSIONS

2025 The Author(s). Integrative Conservation published by John Wiley & Sons Australia, Ltd on behalf of Xishuangbanna Tropical Botanical Garden (XTBG).

AI Summary AI Mindmap
PDF

8

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/