Gut microbiota dynamics of adult and sub-adult sika deer during reintroduction

Wentao Zhang , Feifei Yang , Heng Bao , Jiale Sun , Wannian Cheng , Shiyu Chen , Nathan J. Roberts , Yanhui Guan , Shixian Guo , Jixu Sun , Guangshun Jiang

Integrative Conservation ›› 2024, Vol. 3 ›› Issue (3) : 257 -270.

PDF
Integrative Conservation ›› 2024, Vol. 3 ›› Issue (3) : 257 -270. DOI: 10.1002/inc3.66
RESEARCH ARTICLE

Gut microbiota dynamics of adult and sub-adult sika deer during reintroduction

Author information +
History +
PDF

Abstract

Prey populations significantly influence the distribution of top predators. The sika deer (Cervus nippon), a key prey species for the Amur tiger in Northeast China, plays a critical role in the recovery and dispersal of Amur tiger populations. Reintroduction is a pivotal strategy for restoring prey populations, but it presents challenges, especially in terms of adaptation to the natural environment during the natural training process before animals are released. In this study, we sampled six adult and six sub-adult sika deer and employed high-throughput sequencing of the 16S ribosomal RNA gene to investigate changes in gut microbial diversity, composition, and function during natural training. The results showed that adult sika deer had higher gut microbiota diversity compared to sub-adults. However, as natural training progressed, the gut microbial diversity in sub-adults approached that of adults. Additionally, beneficial, fiber-digesting bacteria associated with adaptation to the natural environment tended to increase during nature training in both adult and sub-adult sika deer, while pathogenic bacteria tended to decrease. We also compared the metabolic function of the gut microbiota in adult and sub-adult sika deer, which showed that the carbohydrate metabolic function of both adults and sub-adults decreased significantly with natural training, declining more rapidly in sub-adults. Conversely, the lipid metabolic function in sub-adults increased significantly with natural training. Overall, a period of nature training is necessary before reintroducing animals to their natural habitats, and sub-adult sika deer, in particular, exhibit greater adaptability to environmental changes as reflected by their gut microbiota dynamics. These findings offer valuable insights for the reintroduction of sika deer and other ungulates.We recommend incorporating natural training in reintroduction programs and prioritizing sub-adult animals for reintroduction.

Keywords

adults / gut microbiota / natural training / sika deer / sub-adults

Cite this article

Download citation ▾
Wentao Zhang, Feifei Yang, Heng Bao, Jiale Sun, Wannian Cheng, Shiyu Chen, Nathan J. Roberts, Yanhui Guan, Shixian Guo, Jixu Sun, Guangshun Jiang. Gut microbiota dynamics of adult and sub-adult sika deer during reintroduction. Integrative Conservation, 2024, 3(3): 257-270 DOI:10.1002/inc3.66

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdel-Moein, K.A., Saeed, H., & Samir, A., (2015) Novel detection of helicobacter pylori in fish: a possible public health concern. Acta Tropica, 152, 141–144.

[2]

Almeida, D., Machado, D., Andrade, J.C., Mendo, S., Gomes, A.M. & Freitas, A.C. (2020) Evolving trends in next-generation probiotics: a 5W1H perspective. Critical Reviews in Food Science and Nutrition, 60, 1783–1796.

[3]

Bestion, E., Jacob, S., Zinger, L., Di Gesu, L., Richard, M., White, J. et al. (2017) Climate warming reduces gut microbiota diversity in a vertebrate ectotherm. Nature Ecology & Evolution, 1, 161.

[4]

Borbón-García, A., Reyes, A., Vives-Flórez, M., & Caballero, S., (2017) Captivity shapes the gut microbiota of andean bears: insights into health surveillance. Frontiers in Microbiology, 8, 1316.

[5]

Canfora, E.E., Jocken, J.W. & Blaak, E.E. (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews Endocrinology, 11, 577–591.

[6]

Cani, P.D. (2017) Gut microbiota—at the intersection of everything? Nature Reviews Gastroenterology & Hepatology, 14, 321–322.

[7]

Cani, P.D., Depommier, C., Derrien, M., Everard, A., & De Vos, W.M. (2022) Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nature Reviews Gastroenterology & Hepatology, 19, 625–637.

