Interfacial Ce-S bonds enhanced Mo-doped ZnIn2S4/oxygen-deficient CeO2 S-scheme heterojunction for efficient photocatalytic overall water splitting

Junchao Zhou , Sibi Liu , Siman Mao , Yijin Wang , Fei Yan , Ruiqing Zou , Weiheng Ding , Shujie Zhang , Youzi Zhang , Xuanhua Li

InfoScience ›› 2025, Vol. 2 ›› Issue (1) : e12028

PDF
InfoScience ›› 2025, Vol. 2 ›› Issue (1) : e12028 DOI: 10.1002/inc2.12028
RESEARCH ARTICLE

Interfacial Ce-S bonds enhanced Mo-doped ZnIn2S4/oxygen-deficient CeO2 S-scheme heterojunction for efficient photocatalytic overall water splitting

Author information +
History +
PDF

Abstract

Photocatalytic overall water splitting (OWS) can convert solar energy into hydrogen (H2) and oxygen (O2), which is significant in reducing the reliance on fossil fuels. Constructing S-scheme heterojunctions is an effective method for facilitating charge transfer, but the huge interfacial charge transfer barrier poses a challenge to advance the efficiency of photocatalytic OWS. Here, a low-interfacial barrier Ce-S bond-enhanced Mo-doped ZnIn2S4/oxygen-deficient CeO2 (Mo-ZIS/OV-CeO2) S-scheme heterojunction photocatalyst was designed via a doping-defect coupling strategy. The abundant unsaturated S atoms generated by doping Mo atoms in ZnIn2S4 combine with the unpaired electrons on the Ce atom in OV-CeO2, forming the interfacial Ce-S bonds, which induce a 43% decrease in carrier transport activation energy and a 2.1-fold increase in build-in electric field intensity compared to ZIS/OV-CeO2. Reduced carrier transport activation energy and increased built-in electric field intensity provide a strong driving force for charge separation following the S-scheme pathway. Benefiting from the interfacial Ce-S bonds and the S-scheme transfer path, Mo-ZIS/OV-CeO2 exhibits H2 and O2 evolution rates of 512.7 and 256.3 μmol g-1 h-1, respectively, along with a solar-to-hydrogen efficiency of 0.14%. This study proposes an innovative insight into developing and constructing S-scheme heterojunction photocatalysts with efficient charge migration interfaces.

Keywords

doping-defect coupling / interfacial bonding / overall water splitting / S-scheme heterojunction / ZnIn2S4

Cite this article

Download citation ▾
Junchao Zhou, Sibi Liu, Siman Mao, Yijin Wang, Fei Yan, Ruiqing Zou, Weiheng Ding, Shujie Zhang, Youzi Zhang, Xuanhua Li. Interfacial Ce-S bonds enhanced Mo-doped ZnIn2S4/oxygen-deficient CeO2 S-scheme heterojunction for efficient photocatalytic overall water splitting. InfoScience, 2025, 2(1): e12028 DOI:10.1002/inc2.12028

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou P, Navid IA, Ma YJ, et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature. 2023; 613(7942): 66-70.

[2]

Wang YJ, Zhang YZ, Xin X, et al. In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Science. 2023; 381(6655): 291-296.

[3]

Zhang YZ, Li YK, Xin X, et al. Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting. Nat Energy. 2023; 8(5): 504-514.

[4]

Xin X, Zhang YZ, Wang RL, Guo P, Li X. Hydrovoltaic effect-enhanced photocatalysis by polyacrylic acid/cobaltous oxide-nitrogen doped carbon system for efficient photocatalytic water splitting. Nat Commun. 2023; 14(1): 1759-1767.

[5]

Guo SH, Li XH, Li J, Wei BQ. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nat Commun. 2021; 12(1): 1343-1352.

[6]

Xin X, Li YK, Zhang YZ, et al. Large electronegativity differences between adjacent atomic sites activate and stabilize ZnIn2S4 for efficient photocatalytic overall water splitting. Nat Commun. 2024; 15(1): 337-348.

[7]

Zuo GC, Wang YT, Teo WL, et al. Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2TX MXene for photocatalytic H2 evolution. Angew Chem Int Ed. 2020; 59(28): 11287-11292.

[8]

Zhang SQ, Liu X, Liu CB, et al. MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano. 2017; 12(1): 751-758.

