Organic-inorganic CdS/CBT S-scheme heterojunction with enhanced charge transfer for efficient photocatalytic hydrogen production

Wang Wang , Yaqi Li , Jun Zhu , Bei Cheng , Song Zhang , Guoqiang Luo , Jingsan Xu , Jiaguo Yu , Shaowen Cao

InfoScience ›› 2025, Vol. 2 ›› Issue (1) : e70000

PDF
InfoScience ›› 2025, Vol. 2 ›› Issue (1) : e70000 DOI: 10.1002/inc2.70000
RESEARCH ARTICLE

Organic-inorganic CdS/CBT S-scheme heterojunction with enhanced charge transfer for efficient photocatalytic hydrogen production

Author information +
History +
PDF

Abstract

Owing to its ability to reduce charge recombination and enhance redox capability, the step-scheme (S-scheme) heterojunction has manifested appealing prospect for photocatalysis. In this work, an organic-inorganic S-scheme heterojunction based on CdS nanorods and conjugated polymer 2-hexyl-carbazole-benzothiadiazole (CBT) is constructed. The obtained catalyst exhibited impressive photocatalytic hydrogen production performance (14.02 mmol g-1 h-1) with a high apparent quantum efficiency of 5.4% at 420 nm. The charge transfer mechanism and the enhancement of photocatalytic hydrogen production in S-scheme heterojunctions were investigated by density functional theory calculations, in situ X-ray photoelectron spectroscopy, and in situ Kelvin probe force microscopy. The successful construction of organic-inorganic S-scheme heterojunctions and the formation of Cd-S bonds at the interface effectively promoted the separation and transfer of charge carriers.

Keywords

charge separation and transfer / photocatalytic hydrogen production / S-scheme heterojunction

Cite this article

Download citation ▾
Wang Wang, Yaqi Li, Jun Zhu, Bei Cheng, Song Zhang, Guoqiang Luo, Jingsan Xu, Jiaguo Yu, Shaowen Cao. Organic-inorganic CdS/CBT S-scheme heterojunction with enhanced charge transfer for efficient photocatalytic hydrogen production. InfoScience, 2025, 2(1): e70000 DOI:10.1002/inc2.70000

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nishioka S, Osterloh FE, Wang X, Mallouk TE, Maeda K. Photocatalytic water splitting. Nat Rev Dis Primers. 2023; 3(1): 42.

[2]

Wang S, Liu D, Zhang C, et al. Boosting photocatalytic water vapor splitting by the integration of porous g-C3N4 and carbonized melamine foam. Sci China Mater. 2024; 67(9): 2957-2964.

[3]

Chen Z, Wan S, Cheng B, et al. Efficient overall photosynthesis of H2O2 by the BTz@Mn0.2Cd0.8S S-scheme heterojunction. Sci China Chem. 2024; 67(6): 1953-1960.

[4]

Balakrishnan A, Jacob MM, Chinthala M, Dayanandan N, Ponnuswamy M, Vo D.-VN. Photocatalytic sponges for wastewater treatment, carbon dioxide reduction, and hydrogen production: a review. Environ Chem Lett. 2024; 22(2): 635-656.

[5]

Jin Y, Zheng D, Fang Z, et al. Salt-melt synthesis of poly(heptazine imide) in binary alkali metal bromides for enhanced visible-light photocatalytic hydrogen production. Interdiscip Mater. 2024; 3(3): 389-399.

[6]

Yang Y, Chu X, Zhang H.-Y, et al. Engineering β-ketoamine covalent organic frameworks for photocatalytic overall water splitting. Nat Commun. 2023; 14(1): 593.

[7]

Qin S, Denisov N, Kim H, Schmuki P. Photocatalytic H2 generation: controlled and optimized dispersion of single atom Co-catalysts based on Pt-TCPP planar adsorption on TiO2. Angew Chem Int Ed. 2024; 63(10):e202316660.

[8]

Hayat A, Sohail M, Ajmal Z, et al. Advances/scope and prospects of g-C3N4 derived fascinating photocatalyst as a leading route towards solar energy adaption. J Clean Prod. 2024; 438:140568.

