Rapid DNA barcoding-based fern and lycophyte inventories of protected areas—A pilot study to introduce a simple but effective protocol

Hongmei Liu , Yarong Chai , Harald Schneider

Integrative Conservation ›› 2024, Vol. 3 ›› Issue (3) : 196 -211.

PDF
Integrative Conservation ›› 2024, Vol. 3 ›› Issue (3) : 196 -211. DOI: 10.1002/inc3.60
RESEARCH ARTICLE

Rapid DNA barcoding-based fern and lycophyte inventories of protected areas—A pilot study to introduce a simple but effective protocol

Author information +
History +
PDF

Abstract

Recording inventories of species conserved in protected areas is a key step to evaluate the effectiveness of Kunming Montreal Global Biodiversity Framework (KM-GBF) targets, such as the expansion of protected areas. The application of DNA barcoding facilitates the rapid production of enables to obtain rapid inventories with reduced reliance on taxon experts. These inventories aim not only to confirm existing records but also to minimize gaps in our knowledge of the distribution and taxonomy of species targeted for conservation through the implementation of protected areas. This pilot study introduces a simplified DNA barcoding pipeline as a reliable tool for recording fern and lycophyte species occurring in protected areas. The pipeline emphasizes limited and/or short training requirements, reducing the input required from taxon experts and maximizing shared benefits between conservationists and taxonomists. Despite using a single DNA barcoding region, 78% of the accessions were unambiguously identified to the species level. This applied approach not only confirmed previous records but also identified several previously overlooked species, either as newly recorded species conserved in the protected area or as species new to science. The pilot project effectively documented known species diversity and identified gaps in our taxonomic knowledge by discovering previously unknown and locally rare taxa. This rapid assessment enhances productive exchanges between conservation practitioners and taxon experts, with substantial benefits for both parties.

Keywords

DNA barcoding / GBF targets / inventories / land plants / protected areas / taxonomic expertise

Cite this article

Download citation ▾
Hongmei Liu, Yarong Chai, Harald Schneider. Rapid DNA barcoding-based fern and lycophyte inventories of protected areas—A pilot study to introduce a simple but effective protocol. Integrative Conservation, 2024, 3(3): 196-211 DOI:10.1002/inc3.60

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CBOL Plant Working Group. (2009) A DNA barcode of land plants. Proceedings National Academy of Sciences of the United States of America, 106, 12794–12797. Available from:

[2]

Chang, Y., Hori, K., Murakami, N., Cao, L., Lu, S., & Schneider, H., (2018) Validation of Hymenasplenium laterepens (Aspleniaceae): evidence from morphology and molecular analyses. Phytotaxa, 374, 277–290. Available from:

[3]

Chang, Y., Zhang, G., Wang, Z., & Cao, L., (2022) Molecular and morphological evidence reveals a new fern species of Hymenasplenium (Aspleniaceae) from south and southwestern China. PhytoKeys, 211, 93–106. Available from:

[4]

Chen, K., Khine, P.K., Yang, Z., & Schneider, H., (2022) Historical plant records enlighten the conservation efforts of ferns and lycophytes’ diversity in tropical China. Journal for Nature Conservation, 68, 126197. Available from:

[5]

Cheng, X., & Murakami, N., (1998) Cytotaxonomic study of genus Hymenasplenium (Aspleniaceae) in Xishuangbanna, Southwestern China. Journal of Plant Research, 111, 495–500. Available from:

[6]

Cicuzza, D., (2021) Rare pteridophytes are disproportionately frequent in the tropical forest of Xishuangbanna, Yunnan, China. Acta Oecologica, 110, 103717. Available from:

[7]

de Groot, G.A., During, H.J., Maas, J.W., Schneider, H., Vogel, J.C. & Erkens, R.H.J. (2011) Use of rbcL and trnL-F as a two-locus DNA barcode for identification of NW-European ferns: an ecological perspective. PLoS One, 6, e16371. Available from:

[8]

Della, A.P. (2022) Ferns as ecological indicators. In: J. Marimutho, H. Fernandez, A. Kumar & S. Thangaiah (Eds.) Ferns: biotechnology, propagation, medicinal uses and environmental regulation. Berlin: Springer, pp. 587–601. Available from:

[9]

Dong, S.Y. (2011) Taxonomic studies on Asplenium sect. Thamnopteris (Aspleniaceae) I: cytological observations. American Fern Journal, 101, 156–171. Available from:

[10]

Ebihara, A., Nitta, J.H. & Ito, M., (2010) Molecular species identification with rich floristic sampling: DNA barcoding the pteridophyte flora of Japan. PLoS One, 5, e15136. Available from:

[11]