[9]

Zabelin D, Zabelina A, Tulupova A, et al. A surface plasmon polariton-triggered Z-scheme for overall water splitting and solely light-induced hydrogen generation. J Mater Chem A. 2022; 10(26): 13829-13838.

[10]

Liu SB, Wang YJ, Zhang YZ, et al. In-MOF-derived In2S3/Bi2S3 heterojunction for enhanced photocatalytic hydrogen production. Front Energy. 2023; 17(5): 654-663.

[11]

Zhang YZ, Miao NX, Xin X, et al. Boosting the photocatalytic performance via defect-dependent interfacial interactions from electrostatic adsorption to chemical bridging. Nano Energy. 2022; 104: 107865-107874.

[12]

Wu XH, Chen GQ, Li LT, Wang J, Wang GH. ZnIn2S4-based S-scheme heterojunction photocatalyst. J Mater Sci Technol. 2023; 167: 184-204.

[13]

Chong WK, Ng BJ, Lee YJ, et al. Self-activated superhydrophilic green ZnIn2S4 realizing solar-driven overall water splitting: close-to-unity stability for a full daytime. Nat Commun. 2023; 14(1): 7676-7687.

[14]

Pan RR, Hu M, Liu J, et al. Two-dimensional all-in-one sulfide monolayers driving photocatalytic overall water splitting. Nano Lett. 2021; 21(14): 6228-6236.

[15]

Zuo GC, Wang YT, Teo WL, Xian QM, Zhao YL. Direct Z-scheme TiO2-ZnIn2S4 nanoflowers for cocatalyst-free photocatalytic water splitting. Appl Catal B Environ. 2021; 291: 120126-120133.

[16]

Du X, Zhao TY, Xiu ZY, et al. BiVO4@ZnIn2S4/Ti3C2 MXene quantum dots assembly all-solid-state direct Z-scheme photocatalysts for efficient visible-light-driven overall water splitting. Appl Mater Today. 2020; 20: 100719-100729.

[17]

Niu P, Dai J, Zhi X, Xia Z, Wang S, Li L. Photocatalytic overall water splitting by graphitic carbon nitride. InfoMat. 2021; 3(9): 931-961.

[18]

Yang YR, Sun ZX, Liu C, et al. Boosting photocatalytic overall water splitting on direct Z-scheme BiOBr/ZnIn2S4 heterostructure by atomic-level interfacial charge transport modulation. ACS Appl Energy Mater. 2022; 5(12): 15559-15565.

[19]

Meng K, Zhang J, Cheng B, et al. Plasmonic near-infrared-response S-scheme ZnO/CuInS2 photocatalyst for H2O2 production coupled with glycerin oxidation. Adv Mater. 2024; 36(32): 2406460-2406470.

[20]

Xu Q, Zhang L, Cheng B, Fan J, Yu J. S-scheme heterojunction photocatalyst. Chem. 2020; 6(7): 1543-1559.

[21]

Zhu B, Sun J, Zhao Y, Zhang L, Yu J. Construction of 2D S-scheme heterojunction photocatalyst. Adv Mater. 2024; 36(8): 2310600-2310624.

[22]

Ding Y, Wei DQ, He R, Yuan R, Xie T, Li Z. Rational design of Z-scheme PtS-ZnIn2S4/WO3-MnO2 for overall photo-catalytic water splitting under visible light. Appl Catal B Environ. 2019; 258: 117948-117955.

[23]

Zuo GC, Ma SS, Yin ZZ, et al. Z-scheme modulated charge transfer on InVO4@ZnIn2S4 for durable overall water splitting. Small. 2023; 19: 2207031-2207039.

[24]

Wang XH, Wang XH, Huang JF, Li S, Meng A, Li Z. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat Commun. 2021; 12(1): 4112-4122.

[25]

Liu Y.-T, Li D, Yu Jo, Ding B. Stable confinement of black phosphorus quantum dots on black tin oxide nanotubes: a robust, double-active electrocatalyst toward efficient nitrogen fixation. Angew Chem Int Ed. 2019; 58(46): 16439-16444.

[26]

Zhang SQ, Si YM, Li B, Yang L, Dai W, Luo S. Atomic-level and modulated interfaces of photocatalyst heterostructure constructed by external defect-induced strategy: a critical review. Small. 2021; 17(1): 2004980-2005000.