[8]

Chaiyarat, R., Sakchan, P., Panprayun, G., Thongthip, N., & Nakbun, S., (2020) Monitoring of forage and nutrition before and after reintroduction of banteng (Bos javanicus d’ Alton, 1823) to salakphra wildlife sanctuary, Thailand. Scientific Reports, 10, 11135.

[9]

Chevalier, C., Stojanović O., Colin, D.J., Suarez-Zamorano, N., Tarallo, V., Veyrat-Durebex, C. et al. (2015) Gut microbiota orchestrates energy homeostasis during cold. Cell, 163, 1360–1374.

[10]

Clark, J.D., Huber, D., & Servheen, C., (2002) Bear reintroductions: lessons and challenges: invited paper. Ursus (International Association for Bear Research and Management), 13, 335–345.

[11]

Clayton, J.B., Vangay, P., Huang, H., Ward, T., Hillmann, B.M., Al-Ghalith, G.A. et al. (2016) Captivity humanizes the primate microbiome. Proceedings of the National Academy of Sciences, 113, 10376–10381.

[12]

Costa, M.C., Stämpfli, H.R., Allen-Vercoe, E., & Weese, J.S. (2016) Development of the faecal microbiota in foals. Equine Veterinary Journal, 48, 681–688.

[13]

Cummings, J.H., Pomare, E.W., Branch, W.J., Naylor, C.P. & Macfarlane, G.T. (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut, 28, 1221–1227.

[14]

Dalile, B., Van Oudenhove, L., Vervliet, B., & Verbeke, K., (2019) The role of short-chain fatty acids in microbiota–gut–brain communication. Nature Reviews Gastroenterology & Hepatology, 16, 461–478.

[15]

Dallas, J.W. & Warne, R.W. (2023) Captivity and animal microbiomes: potential roles of microbiota for influencing animal conservation. Microbial Ecology, 85, 820–838.

[16]

Diaz, J., Redford, K.H. & Reese, A.T. (2023) Captive and urban environments are associated with distinct gut microbiota in deer mice (Peromyscus maniculatus). Biology Letters, 19, 20220547.

[17]

Van Doormaal, N., Ohashi, H., Koike, S., & Kaji, K., (2015) Influence of human activities on the activity patterns of Japanese sika deer (Cervus nippon) and wild boar (Sus scrofa) in central Japan. European Journal of Wildlife Research, 61, 517–527.

[18]

Douglas, G.M., Maffei, V.J., Zaneveld, J., Yurgel, S.N., Brown, J.R., Taylor, C.M. et al. (2019) PICRUSt2: an improved and extensible approach for metagenome inference. BioRxiv, 2019, 672295.

[19]

Earle, K.A., Billings, G., Sigal, M., Lichtman, J.S., Hansson, G.C., Elias, J.E. et al. (2015) Quantitative imaging of gut microbiota spatial organization. Cell Host & Microbe, 18, 478–488.

[20]

Feng, Q., Liang, S., Jia, H., Stadlmayr, A., Tang, L., Lan, Z. et al. (2015) Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nature Communications, 6, 6528.

[21]

De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J.B., Massart, S. et al. (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences, 107, 14691–14696.

[22]

Fischer, J., & Lindenmayer, D.B. (2000) An assessment of the published results of animal relocations. Biological Conservation, 96, 1–11.

[23]

Frosth, S., Eriksson, H.K. & Rosander, A., (2023) Development of a multiplex quantitative PCR assay for simultaneous detection of treponema phagedenis, treponema pedis, treponema medium, and ‘treponema vincentii’ and evaluation on bovine digital dermatitis biopsies. Veterinary Research Communications, 47, 1937–1947.

[24]

Geva-Zatorsky, N., Alvarez, D., Hudak, J.E., Reading, N.C., Erturk-Hasdemir, D., Dasgupta, S. et al. (2015) In vivo imaging and tracking of host–microbiota interactions via metabolic labeling of gut anaerobic bacteria. Nature Medicine, 21, 1091–1100.

[25]

Di Gioia, D., Aloisio, I., Mazzola, G., & Biavati, B., (2014) Bifidobacteria: their impact on gut microbiota composition and their applications as probiotics in infants. Applied Microbiology and Biotechnology, 98, 563–577.