Engel, M.S., Ceríaco, L.M.P., Daniel, G.M., Dellapé P.M., Löbl, I., Marinov, M. et al. (2021) The taxonomic impediment: a shortage of taxonomists, not the lack of technical approaches. Zoological Journal of the Linnean Society, 193, 381–387. Available from: https://doi.org/10.1093/zoolinnean/zalb072

[12]

Fu, L., K. Monro, A., & Wei, Y., (2022) Cataloguing vascular plant diversity of karst caves in China. Biodiversity Science, 30, 21537. Available from:

[13]

Gascuel, O., (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Molecular Biology and Evolution, 14, 685–695. Available from:

[14]

Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O., (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321. Available from:

[15]

Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98. Available from:

[16]

Hebert, P.D.N., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270, 313–321. Available from:

[17]

Hughes, A.C. (2023) The post-2020 global biodiversity framework: how did we get here, and where do we go next? Integrative Conservation, 2, 1–9. Available from:

[18]

Jiang, R.H., Zhang, X.C. & Liu, Y., (2011) Asplenium cornutissimum (Aspleniaceae), a new species from karst caves in Guangxi, China. Brittonia, 63, 83–86. Available from:

[19]

Jin, L., Shi, H.Y., Li, T., Zhao, N., Xu, Y., Xiao, T.W. et al. (2023) A DNA barcode library for woody plants in tropical and subtropical China. Scientific Data, 10, 819. Available from:

[20]

Justin Nowakowski, A., Watling, J.I., Murray, A., Deichmann, J.L., Akre, T.S., Muñoz Brenes, C.L. et al. (2023) Protected areas slow declines unevenly across the tetrapod tree of life. Nature, 622, 101–106. Available from:

[21]

Kress, W.J. (2017) Plant DNA barcodes: applications today and in the future. Journal of Systematics and Evolution, 55, 291–307. Available from:

[22]

Lefort, V., Longueville, J.E. & Gascuel, O., (2017) SMS: smart model selection in PhyML. Molecular Biology and Evolution, 34, 2422–2424. Available from:

[23]

Lehtonen, S., Poczai, P., Sablok, G., Hyvönen, J., Karger, D.N. & Flores, J., (2020) Exploring the phylogeny of the marattialean ferns. Cladistics, 36, 569–593. Available from:

[24]

Letunic, I., & Bork, P., (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. Available from:

[25]

Li, F.W., Tan, B.C., Buchbender, V., Moran, R.C., Rouhan, G., Wang, C.N. et al. (2009) Identifying a mysterious aquatic fern gametophyte. Plant Systematics and Evolution, 281, 77–86. Available from:

[26]

Li, Z.Y., He, Z.R. & Zhang, X.C. (2013) A taxonomic revision of Cyclosorus subgenus Cyclosoriopsis (Thelypteridaceae) from China. Journal of Systematics and Evolution, 51, 609–638. Available from:

[27]

Liang, Z.L., He, Z.R. & ZHang, L.B. (2021) Polystichum dongchuaense and P. menglaense (subg. Haplopolystichum; Dryopteridaceae), two new ferns from Yunnan, China. Phytotaxa, 479, 114–120. Available from:

[28]

Lin, Y.X. & Viane, R., (2013) Aspleniaceae. In: Z.Y. Wu, P.H. Raven & D.Y. Hong (Eds.) Flora of China (Pteridophytes), vol. 203. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press, pp. 267–316.

[29]

Liu, H.M., Russell, S.R., Vogel, J., & Schneider, H., (2018) Inferring the potential of plastid DNA-based identification of derived ferns: a case study on the Asplenium trichomanes aggregate in Europe. Plant Systematics and Evolution, 304, 1009–1022. Available from:

[30]

Liu, J., Yan, H.F., Newmaster, S.G., Pei, N., Ragupathy, S., & Ge, X.J. (2014) The use of DNA barcoding as a tool for the conservation biogeography of subtropical forests in China. Diversity and Distributions, 21, 188–199. Available from:

[31]

Lu, J.M., Cheng, X., Wu, D., & Li, D.Z. (2006) Chromosome study of the fern genus Cyrtomium (Dryopteridaceae). Botanical Journal of the Linnean Society, 150, 221–228. Available from:

[32]

Lu, N.T., Wei, H.J., Vuong, L.D., Toan, L.C., Zhang, L.B. & Zhang, L., (2023) Cyrtomium calcis sp. nov. and six new records of the shield fern family (Dryopteridaceae) from Vietnam. Phytotaxa, 583, 16. Available from:

[33]

Ma, X.Y., Xie, C.X., Liu, C., Song, J.Y., Yao, H., Luo, K. et al. (2010) Species identification of medicinal pteridophytes by a DNA barcode marker, the chloroplast psbA-trnH intergenic region. Biological & Pharmaceutical Bulletin, 33, 1919–1924. Available from:

[34]