[27]

Zhang YC, Li Z, Zhang L, et al. Role of oxygen vacancies in photocatalytic water oxidation on ceria oxide: experiment and DFT studies. Appl Catal B Environ. 2018; 224: 101-108.

[28]

Zhu JF, Bi QY, Tao YH, et al. Mo-modified ZnIn2S4@NiTiO3 S-scheme heterojunction with enhanced interfacial electric field for efficient visible-light-driven hydrogen evolution. Adv Funct Mater. 2023; 33(15): 2213131-2213142.

[29]

Jiang RQ, Mao L, Zhao Yl, et al. 1D/2D CeO2/ZnIn2S4 Z-scheme heterojunction photocatalysts for efficient H2 evolution under visible light. Sci China Mater. 2022; 66(1): 139-149.

[30]

Su H, Lou HM, Zhao ZP, et al. In-situ Mo doped ZnIn2S4 wrapped MoO3 S-scheme heterojunction via Mo-S bonds to enhance photocatalytic HER. Chem Eng J. 2022; 430: 132770-132779.

[31]

Xing FS, Liu QW, Huang CJ. Mo-doped ZnIn2S4 flower-like hollow microspheres for improved visible light-driven hydrogen evolution. Sol RRL. 2019; 4(3): 1900483-1900491.

[32]

Deng W, Hao XQ, wang YM, Fan Y, Jin ZL. Construction of NiS/MnCdS S-scheme heterojunction for efficient photocatalytic overall water splitting: regulation of surface sulfur vacancy and energy band structure. Fuel. 2024; 363: 130964-130980.

[33]

Wang M, Shen M, Jin X, et al. Mild generation of surface oxygen vacancies on CeO2 for improved CO2 photoreduction activity. Nanoscale. 2020; 12(23): 12374-12382.

[34]

Wang M, Shen M, Jin XX, et al. Oxygen vacancy generation and stabilization in CeO2-x by Cu introduction with improved CO2 photocatalytic reduction activity. ACS Catal. 2019; 9(5): 4573-4581.

[35]

Xiong RZ, Ke XX, Jia WF, Xiao Y, Cheng B, Lei S. Photothermal-coupled solar photocatalytic CO2 reduction with high efficiency and selectivity on a MoO3-x@ZnIn2S4 core-shell S-scheme heterojunction. J Mater Chem A. 2023; 11(5): 2178-2190.

[36]

Zhang GP, Li XX, Wang MM, et al. 2D/2D hierarchical Co3O4/ZnIn2S4 heterojunction with robust built-in electric field for efficient photocatalytic hydrogen evolution. Nano Res. 2022; 16(5): 6134-6141.

[37]

Cheng C, Zong SC, Shi JW, et al. Facile preparation of nanosized mop as cocatalyst coupled with g-C3N4 by surface bonding state for enhanced photocatalytic hydrogen production. Appl Catal B Environ. 2020; 265: 118620-118628.

[38]

Peng L, Zhang MK, Zheng LY, et al. Regulated Li2S deposition toward rapid kinetics Li-S batteries by a separator modified by CeO2-decorated porous carbon nanostructure. Small Methods. 2022; 6(8): 2200332-2200341.

[39]

Ameen I, Abhishek KT, Raj LM, Siddiqui A, Nath TU. Luminescent, optical, magnetic and metamaterial behavior of cerium complexes. J Saudi Chem Soc. 2019; 23: 725-739.

[40]

Li ZY, Li JF, Zheng ZX, et al. Roles of hydroxyl and oxygen vacancy of CeO2·xH2O in Pd-catalyzed ethanol electro-oxidation. Sci China Chem. 2022; 65(5): 877-884.

[41]

Khan ME, Khan MM, Cho MH. Ce3+-ion, surface oxygen vacancy, and visible light-induced photocatalytic dye degradation and photocapacitive performance of CeO2-graphene nanostructures. Sci Rep. 2017; 7(1): 5928-5944.

[42]

Yang G, Ding H, Chen D, Feng J, Hao Q, Zhu Y. Construction of urchin-like ZnIn2S4-Au-TiO2 heterostructure with enhanced activity for photocatalytic hydrogen evolution. Appl Catal B Environ. 2018; 234: 260-267.