[26]

Grilli, D.J., Fliegerová K., Kopečný J., Lama, S.P., Egea, V., Sohaefer, N. et al. (2016) Analysis of the rumen bacterial diversity of goats during shift from forage to concentrate diet. Anaerobe, 42, 17–26.

[27]

Gu, J., Yu, L., Hua, Y., Ning, Y., HENG, B., QI, J. et al. (2018) A comparison of food habits and prey preferences of Amur tiger (Panthera tigris altaica) at the southwest primorskii krai in russia and hunchun in China. Integrative Zoology, 13, 595–603.

[28]

Guan, Y., Yang, H., Han, S., Feng, L., Wang, T., & Ge, J., (2017) Comparison of the gut microbiota composition between wild and captive sika deer (Cervus nippon hortulorum) from feces by high-throughput sequencing. AMB Express, 7, 212.

[29]

Guo, J., Jin, Y., Tian, X., Bao, H., Sun, Y., Gray, T. et al. (2022) Diet-induced microbial adaptation process of red deer (Cervus elaphus) under different introduced periods. Frontiers in Microbiology, 13, 1033050.

[30]

Henriques, S.F., Dhakan, D.B., Serra, L., Francisco, A.P., Carvalho-Santos, Z., Baltazar, C. et al. (2020) Metabolic cross-feeding in imbalanced diets allows gut microbes to improve reproduction and alter host behaviour. Nature Communications, 11, 4236.

[31]

Hooper, L.V., Midtvedt, T., & Gordon, J.I. (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annual Review of Nutrition, 22, 283–307.

[32]

Hu, J., Lin, S., Zheng, B., & Cheung, P.C.K. (2018) Short-chain fatty acids in control of energy metabolism. Critical Reviews in Food Science and Nutrition, 58, 1243–1249.

[33]

Hu, X., Liu, G., Shafer, A.B.A., Wei, Y., Zhou, J., Lin, S. et al. (2017) Comparative analysis of the gut microbial communities in forest and alpine musk deer using high-throughput sequencing. Frontiers in Microbiology, 8, 572.

[34]

Jiang, H., Chen, W., Su, L., Huang, M., Lin, L., Su, Q. et al. (2020) Impact of host intraspecies genetic variation, diet, and age on bacterial and fungal intestinal microbiota in tigers. MicrobiologyOpen, 9, e1050.

[35]

Jiao, J., Wu, J., Zhou, C., Tang, S., Wang, M., & Tan, Z., (2016) Composition of ileal bacterial community in grazing goats varies across non-rumination, transition and rumination stages of life. Frontiers in Microbiology, 7, 1364.

[36]

Jolivet-Gougeon, A., & Bonnaure-Mallet, M., (2018) Treponema, iron and neurodegeneration. Current Alzheimer Research, 15, 716–722.

[37]

Kedia, S., Ghosh, T.S., Jain, S., Desigamani, A., Kumar, A., Gupta, V. et al. (2021) Gut microbiome diversity in acute severe colitis is distinct from mild to moderate ulcerative colitis. Journal of Gastroenterology and Hepatology, 36, 731–739.

[38]

Kim, J.E., Kim, H.-E., Park, J.I., Cho, H., Kwak, M.-J., Kim, B.-Y. et al. (2020) The association between gut microbiota and uremia of chronic kidney disease. Microorganisms, 8, 907.

[39]

Knights, D., Costello, E.K. & Knight, R., (2011) Supervised classification of human microbiota. FEMS Microbiology Reviews, 35, 343–359.

[40]

Kohl, K.D., Skopec, M.M. & Dearing, M.D. (2014) Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conservation Physiology, 2(1), cou009.

[41]

Kohl, K.D., Weiss, R.B., Cox, J., Dale, C., & Denise Dearing, M., (2014) Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecology Letters, 17, 1238–1246.

[42]

Lecorps, B., Weary, D.M. & Von Keyserlingk, M.A.G. (2021) Captivity-Induced depression in animals. Trends in Cognitive Sciences, 25, 539–541.

[43]

Leth, M.L., Ejby, M., Workman, C., Ewald, D.A., Pedersen, S.S., Sternberg, C., et al. (2018) Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut. Nature Microbiology, 3(5), 570–580.