[9]

Pan Y, Liang W, Wang Z, et al. Facile synthesis of Pt clusters decorated TiO2 nanoparticles for efficient photocatalytic degradation of antibiotics. Interdiscip Mater. 2024; 3(6): 935-945. https://doi.org/10.1002/idm2.12203

[10]

Cheng J, Wang W, Zhang J, et al. Molecularly tunable heterostructured co-polymers containing electron-deficient and -rich moieties for visible-light and sacrificial-agent-free H2O2 photosynthesis. Angew Chem Int Ed. 2024; 63(29):e202406310.

[11]

Song Y, Zheng X, Yang Y, et al. Heterojunction engineering of multinary metal sulfide-based photocatalysts for efficient photocatalytic hydrogen evolution. Adv Mater. 2024; 36(11):2305835.

[12]

Zhu B, Sun J, Zhao Y, Zhang L, Yu J. Construction of 2D S-scheme heterojunction photocatalyst. Adv Mater. 2024; 36(8):2310600.

[13]

Li Y, Wan S, Liang W, et al. D-A conjugated polymer/CdS S-scheme heterojunction with enhanced interfacial charge transfer for efficient photocatalytic hydrogen generation. Small. 2024; 20(31):2312104.

[14]

Wang M, Li Y, Yan D, et al. Dipole polarization modulating of vinylene-linked covalent organic frameworks for efficient photocatalytic hydrogen evolution. Chin J Catal. 2024; 65: 103-112.

[15]

Wan S, Wang W, Cheng B, et al. A superlattice interface and S-scheme heterojunction for ultrafast charge separation and transfer in photocatalytic H2 evolution. Nat Commun. 2024; 15(1):9612.

[16]

Yang C, Zhang Q, Wang W, Cheng B, Yu J, Cao S. 2D/2D g-C3N4@BiOI S-scheme heterojunction with gas-liquid-solid triphase interface for highly efficient CO2 photoreduction. Sci China Mater. 2024; 67(6): 1830-1838.

[17]

Sun GT, Tai ZG, Li F, et al. Construction of ZnIn2S4/CdS/PdS S-scheme heterostructure for efficient photocatalytic H2 production. Small. 2023; 19(27):2207758.

[18]

Zhou H, Wang H, Yue C, et al. Photocatalytic degradation by TiO2-conjugated/coordination polymer heterojunction: preparation, mechanisms, and prospects. Appl Catal, B. 2024; 344:123605.

[19]

Chen D, Wang Z, Zhang J, et al. Modulation of internal electric field in S-scheme heterojunction towards efficient photocatalytic CO2 conversion. Mater Today Phys. 2024; 40:101315.

[20]

Zhang Y.-P, Han W, Yang Y, et al. S-scheme heterojunction of black TiO2 and covalent-organic framework for enhanced photocatalytic hydrogen evolution. Chem Eng J. 2022; 446:137213.

[21]

Li H, Tao S, Wan S, et al. S-scheme heterojunction of ZnCdS nanospheres and dibenzothiophene modified graphite carbon nitride for enhanced H2 production. Chin J Catal. 2023; 46: 167-176.

[22]

Jang JS, Joshi UA, Lee JS. Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J Phys Chem C. 2007; 111(35): 13280-13287.

[23]

Ye X.-L, Huang Y.-Q, Tang X.-Y, Xu J, Peng C, Tan Y.-Z. Two-dimensional extended π-conjugated triphenylene-core covalent organic polymer. J Mater Chem A. 2019; 7(7): 3066-3071.

[24]

Yu F, Wang Z, Zhang S, et al. Molecular engineering of donor-acceptor conjugated polymer/g-C3N4 heterostructures for significantly enhanced hydrogen evolution under visible-light irradiation. Adv Funct Mater. 2018; 28(47):1804512.

[25]

Chen W, Wang L, Mo D, et al. Modulating benzothiadiazole-based covalent organic frameworks via halogenation for enhanced photocatalytic water splitting. Angew Chem Int Ed. 2020; 59(39): 16902-16909.

[26]

Yang D, Li Z.-G, Zhang X, et al. Rational design of ZnCdS/TPPA-1-COF heterostructure photocatalyst by strengthening the interface connection in solar hydrogen production reactions. Nano Res. 2023; 17(3): 1027-1034.

[27]

Xu Y, Mao N, Zhang C, et al. Rational design of donor-π-acceptor conjugated microporous polymers for photocatalytic hydrogen production. Appl Catal, B. 2018; 228: 1-9.

[28]

Iqbal S. Spatial charge separation and transfer in L-cysteine capped NiCoP/CdS nano-heterojunction activated with intimate covalent bonding for high-quantum-yield photocatalytic hydrogen evolution. Appl Catal, B. 2020; 274:119097.

