Numerical simulation of electrically pumped active vertical-cavity surface-emitting lasers diodes based on metal halide perovskite

Renjun Liu , Hong Ji , Diyar Mousa Othman , Alexander R. C. Osypiw , William Solari , Wenlong Ming , Jung Inn Sohn , Jae Cheol Shin , Bo Hou

InfoScience ›› 2025, Vol. 2 ›› Issue (1) : e12027

PDF
InfoScience ›› 2025, Vol. 2 ›› Issue (1) : e12027 DOI: 10.1002/inc2.12027
RESEARCH ARTICLE

Numerical simulation of electrically pumped active vertical-cavity surface-emitting lasers diodes based on metal halide perovskite

Author information +
History +
PDF

Abstract

Metal halide perovskites (MHP)-based electrically pumped vertical-cavity surface-emitting lasers (EPVCSEL) are promising candidates in optoelectronics due to low-carbon footprint solution processing method. However, significant challenges impede MHP-EPVCSEL manufacturing: (1) Distributed Bragg Reflectors (DBRs) composed of typical electron transport layers (ETLs) and hole transport layers (HTLs) are not conductive enough. (2) Due to large mobility difference of typical ETLs and HTLs, carriers-unbalanced injection leads to severe performance degradation. Herein, we propose a potential strategy to address such challenges using MAPbCl3 and CsSnCl3 as carrier transport layers with mobility 3 orders larger than typical ETLs and HTLs. Via transfer matrix method calculations, we find that the reflectance of DBRs composed of MAPbCl3 (130.5 nm)/CsSnCl3 (108 nm) is larger than 91% with 10 pairs of DBRs. Furthermore, the proposed EPVCSEL device simulation shows that MHP-EPVCSEL has the potential to achieve room temperature continuous wave lasing with a threshold current density of ∼69 A cm-2 and output optical power ∼10-4 W. This work can provide a deep insight into the practical realization of MHP-EPVCSEL.

Keywords

laser / MAPbCl3 and CsSnCl3 / perovskite / VCSEL

Cite this article

Download citation ▾
Renjun Liu, Hong Ji, Diyar Mousa Othman, Alexander R. C. Osypiw, William Solari, Wenlong Ming, Jung Inn Sohn, Jae Cheol Shin, Bo Hou. Numerical simulation of electrically pumped active vertical-cavity surface-emitting lasers diodes based on metal halide perovskite. InfoScience, 2025, 2(1): e12027 DOI:10.1002/inc2.12027

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yoshikawa M, Murakami A, Sakurai J, Nakayama H, Nakamura T. In: Proceedings Electronic Components and Technology; 2005: 1353-1358.

[2]

Naoto J, Akihiro I, Kazuhiro H, Toshihide S, Shunichi S. In: Vertical-Cavity Surface-Emitting Lasers XX, SPIE; 2016.976605.

[3]

Larsson A, Simpanen E, Gustavsson JS, et al. 1060 nm VCSELs for long-reach optical interconnects. Opt Fiber Technol. 2018; 44: 36-42.

[4]

Yan D, Liu M, Li Z, Hou B. Colloidal quantum dots and metal halide perovskite hybridization for solar cell stability and performance enhancement. J Mater Chem A. 2021; 9(28): 15522-15541.

[5]

Li B, Hou B, Amaratunga GAJ. Indoor photovoltaics, the Next Big Trend in solution-processed solar cells. InfoMat. 2021; 3(5): 445-459.

[6]

Zhan S, Fan X-B, Zhang J, et al. Lattice marginal reconstruction-enabled high ambient-tolerance perovskite quantum dot phototransistors. J Mater Chem C. 2020; 8(45): 16001-16009.

[7]

Worku M, Ben-Akacha A, Blessed Shonde T, Liu H, Ma B. The past, present, and future of metal halide perovskite light-emitting diodes. Small Science. 2021; 1(8):2000072.

[8]

Im J-H, Kim H-S, Park N-G. Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI3. Apl Mater. 2014; 2(8):081510.

[9]

Stoumpos CC, Malliakas CD, Kanatzidis MG. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem. 2013; 52(15): 9019-9038.

[10]

Liang Q, Liu K, Sun M, et al. Manipulating crystallization kinetics in high-performance blade-coated perovskite solar cells via cosolvent-assisted phase transition. Adv Mater. 2022; 34(16):2200276.

[11]

Zhang Z, Li Z, Chen Y, et al. Progress on inkjet printing technique for perovskite films and their optoelectronic and optical applications. ACS Photonics. 2023; 10: 3435-3450.

[12]

Park SM, Wei M, Lempesis N, et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature. 2023; 624(7991): 289-294.

[13]

Cui J, Liu Y, Deng Y, et al. Efficient light-emitting diodes based on oriented perovskite nanoplatelets. Sci Adv. 2021; 7(41):eabg8458.

[14]

Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics. 2018; 12(11): 681-687.

[15]

Zhao B, Bai S, Kim V, et al. High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nat Photonics. 2018; 12: 783-789.

[16]

Zhao F, Ren A, Li P, Li Y, Wu J, Wang ZM. Toward continuous-wave pumped metal halide perovskite lasers: strategies and challenges. ACS Nano. 2022; 16(5): 7116-7143.