May, M.R., Contreras, D.L., Sundue, M.A., Nagalingum, N.S., Looy, C.V. & Rothfels, C.J. (2021) Inferring the total-evidence timescale of marattialean fern evolution in the face of model sensitivity. Systematic Biology, 70, 1232–1255. Available from:

[35]

Nitta, J.H. & Chambers, S.M. (2022) Identifying cryptic fern gametophytes using DNA barcoding: a review. Applications in Plant Sciences, 10, e11465. Available from:

[36]

Nitta, J.H., Ebihara, A., & Smith, A.R. (2020) A taxonomic and molecular survey of the pteridophytes of the Nectandra cloud forest reserve, Costa Rica. PLoS One, 15, e0241231. Available from:

[37]

Nitta, J.H., Meyer, J.Y., Taputuarai, R., & Davis, C.C. (2017) Life cycle matters: DNA barcoding reveals contrasting community structure between fern sporophytes and gametophytes. Ecological Monographs, 87, 278–296. Available from:

[38]

Nitta, J.H., Schuettpelz, E., Ramírez-Barahona, S., & Iwasaki, W., (2022) An open and continuously updated fern tree of life. Frontiers in Plant Science, 13, 909768. Available from:

[39]

Nong, S.Y., Liu, Y., YAN, K.J. & Wei, H.J. (2023) Cyrtomium remotipinnum (Dryopteridaceae), a new species from karst area in Guangxi, China. Phytotaxa, 607, 133–141. Available from:

[40]

Pacifici, M., Di Marco, M., & Watson, J.E.M. (2020) Protected areas are now the last strongholds for many imperiled mammal species. Conservation Letters, 13, e12748. Available from:

[41]

Pereira, C.L., Gilbert, M.T.P., Araújo, M.B. & Matias, M.G. (2021) Fine-tuning biodiversity assessments: a framework to pair eDNA metabarcoding and morphological approaches. Methods in Ecology and Evolution, 12, 2397–2409. Available from:

[42]

PPGI. (2016) A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution, 54, 563–603. Available from:

[43]

Rodrigues, A.S.L. & Cazalis, V., (2020) The multifaceted challenge of evaluating protected area effectiveness. Nature Communications, 11, 5147. Available from:

[44]

Ruppert, K.M., Kline, R.J. & Rahman, M.S. (2019) Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation, 17, e00547. Available from:

[45]

Schneider, H., & Schuettpelz, E., (2006) Identifying fern gametophytes using DNA sequences. Molecular Ecology Notes, 6, 989–991. Available from:

[46]

Schneider, H., Liu, H.M., Chang, Y.F., Ohlsen, D., Perrie, L.R., Shepherd, L. et al. (2017) Neo- and paleopolyploidy contribute to the species diversity of Asplenium—the most species-rich genus of ferns. Journal of Systematics and Evolution, 55, 353–364. Available from:

[47]

Shang, H., Wang, Y., Zhu, X.F., Zhao, G.H., Wang, F.H., Lu, J.M. et al. (2016) Likely allopatric origins of Adiantum × meishanianum (Pteridaceae) through multiple hybridizations. Journal of Systematics and Evolution, 54, 528–534. Available from:

[48]

Siqi, L., Xianchun, Z., & Ran, W., (2019) Integrative taxonomy resolved species delimitation in a fern complex: a case study of the Asplenium coenobiale complex. Biodiversity Science, 27, 1205–1220. Available from:

[49]

Song, F., Li, T., Yan, H.F., Feng, Y., Jin, L., Burgess, K.S. et al. (2023) Plant DNA barcode library for native flowering plants in the arid region of northwestern China. Molecular Ecology Resources, 23, 1389–1402. Available from:

[50]

Trujillo-Argueta, S., del Castillo, R.F., Tejero-Diez, D., Matias-Cervantes, C.A. & Velasco-Murguía, A., (2021) DNA barcoding ferns in an unexplored tropical montane cloud forest area of southeast Oaxaca, Mexico. Scientific Reports, 11, 22837. Available from:

[51]

Wall, W.A., Just, M.G., Huskins, S.D. & Hohmann, M.G. (2024) Enhancing rare plant population predictions through demographic modeling of seed predation, dispersal, and habitat suitability. Plant Ecology, 225, 63–74. Available from:

[52]

Wang, F.H., Lu, J.M., Wen, J., Ebihara, A., & Li, D.Z. (2016) Applying DNA barcodes to identify closely related species of ferns: a case study of the Chinese Adiantum (Pteridaceae). PLoS One, 11, e0160611. Available from:

[53]

Watson, J.E.M., Venegas-Li, R., Grantham, H., Dudley, N., Stolton, S., Rao, M. et al. (2023) Priorities for protected area expansion so nations can meet their Kunming-Montreal Global Biodiversity Framework commitments. Integrative Conservation, 2, 140–155. Available from:

