Different Responses of Two Endangered Sister Tree Species to Climate Change: A Comparison Between Island and Continental Populations in Tropical Asia

Ling Hu , Xiao-Yan Zhang , Yi-Gang Song , Shook Ling Low , Shu-Mei Xiao , Shi-Shun Zhou , Lang Li , Yun-Hong Tan , Hong-Hu Meng , Jie Li

Integrative Conservation ›› 2025, Vol. 4 ›› Issue (1) : 95 -106.

PDF
Integrative Conservation ›› 2025, Vol. 4 ›› Issue (1) : 95 -106. DOI: 10.1002/inc3.70005
RESEARCH ARTICLE

Different Responses of Two Endangered Sister Tree Species to Climate Change: A Comparison Between Island and Continental Populations in Tropical Asia

Author information +
History +
PDF

Abstract

Climate change is widely recognized as a major threat to biodiversity and a critical factor contributing to the decline in species and populations. However, it remains uncertain whether species from continental and island environments, especially endangered ones, will respond similarly or differently to climate change. The strategies employed by these species to cope with climate change, and the corresponding conservation management approaches, remain poorly understood. In this study, we employed ecological niche models to project future shifts in the distribution patterns of two endangered sister species, Trigonobalanus doichangensis and T. vericillata, which are distributed across continental and island regions of tropical Asia. We analyzed potential changes in their distribution under four different climate change scenarios for the 2050s and 2070s. Our results indicate that temperature is a significant driver for the continental species T. doichangensis, whereas precipitation predominantly influences the island species T. vericillata. Moreover, we found that the potential future distribution range of the continental species T. doichangensis is likely to exceed that of the island species T. vericillata, suggesting that the continental species T. doichangensis may have a stronger capacity for adapting to climate change. We recommend that conservation areas be established to maintain habitat stability in regions most affected by climate change. A comprehensive assessment of the endangered status of both species is also essential. Overall, this study underscores the distinct responses of island and continental species to climate change, thereby enhancing our understanding of their adaptive strategies and informing targeted conservation efforts.

Keywords

climate change / continental species / ecological niche modeling / habitat loss / Island species / species conservation / Trigonobalanus

Cite this article

Download citation ▾
Ling Hu, Xiao-Yan Zhang, Yi-Gang Song, Shook Ling Low, Shu-Mei Xiao, Shi-Shun Zhou, Lang Li, Yun-Hong Tan, Hong-Hu Meng, Jie Li. Different Responses of Two Endangered Sister Tree Species to Climate Change: A Comparison Between Island and Continental Populations in Tropical Asia. Integrative Conservation, 2025, 4(1): 95-106 DOI:10.1002/inc3.70005

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ab Lah, N. Z., Z. Yusop, M. Hashim, J. Mohd Salim, and S. Numata. 2021. “Predicting the Habitat Suitability of Melaleuca cajuputi Based on the Maxent Species Distribution Model.” Forests 12: 1449. https://doi.org/10.3390/f12111449.

[2]

Bálint, M., S. Domisch, C. H. M. Engelhardt, et al. 2011. “Cryptic Biodiversity Loss Linked to Global Climate Change.” Nature Climate Change 1: 313–318. https://doi.org/10.1038/nclimate1191.

[3]

Bellard, C., C. Bertelsmeier, P. Leadley, W. Thuiller, and F. Courchamp. 2012. “Impacts of Climate Change on the Future of Biodiversity.” Ecology Letters 15: 365–377. https://doi.org/10.1111/j.1461-0248.2011.01736.x.

[4]

Carlquist, S. J. 1974. Island Biology. Columbia University Press.

[5]

Chen, P., C. Shen, Z. Tao, W. Qin, W. Huang, and E. Siemann. 2024. “Deterministic Responses of Biodiversity to Climate Change Through Exotic Species Invasions.” Nature Plants 10: 1464–1472. https://doi.org/10.1038/s41477-024-01797-7.

[6]

Costello, M. J., M. M. Vale, W. Kiessling, S. Maharaj, J. Price, and G. H. Talukdar. 2022. “ Cross-Chapter Paper 1: Biodiversity Hotspots.” In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contributi on of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by H. O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, and B. Rama, 2123–2161. Cambridge University Press. https://doi.org/10.1017/9781009325844.018.

[7]

Dong, H., N. Zhang, S. Shen, S. Zhu, S. Fan, and Y. Lu. 2023. “Effects of Climate Change on the Spatial Distribution of the Threatened Species Rhododendron purdomii in Qinling-Daba Mountains of Central China: Implications for Conservation.” Sustainability 15: 3181. https://doi.org/10.3390/su15043181.