[17]

Vincent P, Kim D-K, Kwon J-H, Bae J-H, Kim H. Correlating the nanoparticle size dependent refractive index of ZnO optical spacer layer and the efficiency of hybrid solar cell through optical modelling. Thin Solid Films. 2018; 660: 558-563.

[18]

Mei G, Wu D, Ding S, Choy WCH, Wang K, Sun XW. Optical tunneling to improve light extraction in quantum dot and perovskite light-emitting diodes. IEEE Photon J. 2020; 12(6): 1-14.

[19]

Ren Z, Sun J, Yu J, et al. High-performance blue quasi-2D perovskite light-emitting diodes via balanced carrier confinement and transfer. Nano-Micro Lett. 2022; 14(1): 66.

[20]

Liu R-J, Dong J-Y, Wang M-W, et al. Efficiency improvement of quantum dot light-emitting diodes via thermal damage suppression with HATCN. ACS Appl Mater Interfaces. 2021; 13(41): 49058-49065.

[21]

Dai X, Deng Y, Peng X, Jin Y. Quantum-Dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Adv Mater. 2017; 29(14):1607022.

[22]

Lee CW, Lee JY. A hole transport material with ortho-linked terphenyl core structure for high power efficiency in blue phosphorescent organic light-emitting diodes. Org Electron. 2014; 15(2): 399-404.

[23]

Tao S, Schmidt I, Brocks G, et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nat Commun. 2019; 10(1):2560.

[24]

Islam J, Hossain AKMA. Semiconducting to metallic transition with outstanding optoelectronic properties of CsSnCl3 perovskite under pressure. Sci Rep. 2020; 10(1):14391.

[25]

He C, Zha G, Deng C, et al. Refractive index dispersion of organic-inorganic hybrid halide perovskite CH3NH3PbX3 (X═Cl, Br, I) single crystals. Cryst Res Technol. 2019; 54(5):1900011.

[26]

Wang N, Zhou Y, Ju M-G, et al. Heterojunction-depleted lead-free perovskite solar cells with coarse-grained B-γ-CsSnI3 thin films. Adv Energy Mater. 2016; 6(24):1601130.

[27]

Srivastava S, Singh AK, Kumar P, Pradhan B. Comparative performance analysis of lead-free perovskites solar cells by numerical simulation. J Appl Phys. 2022; 131(17):175001.

[28]

Frost JM. Calculating polaron mobility in halide perovskites. Phys Rev B. 2017; 96(19):195202.

[29]

Maculan G, Sheikh AD, Abdelhady AL, et al. CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector. J Phys Chem Lett. 2015; 6(19): 3781-3786.

[30]

Matsushima T, Bencheikh F, Komino T, et al. High performance from extraordinarily thick organic light-emitting diodes. Nature. 2019; 572(7770): 502-506.

[31]

Lajaunie L, Boucher F, Dessapt R, Moreau P. Strong anisotropic influence of local-field effects on the dielectric response of α-MoO3. Phys Rev B. 2013; 88(11):115141.

[32]

Chung I, Song J-H, Im J, et al. CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J Am Chem Soc. 2012; 134(20): 8579-8587.

[33]

Haeger T, Heiderhoff R, Riedl T. Thermal properties of metal-halide perovskites. J Mater Chem C. 2020; 8(41): 14289-14311.

[34]

Atlas User’s Manual Device Simulation Software. Chapter 10 VCSEL Simulator. SILVACO; 2015: 567-583.

[35]

Lu J, Guan X, Li Y, et al. Dendritic CsSnI3 for efficient and flexible near-infrared perovskite light-emitting diodes. Adv Mater. 2021; 33(44):2104414.

[36]

Nunley TN, Fernando NS, Samarasingha N, et al. Optical constants of germanium and thermally grown germanium dioxide from 0.5 to 6.6eV via a multisample ellipsometry investigation. J Vac Sci Technol B. 2016; 34(6):061205.

[37]

Filonov V, Filonova Y, Dubyk Y, Pis'mennyi E. Transfer matrix method for analysis of flow thermohydraulic characteristics with extremely nonlinear behavior of thermophysical properties using channel approach. Int J Heat Mass Tran. 2022; 187:122531.

[38]

Chang J, Chen D, Yang L, et al. High-quality crystal growth and characteristics of AlGaN-based solar-blind distributed Bragg reflectors with a tri-layer period structure. Sci Rep. 2016; 6(1):29571.

[39]

Fu H, Zhao Y. In: Huang JJ, Kuo H.-C, Shen S.-C, eds. Nitride Semiconductor Light-Emitting Diodes (LEDs). 2nd ed. Woodhead Publishing; 2018: 299-325.

[40]

Liu A, Guan G, Chai X, et al. Metal halide perovskites toward electrically pumped lasers. Laser Photon Rev. 2022; 16(10):2200189.

[41]

Shaaban IE, Samra AS, Muhammad S, Wageh S. Design of distributed Bragg reflectors for green light-emitting devices based on quantum dots as emission layer. Energies. 2022; 15(3):1237.

[42]

Afreen M, Ali J, Bilal M. Challenges of stability in perovskite solar cells. Fundamentals of Solar Cell Design. 2021: 371-391.

RIGHTS & PERMISSIONS

2024 The Author(s). InfoScience published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

58

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/