[43]

Zhang J, Zhang Y, Li LT, et al. Synergizing the internal electric field and ferroelectric polarization of the BiFeO3/ZnIn2S4 Z-scheme heterojunction for photocatalytic overall water splitting. J Mater Chem A. 2023; 11(1): 434-446.

[44]

Ou M, Li J, Geng M, Wang J, Wan S, Zhong Q. Construction of Z-scheme photocatalyst containing ZnIn2S4, Co3O4-photodeposited BiVO4 (110) facets and rGO electron mediator for overall water splitting into H2 and O2. Catal Lett. 2021; 151(9): 2570-2582.

[45]

Liu X, Zhang J, Xu J, et al. Hydroxyl-modified NbC3Tx MXene@ZnIn2S4 sandwich structure for photocatalytic overall water splitting. J Colloid Interface Sci. 2023; 633: 992-1001.

[46]

Shi W, Ge B, Jiang P, Wang Q, He L, Huang C. SiQDs-mediated highly efficient hole transfer for photocatalytic overall water splitting over Cu-doped ZnIn2S4. Appl Catal B Environ. 2024; 354: 124121-124129.

[47]

Wang YJ, Guo SH, Xin X, et al. Effective interface contact on the hierarchical 1D/2D CoO/NiCo-LDH heterojunction for boosting photocatalytic hydrogen evolution. Appl Surf Sci. 2021; 549: 149108-149115.

[48]

He YQ, Rao H, Song KP, et al. 3D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction. Adv Funct Mater. 2019; 29(45): 1905153-1905162.

[49]

Han T, Cao X, Sun KA, et al. Anion-exchange-mediated internal electric field for boosting photogenerated carrier separation and utilization. Nat Commun. 2021; 12(1): 4952-4962.

[50]

Yan F, Zhang YZ, Liu SB, Zou R, Ghasemi JB, Li X. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution. Chin J Catal. 2023; 51: 124-134.

[51]

Wang YJ, Huang WJ, Guo SH, et al. Sulfur-deficient ZnIn2S4/oxygen-deficient WO3 hybrids with carbon layer bridges as a novel photothermal/photocatalytic integrated system for Z-scheme overall water splitting. Adv Energy Mater. 2021; 11(46): 2102452-2102460.

[52]

Zhai B, Li H, Gao G, et al. A crystalline carbon nitride based near-infrared active photocatalyst. Adv Funct Mater. 2022; 32(47): 2207375-2207384.

[53]

Fang X, Chen L, Cheng HR, et al. Homojunction and ohmic contact coexisting carbon nitride for efficient photocatalytic hydrogen evolution. Nano Res. 2023; 16(7): 8782-8792.

[54]

Sun G, Tai Z, Zhang J, Cheng B, Yu H, Yu J. Bifunctional g-C3N4 nanospheres/CdZnS QDs S-scheme photocatalyst with boosted H2 evolution and furfural synthesis mechanism. Appl Catal B Environ. 2024; 358: 124459-124468.

[55]

Zhao Y, Shao CT, Lin ZX, Jiang SJ, Song SQ. Low-energy facets on CdS allomorph junctions with optimal phase ratio to boost charge directional transfer for photocatalytic H2 fuel evolution. Small. 2020; 16(24): 2000944-2000948.

[56]

Zhai B, Zeng J, Wang Y, Niu P, Wang S. Achieving near-infrared photocatalytic overall water splitting with singular crystalline C3N4 from semi-molten-salt treatment. Appl Catal B Environ. 2024; 359: 124496-124508.

[57]

Yang Y, Chu X, Zhang H.-Y, et al. Engineering β-ketoamine covalent organic frameworks for photocatalytic overall water splitting. Nat Commun. 2023; 14(1): 593-602.

[58]

Xu F, Meng K, Cheng B, Wang S, Xu J, Yu J. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat Commun. 2020; 11(1): 4613-4621.

[59]

Wu Y, Yang Y, Gu ML, et al. 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation. Chin J Catal. 2023; 53: 123-133.

[60]

Cao S, Yu JG, Wageh S, et al. H2-production and electron-transfer mechanism of a noble-metal-free WO3@ZnIn2S4 S-scheme heterojunction photocatalyst. J Mater Chem A. 2022; 10(33): 17174-17184.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoScience published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/