[8]

Elith, J., C. H. Graham, R. P. Anderson, et al. 2006. “Novel Methods Improve Prediction of Species' Distributions From Occurrence Data.” Ecography 29: 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x.

[9]

Elith, J., S. J. Phillips, T. Hastie, M. Dudík, Y. E. Chee, and C. J. Yates. 2011. “A Statistical Explanation of MaxEnt for Ecologists.” Diversity and Distributions 17: 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x.

[10]

Exposito-Alonso, M., T. R. Booker, L. Czech, et al. 2022. “Genetic Diversity Loss in the Anthropocene.” Science 377: 1431–1435. https://doi.org/10.1126/science.abn5642.

[11]

Eyring, V., N. P. Gillett, K. M. Achuta Rao, et al. 2021. “ Human Influence on the Climate System.” In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou, 423–552. Cambridge University Press. https://doi.org/10.1017/9781009157896.005.

[12]

Fielding, A. H., and J. F. Bell. 1997. “A Review of Methods for the Assessment of Prediction Errors in Conservation Presence/Absence Models.” Environmental Conservation 24: 38–49. https://doi.org/10.1017/S0376892997000088.

[13]

Franco, A. M. A., J. K. Hill, C. Kitschke, et al. 2006. “Impacts of Climate Warming and Habitat Loss on Extinctions at Species' Low-Latitude Range Boundaries.” Global Change Biology 12: 1545–1553. https://doi.org/10.1111/j.1365-2486.2006.01180.x.

[14]

Gao, X., J. Liu, and Z. Huang. 2022. “The Impact of Climate Change on the Distribution of Rare and Endangered Tree Firmiana kwangsiensis Using the Maxent Modeling.” Ecology and Evolution 12: e9165. https://doi.org/10.1002/ece3.9165.

[15]

Ge, J., and Z. Xie. 2017. “Geographical and Climatic Gradients of Evergreen Versus Deciduous Broad-Leaved Tree Species in Subtropical China: Implications for the Definition of the Mixed Forest.” Ecology and Evolution 7: 3636–3644. https://doi.org/10.1002/ece3.2967.

[16]

He, Y., J. Ma, and G. Chen. 2023. “Potential Geographical Distribution and Its Multi-Factor Analysis of Pinus massoniana in China Based on the Maxent Model.” Ecological Indicators 154: 110790. https://doi.org/10.1016/j.ecolind.2023.110790.

[17]

Hernández-Yáñez, H., J. T. Kos, M. D. Bast, et al. 2016. “A Systematic Assessment of Threats Affecting the Rare Plants of the United States.” Biological Conservation 203: 260–267. https://doi.org/10.1016/j.biocon.2016.10.009.

[18]

Hu, L., X. G. Le, S. S. Zhou, et al. 2022. “Conservation Significance of the Rare and Endangered Tree Species, Trigonobalanus doichangensis (Fagaceae).” Diversity 14: 666. https://doi.org/10.3390/d14080666.

[19]

Iordan, C. M., K. J. J. Kuipers, B. Huang, X. Hu, F. Verones, and F. Cherubini. 2023. “Spatially and Taxonomically Explicit Characterisation Factors for Greenhouse Gas Emission Impacts on Biodiversity.” Resources, Conservation and Recycling 198: 107159. https://doi.org/10.1016/j.resconrec.2023.107159.

[20]

Jiang, C., K. Tan, and M. X. Ren. 2017. “Effects of Monsoon on Distribution Patterns of Tropical Plants in Asia.” Chinese Journal of Plant Ecology 41: 1103–1112. https://doi.org/10.17521/cjpe.2017.0070.

[21]

Jump, A. S., R. Marchant, and J. Peñuelas. 2009. “Environmental Change and the Option Value of Genetic Diversity.” Trends in Plant Science 14: 51–58. https://doi.org/10.1016/j.tplants.2008.10.002.

[22]

Lee, C. M., D. S. Lee, T. S. Kwon, M. Athar, and Y. S. Park. 2021. “Predicting the Global Distribution of Solenopsis geminata (Hymenoptera: Formicidae) Under Climate Change Using the MaxEnt Model.” Insects 12: 229. https://doi.org/10.3390/insects12030229.

[23]

Leimu, R., P. Vergeer, F. Angeloni, and N. J. Ouborg. 2010. “Habitat Fragmentation, Climate Change, and Inbreeding in Plants.” Annals of the New York Academy of Sciences 1195: 84–98. https://doi.org/10.1111/j.1749-6632.2010.05450.x.