[44]

Ley, R.E. (2010) Obesity and the human microbiome. Current Opinion in Gastroenterology, 26, 5–11.

[45]

Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., Bircher, J.S. et al. (2008) Evolution of mammals and their gut microbes. Science, 320, 1647–1651.

[46]

Li, J., Lin, S., Vanhoutte, P.M., Woo, C.W. & Xu, A., (2016) Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe−/− mice. Circulation, 133, 2434–2446.

[47]

Li, Y., Hu, X., Yang, S., Zhou, J., Qi, L., Sun, X. et al. (2018) Comparison between the fecal bacterial microbiota of healthy and diarrheic captive musk deer. Frontiers in Microbiology, 9, 300.

[48]

Li, Z., Wang, X., Zhang, T., Si, H., Nan, W., Xu, C. et al. (2018) The development of microbota and metabolome in small intestine of sika deer (Cervus nippon) from birth to weaning. Frontiers in Microbiology, 9, 4.

[49]

Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K. & Knight, R., (2012) Diversity, stability and resilience of the human gut microbiota. Nature, 489, 220–230.

[50]

Macchione, I.G., Lopetuso, L.R., Ianiro, G., Napoli, M., Gibiino, G., Rizzatti, G. et al. (2019) Akkermansia muciniphila: key player in metabolic and gastrointestinal disorders. European Review for Medical and Pharmacological Sciences, 23, 8075–8083.

[51]

Mariat, D., Firmesse, O., Levenez, F., Guimarăes, V., Sokol, H., Doré J. et al. (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiology, 9, 123.

[52]

Mckenney, E.A., Koelle, K., Dunn, R.R. & Yoder, A.D. (2018) The ecosystem services of animal microbiomes. Molecular Ecology, 27, 2164–2172.

[53]

Mckenzie, V.J., Song, S.J., Delsuc, F., Prest, T.L., Oliverio, A.M., Korpita, T.M. et al. (2017) The effects of captivity on the mammalian gut microbiome. Integrative and Comparative Biology, 57, 690–704.

[54]

Mcnabney, S., & Henagan, T., (2017) Short chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients, 9, 1348.

[55]

Miller, A.W., Kohl, K.D. & Dearing, M.D. (2014) The gastrointestinal tract of the White-throated woodrat (Neotoma albigula) harbors distinct consortia of oxalate-degrading bacteria. Applied and Environmental Microbiology, 80, 1595–1601.

[56]

Mirande, C., Kadlecikova, E., Matulova, M., Capek, P., Bernalier-Donadille, A., Forano, E. et al. (2010) Dietary fibre degradation and fermentation by two xylanolytic bacteria Bacteroides xylanisolvens XB1AT and Roseburia intestinalis XB6B4 from the human intestine. Journal of Applied Microbiology, 109(2), 451–460.

[57]

Mosca, A., Leclerc, M., & Hugot, J.P. (2016) Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem? Frontiers in Microbiology, 7, 455.

[58]

Naito, Y., Uchiyama, K., & Takagi, T., (2018) A next-generation beneficial microbe: akkermansia muciniphila. Journal of Clinical Biochemistry and Nutrition, 63, 33–35.

[59]

Naseribafrouei, A., Hestad, K., Avershina, E., Sekelja, M., Linløkken, A., Wilson, R. et al. (2014) Correlation between the human fecal microbiota and depression. Neurogastroenterology and Motility, 26, 1155–1162.

[60]

Ning, Y., Qi, J., Dobbins, M.T., Liang, X., Wang, J., Chen, S. et al. (2020) Comparative analysis of microbial community structure and function in the gut of wild and captive Amur tiger. Frontiers in Microbiology, 11, 1665.

[61]

Oksanen, J., Blanchet, F., Friendly, M., Kindt, R., Legendre, P., & Mcglinn, D., (2020). Vegan: Community ecology package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists. R package version 2.5 (2019). R Package Version. Available online: https://CRAN.R-project.org/package=vegan [Accessed 13th December 2021].

[62]

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B. et al. (2015) Vegan community ecology package: ordination methods, diversity analysis and other functions for community and vegetation ecologists. R package version, 2-3.