[29]

Zhang X, Xiao J, Hou M, Xiang Y, Chen H. Robust visible/near-infrared light driven hydrogen generation over Z-scheme conjugated polymer/CdS hybrid. Appl Catal, B. 2018; 224: 871-876.

[30]

He B, Bie C, Fei X, et al. Enhancement in the photocatalytic H2 production activity of CdS NRs by Ag2S and NiS dual cocatalysts. Appl Catal, B. 2021; 288:119994.

[31]

Kalia R, Pirzada BM, Kunchala RK, Naidu BS. Noble metal free efficient photocatalytic hydrogen generation by TaON/CdS semiconductor nanocomposites under natural sunlight. Int J Hydrogen Energy. 2023; 48(43): 16246-16258.

[32]

Lan Z.-A, Zhang G, Chen X, Zhang Y, Zhang KAI, Wang X. Reducing the exciton binding energy of donor-acceptor-based conjugated polymers to promote charge-induced reactions. Angew Chem Int Ed. 2019; 58(30): 10236-10240.

[33]

Wang H, Jin S, Zhang X, Xie Y. Excitonic effects in polymeric photocatalysts. Angew Chem Int Ed. 2020; 59(51): 22828-22839.

[34]

Liang Q, Cui S, Liu C, Xu S, Yao C, Li Z. Self-assembly of triptycene-based polymer on Cadmium sulfide nanorod to construct core-shell nanostructure for efficient visible-light-driven photocatalytic H2 evolution. Chem Eng J. 2019; 364: 102-110.

[35]

Wang Z, Zheng X, Chen P, et al. Synchronous construction of a porous intramolecular D-A conjugated polymer via electron donors for superior photocatalytic decontamination. J Hazard Mater. 2022; 424:127379.

[36]

Hayashi M, Takahashi Y, Yoshida Y, Sugimoto K, Kitagawa H. Role of d-elements in a proton-electron coupling of D-π hybridized electron systems. J Am Chem Soc. 2019; 141(29): 11686-11693.

[37]

Chang K, Mei Z, Wang T, Kang Q, Ouyang S, Ye J. MoS2/Graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano. 2014; 8(7): 7078-7087.

[38]

Liu Y, Wang H, Yuan X, et al. Roles of sulfur-edge sites, metal-edge sites, terrace sites, and defects in metal sulfides for photocatalysis. Chem Catal. 2021; 1(1): 44-68.

[39]

Chu C, Qin Y, Ni C, Wu N, Zou J. Conjugated poly(benzothiadiazole)/g-C3N4 heterojunctions via halogenation for enhanced visible-light photocatalytic selective oxidation of sulfides. Appl Catal, B. 2024; 341:123321.

[40]

Zhao X, Chen B, Dong W, Wang S, Xiang Y, Chen H. Two consecutive post-synthetic modifications of benzothiadiazole-based conjugated polymers for enhanced photocatalytic H2 evolution: the significance of the sulfinyl group. J Mater Chem A. 2021; 9(16): 10208-10216.

[41]

Hu Y, Hao X, Cui Z, et al. Enhanced photocarrier separation in conjugated polymer engineered Cds for direct Z-scheme photocatalytic hydrogen evolution. Appl Catal, B. 2020; 260:118131.

[42]

Xu X, Su Y, Dong Y, et al. Designing and fabricating a CdS QDs/Bi2MoO6 monolayer S-scheme heterojunction for highly efficient photocatalytic C2H4 degradation under visible light. J Hazard Mater. 2022; 424:127685.

[43]

Lai C, Xu M, Xu F, et al. An S-scheme CdS/K2Ta2O6 heterojunction photocatalyst for production of H2O2 from water and air. Chem Eng J. 2023; 452:139070.

[44]

Zhang J, Zhang L, Wang W, Yu J. In situ irradiated X-ray photoelectron spectroscopy investigation on electron transfer mechanism in S-scheme photocatalyst. J Phys Chem Lett. 2022; 13(36): 8462-8469.

[45]

Liu F, Ding G, Zheng Z, et al. 3D flower-like perylenetetracarboxylic-Zn(II) superstructures/Bi2WO6 step-scheme heterojunctions with enhanced visible light photocatalytic performance. Chem Eng J. 2022; 429:132377.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoScience published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

68

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/