[24]

Li, S., Z. Wang, Z. Zhu, Y. Tao, and J. Xiang. 2023. “Predicting the Potential Suitable Distribution Area of Emeia pseudosauteri in Zhejiang Province Based on the MaxEnt Model.” Scientific Reports 13: 1806. https://doi.org/10.1038/s41598-023-29009-w.

[25]

Mainka, S. A., and G. W. Howard. 2010. “Climate Change and Invasive Species: Double Jeopardy.” Integrative Zoology 5: 102–111. https://doi.org/10.1111/j.1749-4877.2010.00193.x.

[26]

Malanoski, C. M., A. Farnsworth, D. J. Lunt, P. J. Valdes, and E. E. Saupe. 2024. “Climate Change Is an Important Predictor of Extinction Risk on Macroevolutionary Timescales.” Science 383: 1130–1134. https://doi.org/10.1126/science.adj5763.

[27]

Manes, S., M. J. Costello, H. Beckett, et al. 2021. “Endemism Increases Species' Climate Change Risk in Areas of Global Biodiversity Importance.” Biological Conservation 257: 109070. https://doi.org/10.1016/j.biocon.2021.109070.

[28]

Mao, X., W. Lu, C. Liu, H. Wang, and X. Shi. 2010. “Reproductive Ecological Characteristics of Endangered Plant Quercus trigonis.” Jiangsu Agricultural Sciences: 352–354. https://doi.org/10.15889/j.issn.1002-1302.2010.04.129.

[29]

Matthews, T. J., and K. Triantis. 2021. “Island Biogeography.” Current Biology 31: R1201–R1207. https://doi.org/10.1016/j.cub.2021.07.033.

[30]

Meng, H. H., S. S. Zhou, X. L. Jiang, et al. 2019. “Are Mountaintops Climate Refugia for Plants Under Global Warming? A Lesson From High-Mountain Oaks in Tropical Rainforest.” Alpine Botany 129: 175–183. https://doi.org/10.1007/s00035-019-00226-2.

[31]

Meng, H. H., S. S. Zhou, L. Li, Y. H. Tan, J. W. Li, and J. Li. 2019. “Conflict Between Biodiversity Conservation and Economic Growth: Insight Into Rare Plants in Tropical China.” Biodiversity and Conservation 28: 523–537. https://doi.org/10.1007/s10531-018-1661-4.

[32]

Namkhan, M., N. Sukumal, and T. Savini. 2022. “Impact of Climate Change on Southeast Asian Natural Habitats, With Focus on Protected Areas.” Global Ecology and Conservation 39: e02293. https://doi.org/10.1016/j.gecco.2022.e02293.

[33]

Orefice, S., and C. Innocenti. 2024. “Regional Assessment of Coastal Landslide Susceptibility in Liguria, Northern Italy, Using Maxent.” Natural Hazards 121: 2613–2639. https://doi.org/10.1007/s11069-024-06833-5.

[34]

Peterson, A. T., J. Soberón, R. G. Pearson, et al. 2011. Ecological Niches and Geographic Distributions (MPB-49). Princeton University Press. https://doi.org/10.1515/9781400840670.

[35]

Pouteau, R., and P. Birnbaum. 2016. “Island Biodiversity Hotspots Are Getting Hotter: Vulnerability of Tree Species to Climate Change in New Caledonia.” Biological Conservation 201: 111–119. https://doi.org/10.1016/j.biocon.2016.06.031.

[36]

Punyasena, S. W., G. Eshel, and J. C. McElwain. 2007. “The Influence of Climate on the Spatial Patterning of Neotropical Plant Families.” Journal of Biogeography 35: 117–130. https://doi.org/10.1111/j.1365-2699.2007.01773.x.

[37]

Rather, Z. A., R. Ahmad, A. R. Dar, T. U. H. Dar, and A. A. Khuroo. 2021. “Predicting Shifts in Distribution Range and Niche Breadth of Plant Species in Contrasting Arid Environments Under Climate Change.” Environmental Monitoring and Assessment 193: 427. https://doi.org/10.1007/s10661-021-09160-5.

[38]

Reichstein, M., M. Bahn, P. Ciais, et al. 2013. “Climate Extremes and the Carbon Cycle.” Nature 500: 287–295. https://doi.org/10.1038/nature12350.

[39]

Sheth, S. N., and A. L. Angert. 2014. “The Evolution of Environmental Tolerance and Range Size: A Comparison of Geographically Restricted and Widespread mimulus.” Evolution 68: 2917–2931. https://doi.org/10.1111/evo.12494.