[63]

Parker, B.J., Wearsch, P.A., Veloo, A.C.M. & Rodriguez-Palacios, A., (2020) The genus alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Frontiers in Immunology, 11, 906.

[64]

Pratchett, D., & Jones, R., (1991) Use of DHP-degrading rumen bacteria to overcome toxicity in. Tropical Grasslands, 25, 268–274.

[65]

Preidis, G.A., Ajami, N.J., Wong, M.C., Bessard, B.C., Conner, M.E. & Petrosino, J.F. (2015) Composition and function of the undernourished neonatal mouse intestinal microbiome. The Journal of Nutritional Biochemistry, 26, 1050–1057.

[66]

Rooks, M.G. & Garrett, W.S. (2016) Gut microbiota, metabolites and host immunity. Nature Reviews Immunology, 16, 341–352.

[67]

Schoeler, M., & Caesar, R., (2019) Dietary lipids, gut microbiota and lipid metabolism. Reviews in Endocrine and Metabolic Disorders, 20, 461–472.

[68]

Seddon, P.J., Strauss, W.M. & Innes, J., (2012) Animal translocations: what are they and why do we do them? In: Ewen, J.G., Armstrong, D.P., Parker, K.A. & Seddon, P.J. (Eds.) Reintroduction biology. John Wiley & Sons, Ltd, pp. 1–32.

[69]

Shan, L., Hu, Y., Zhu, L., Yan, L., Wang, C., Li, D. et al. (2014) Large-Scale genetic survey provides insights into the captive management and reintroduction of giant pandas. Molecular Biology and Evolution, 31, 2663–2671.

[70]

Su, T., Liu, R., Long, Y., Quan, S., Lai, S., Wang, L. et al. (2018) 1-Day or 5-Day fecal samples, which one is more beneficial to be used for DNA-Based gut microbiota study. Current Microbiology, 75, 288–295.

[71]

Tamanai-Shacoori, Z., Smida, I., Bousarghin, L., Loreal, O., Meuric, V., Fong, S.B. et al. (2017) Roseburia spp.: a marker of health? Future Microbiology, 12, 157–170.

[72]

Tang, J., Wang, C., Zhang, H., Zhao, J., Guo, W., Mishra, S. et al. (2020) Gut microbiota in reintroduction of giant panda. Ecology and Evolution, 10, 1012–1028.

[73]

Tap, J., Furet, J.-P., Bensaada, M., Philippe, C., Roth, H., Rabot, S. et al. (2015) Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environmental Microbiology, 17, 4954–4964.

[74]

De La Torre, U., Henderson, J.D., Furtado, K.L., Pedroja, M., Elenamarie, O., Mora, A. et al. (2019) Utilizing the fecal microbiota to understand foal gut transitions from birth to weaning. PLoS One, 14, e0216211.

[75]

Tremaroli, V., & Bäckhed, F., (2012) Functional interactions between the gut microbiota and host metabolism. Nature, 489, 242–249.

[76]

Trevelline, B.K., Fontaine, S.S., Hartup, B.K. & Kohl, K.D. (2019) Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proceedings of the Royal Society B: Biological Sciences, 286, 20182448.

[77]

Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R. & Gordon, J.I. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027–1031.

[78]

Ufarté L., Potocki-Veronese, G., & Laville, É. (2015) Discovery of new protein families and functions: new challenges in functional metagenomics for biotechnologies and microbial ecology. Frontiers in Microbiology, 6, 563.

[79]

Uyeno, Y., Sekiguchi, Y., & Kamagata, Y., (2010) rRNA-based analysis to monitor succession of faecal bacterial communities in Holstein calves. Letters in Applied Microbiology, 51, 570–577.

[80]

Vallianou, N., Stratigou, T., Christodoulatos, G.S. & Dalamaga, M., (2019) Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: current evidence and perspectives. Current Obesity Reports, 8, 317–332.

[81]

Wang, L., Ding, J., Yang, Z., Chen, H., Yao, R., Dai, Q. et al. (2019) Père david’s deer gut microbiome changes across captive and translocated populations: implications for conservation. Evolutionary Applications, 12, 622–635.