[54]

Wei, H.J., Huang, Y., & Chen, B., (2023) Leptochilus scandens (Polypodiaceae), a new microsoroid fern species from Guangdong, China. Phytotaxa, 618, 79–85. Available from:

[55]

Wei, L.L. & Dong, S.Y. (2012) Taxonomic studies on Asplenium sect. Thamnopteris (Aspleniaceae) II: spore morphology. Nordic Journal of Botany, 30, 90–103. Available from:

[56]

Wei, X.P. & Zhang, X.C. (2013) Species delimitation in the fern genus Lemmaphyllum (Polypodiaceae) based on multivariate analysis of morphological variation. Journal of Systematics and Evolution, 51, 485–496. Available from:

[57]

Wheeler, Q.D., Knapp, S., Stevenson, D.W., Stevenson, J., Blum, S.D., Boom, B.M. et al. (2012) Mapping the biosphere: exploring species to understand the origin, organization and sustainability of biodiversity. Systematics and Biodiversity, 10, 1–20. Available from: https://www.tandfonline.com/doi/full/10.1080/14772000.2012.665095

[58]

Williams, D.R., Rondinini, C., & Tilman, D., (2022) Global protected areas seem insufficient to safeguard half of the world’s mammals from human-induced extinction. Proceedings of the National Academy of Sciences of the United States of America, 119, e2200118119. Available from:

[59]

Wu, S.K., & Mitsuta, S., (1985) Two new species of cyrtomioid ferns from limestone area of Yunnan. Acta Phytotaxonomica et Geobotanica, 36, 22–26.

[60]

Xu, K.W., Lin, C.X., Guo, J.Q., Zhou, X.X., Liao, W.B. & Mao, L.F. (2022) Asplenium danxiaense sp. nov. (Aspleniaceae, Aspleniineae), a new tetraploid fern species from Guangdong, China, based on morphological and molecular data. European Journal of Taxonomy, 798, 162–173. Available from:

[61]

Xu, K.W., Zhang, L., Rothfels, C.J., Smith, A.R., Viane, R., Lorence, D. et al. (2020) A global plastid phylogeny of the fern genus Asplenium (Aspleniaceae). Cladistics, 36, 22–71. Available from:

[62]

Xu, K.W., Zhou, X.M., Yin, Q.Y., Zhang, L., Lu, N.T., Knapp, R. et al. (2018) A global plastid phylogeny uncovers extensive cryptic speciation in the fern genus Hymenasplenium (Aspleniaceae) from Asia. Phytotaxa, 358, 1–25. Available from:

[63]

Yu, Z.Y., Liang, Z.L., Hu, Y.P., Liang, Z.L., He, H.L., Li, J.H. et al. (2024) Leptochilus brevipes (Polypodiaceae), a new fern species from southeastern Yunnan, China based on morphological and molecular evidence. Phytotaxa, 634, 143–152. Available from:

[64]

Zhang, G.C., Hong, H.F., Chen, G.H., Lu, S.G. & Chang, Y.F. (2021) Species delimitation of Hymenasplenium obliquissimum group (Aspleniaceae) in southwestern China. Phytotaxa, 480, 29–44. Available from:

[65]

Zhang, L., Lu, N.T., Zhou, X.M., Chen, D.K., Knapp, R., Zhou, L. et al. (2019) A plastid phylogeny of the Old World fern genus Leptochilus (Polypodiaceae): implications for cryptic speciation and progressive colonization from lower to higher latitudes. Molecular Phylogenetics and Evolution, 134, 311–322. Available from:

[66]

Zhang, L.B., Wu, S.G., Xiang, J.Y., Xing, F.W., He, H., Wang, F.G. et al. (2013) Dryopteridceae. In: Wu, Z.-Y., Raven, P.H. & Hong, D.Y. (Eds.) Flora of China (Pteridophytes), vols. 2–3. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press.

[67]

Zhao, C.F., Wei, R., Zhang, X.C. & Xiang, Q.P. (2020) Backbone phylogeny of Lepisorus (Polypodiaceae) and a novel infrageneric classification based on the total evidence from plastid and morphological data. Cladistics, 36, 235–258. Available from:

[68]

Zhao, M.X., Xiang, J.Y., Geekiyanage, N., Sun, H.Y., Myo, K.M., Dian, R.N. et al. (2017) Leptochilus mengsongensis (Polypodiaceae), a new species of fern from SW China. Phytotaxa, 317, 144–148. Available from: https://www.biotaxa.org/Phytotaxa/article/view/phytotaxa.317.2.7

RIGHTS & PERMISSIONS

2024 The Author(s). Integrative Conservation published by John Wiley & Sons Australia, Ltd on behalf of Xishuangbanna Tropical Botanical Garden (XTBG).

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/