[40]

Shi, X., J. Wang, L. Zhang, et al. 2023. “Prediction of the Potentially Suitable Areas of Litsea cubeba in China Based on Future Climate Change Using the Optimized MaxEnt Model.” Ecological Indicators 148: 110093. https://doi.org/10.1016/j.ecolind.2023.110093.

[41]

Shin, Y. J., G. F. Midgley, E. R. M. Archer, et al. 2022. “Actions to Halt Biodiversity Loss Generally Benefit the Climate.” Global Change Biology 28: 2846–2874. https://doi.org/10.1111/gcb.16109.

[42]

Sun, S., Y. Zhang, D. Huang, et al. 2020. “The Effect of Climate Change on the Richness Distribution Pattern of Oaks (Quercus L.) in China.” Science of the Total Environment 744: 140786. https://doi.org/10.1016/j.scitotenv.2020.140786.

[43]

Sun, W., C. Han, L. Gao, and C. A. Wilson. 2007. “Genetic Diversity of the Rare Asian Plant, Trigonobalanus doichangensis (Fagaceae).” Australian Journal of Botany 55: 10–17. https://doi.org/10.1071/bt05113.

[44]

Sun, W., Y. Zhou, C. Han, et al. 2006. “Status and Conservation of Trigonobalanus doichangensis (Fagaceae)#.” Biodiversity and Conservation 15: 1303–1318. https://doi.org/10.1007/s10531-005-3873-7.

[45]

Sunday, J. M.2020. “The Pace of Biodiversity Change in a Warming Climate.” Nature 580: 460–461. https://doi.org/10.1038/d41586-020-00975-9.

[46]

Syfert, M. M., M. J. Smith, and D. A. Coomes. 2013. “Correction: The Effects of Sampling Bias and Model Complexity on the Predictive Performance of Maxent Species Distribution Models.” PLoS One 8: e55158. https://doi.org/10.1371/annotation/35be5dff-7709-4029-8cfa-f1357e5001f5.

[47]

Tan, K., P. L. Malabrigo, and M. Ren. 2020. “Origin and Evolution of Biodiversity Hotspots in Southeast Asia.” Acta Ecologica Sinica 40: 3866–3877. https://doi.org/10.5846/stxb201904160762.

[48]

Tan, X., Y. Wu, B. Liu, and S. Chen. 2020. “Inconsistent Changes in Global Precipitation Seasonality in Seven Precipitation Datasets.” Climate Dynamics 54: 3091–3108. https://doi.org/10.1007/s00382-020-05158-w.

[49]

Tanaka, N., K. Nakao, I. Tsuyama, M. Higa, E. Nakazono, and T. Matsui. 2012. “Predicting the Impact of Climate Change on Potential Habitats of Fir (Abies) Species in Japan and on the East Asian Continent.” Procedia Environmental Sciences 13: 455–466. https://doi.org/10.1016/j.proenv.2012.01.039.

[50]

Tang, S. L., Y. B. Song, B. Zeng, and M. Dong. 2021. “Present and Future Climate–Related Distribution of Narrow– Versus Wide–Ranged Ostrya Species in China.” Forests 12: 1366. https://doi.org/10.3390/f12101366.

[51]

Urban, M. C.2024. “Climate Change Extinctions.” Science 386: 1123–1128. https://doi.org/10.1126/science.adp4461.

[52]

van Vuuren, D. P., J. Edmonds, M. Kainuma, et al. 2011. “The Representative Concentration Pathways: An Overview.” Climatic Change 109: 5–31. https://doi.org/10.1007/s10584-011-0148-z.

[53]

Wang, P., W. Luo, Q. Zhang, et al. 2024. “Assessing the Impact of Climate Change on Three Populus Species in China: Distribution Patterns and Implications.” Global Ecology and Conservation 50: e02853. https://doi.org/10.1016/j.gecco.2024.e02853.

[54]

Wang, X., T. Wang, J. Xu, et al. 2022. “Enhanced Habitat Loss of the Himalayan Endemic Flora Driven by Warming-Forced Upslope Tree Expansion.” Nature Ecology & Evolution 6: 890–899. https://doi.org/10.1038/s41559-022-01774-3.

[55]

Warren, D. L., and S. N. Seifert. 2011. “Ecological Niche Modeling in Maxent: The Importance of Model Complexity and the Performance of Model Selection Criteria.” Ecological Applications 21: 335–342. https://doi.org/10.1890/10-1171.1.