[82]

Wei, M., Li, C., Dai, Y., Zhou, H., Cui, Y., Zeng, Y. et al. (2021) High-Throughput absolute quantification sequencing revealed osteoporosis-related gut microbiota alterations in han Chinese elderly. Frontiers in Cellular and Infection Microbiology, 11, 630372.

[83]

Xiong, B., Luo, Q., Zheng, S., & Zheng, Y., (2020) Description of the development of the Chinese tables of feed ingredients and nutritive values (31st edition, 2020). China Feed, 21, 87–97.

[84]

Xue, Z., Zhang, W., Wang, L., Hou, R., Zhang, M., Fei, L. et al. (2015) The Bamboo-Eating giant panda harbors a Carnivore-Like gut microbiota, with excessive seasonal variations. mBio, 6, e00022–15.

[85]

Yang, G., Shi, C., Zhang, S., Liu, Y., Li, Z., Gao, F. et al. (2020) Characterization of the bacterial microbiota composition and evolution at different intestinal tract in wild pigs (Sus scrofa ussuricus). PeerJ, 8, e9124.

[86]

Yang, H., Li, M.-M., Zhou, M.-F., Xu, H.-S., Huan, F., Liu, N. et al. (2021) Links between gut dysbiosis and neurotransmitter disturbance in chronic restraint stress-induced depressive behaviours: the role of inflammation. Inflammation, 44, 2448–2462.

[87]

Yang, Z., Gu, X., Nie, Y., Huang, F., Huang, Y., Dai, Q. et al. (2018) Reintroduction of the giant panda into the wild: a good start suggests a bright future. Biological Conservation, 217, 181–186.

[88]

Yeoman, C.J., Chia, N., Yildirim, S., Miller, M.E.B., Kent, A., Stumpf, R. et al. (2011) Towards an evolutionary model of Animal-Associated microbiomes. Entropy, 13, 570–594.

[89]

Yin, Z., Liu, B., Feng, S., He, Y., Tang, C., Chen, P. et al. (2023) A large genetic causal analysis of the gut microbiota and urological cancers: a bidirectional mendelian randomization study. Nutrients, 15, 4086.

[90]

Youngblut, N.D., Reischer, G.H., Walters, W., Schuster, N., Walzer, C., Stalder, G. et al. (2019) Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nature Communications, 10, 2200.

[91]

Zhai, Q., Feng, S., Arjan, N., & Chen, W., (2019) A next generation probiotic, Akkermansia muciniphila. Critical Reviews in Food Science and Nutrition, 59, 3227–3236.

[92]

Zhang, D., Jian, Y.-P., Zhang, Y.-N., Li, Y., Gu, L.-T., Sun, H.-H. et al. (2023) Short-chain fatty acids in diseases. Cell Communication and Signaling, 21, 212.

[93]

Zhang, G., Li, X., & Lin, N., (2020) YawMMF: effective mixed model functions. https://github.com/usplos/YawMMF

[94]

Zhang, M., Shi, M., Fan, M., Xu, S., Li, Y., Zhang, T. et al. (2018) Comparative analysis of gut microbiota changes in Père David’s deer populations in Beijing Milu Park and Shishou, Hubei Province in China. Frontiers in Microbiology, 9, 1258.

[95]

Zhang, W., Liu, W., Hou, R., Zhang, L., Schmitz-Esser, S., Sun, H. et al. (2018) Age-associated microbiome shows the giant panda lives on hemicelluloses, not on cellulose. The ISME journal, 12, 1319–1328.

[96]

Zhang, W., Wang, S., Wang, H., Tang, Y.-J., Tang, Y., & Liang, X., (2019) Who is who in oral cancer? Experimental Cell Research, 384, 111634.

[97]

Zhou, W., Yan, Y., Mi, J., Zhang, H., Lu, L., Luo, Q. et al. (2018) Simulated digestion and fermentation in vitro by human gut microbiota of polysaccharides from bee collected pollen of Chinese wolfberry. Journal of Agricultural and Food Chemistry, 66, 898–907.

RIGHTS & PERMISSIONS

2024 The Author(s). Integrative Conservation published by John Wiley & Sons Australia, Ltd on behalf of Xishuangbanna Tropical Botanical Garden (XTBG).

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/