[56]

Whittaker, R. J., and J. M. Fernández-Palacios. 2007. Island Biogeography: Ecology, Evolution, and Conservation. Oxford University Press.

[57]

Xu, W. B., S. A. Blowes, V. Brambilla, et al. 2023. “Regional Occupancy Increases for Widespread Species but Decreases for Narrowly Distributed Species in Metacommunity Time Series.” Nature Communications 14: 1463. https://doi.org/10.1038/s41467-023-37127-2.

[58]

Xu, W. B., J. C. Svenning, G. K. Chen, et al., 2019. “Human Activities Have Opposing Effects on Distributions of Narrow-Ranged and Widespread Plant Species in China.” Proceedings of the National Academy of Sciences 116: 26674–26681. https://doi.org/10.1073/pnas.1911851116.

[59]

Yarahmadi, H.2024. “Oil Pollution Threatens Persian Gulf Marine Life.” Science 383: 599. https://doi.org/10.1126/science.adn5624.

[60]

Yu, F., T. Wang, T. A. Groen, et al. 2019. “Climate and Land Use Changes Will Degrade the Distribution of Rhododendrons in China.” Science of the Total Environment 659: 515–528. https://doi.org/10.1016/j.scitotenv.2018.12.223.

[61]

Zeng, Q., X. Zhu, and L. Zhou. 2023. “Prediction of Potential Suitable Region for Emex australis in China Based on the Optimized MaxEnt Model.” Journal of South China Agricultural University 44: 254–262. https://doi.org/10.7671/j.issn.1001-411X.202203041.

[62]

Zhang, X., X. Ci, J. Hu, et al. 2023. “Riparian Areas as a Conservation Priority Under Climate Change.” Science of the Total Environment 858: 159879. https://doi.org/10.1016/j.scitotenv.2022.159879.

[63]

Zhao, Y., X. Deng, W. Xiang, L. Chen, and S. Ouyang. 2021. “Predicting Potential Suitable Habitats of Chinese Fir Under Current and Future Climatic Scenarios Based on Maxent Model.” Ecological Informatics 64: 101393. https://doi.org/10.1016/j.ecoinf.2021.101393.

[64]

Zheng, Y. L., W. B. Sun, Y. Zhou, and D. Coombs. 2009. “Variation in Seed and Seedling Traits Among Natural Populations of Trigonobalanus doichangensis (A. Camus) Forman (Fagaceae), a Rare and Endangered Plant in Southwest China.” New Forests 37: 285–294. https://doi.org/10.1007/s11056-008-9124-5.

[65]

Zhong, X., L. Zhang, J. Zhang, L. He, and R. Sun. 2023. “Maxent Modeling for Predicting the Potential Geographical Distribution of Castanopsis carlesii Under Various Climate Change Scenarios in China.” Forests 14: 1397. https://doi.org/10.3390/f14071397.

[66]

Zhou, R., X. Ci, J. Xiao, G. Cao, and J. Li. 2021. “Effects and Conservation Assessment of Climate Change on the Dominant Group—The Genuscinnamomum of Subtropical Evergreen Broad-Leaved Forests.” Biodiversity Science 29: 697–711. https://doi.org/10.17520/biods.2020482.

[67]

Zhu, H., and P. Ashton. 2021. “Ecotones in the Tropical-Subtropical Vegetation Transition at the Tropical Margin of Southern China.” Chinese Science Bulletin 66: 3732–3743. https://doi.org/10.1360/TB-2021-0231.

[68]

Zhu, H., and S. Zhou. 2017. “A Primitive Cupuliferae Plant (Trigonobalanus verticillata) Found in Xishuangbanna, Yunnan, and Its Biogeographical Significance.” Plant Science Journal 35: 205–206. https://doi.org/10.11913/PSJ.2095-0837.2017.20205.

[69]

Zhu, X., J. Tang, H. Jiang, et al. 2023. “Genomic Evidence Reveals High Genetic Diversity in a Narrowly Distributed Species and Natural Hybridization Risk With a Widespread Species in the Genus Geodorum.” BMC Plant Biology 23: 317. https://doi.org/10.1186/s12870-023-04285-w.

[70]

Zu, K., and Z. Wang. 2022. “Research Progress on the Elevational Distribution of Mountain Species in Response to Climate Change.” Biodiversity Science 30: 21451. https://doi.org/10.17520/biods.2021451.

RIGHTS & PERMISSIONS

2025 The Author(s). Integrative Conservation published by John Wiley & Sons Australia, Ltd on behalf of Xishuangbanna Tropical Botanical Garden (XTBG).

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/