Surface functionalizing for high-temperature ceramic fuel cells using electrochemical deposition technique

Seongwoo Nam , Jinwook Kim , Hyunseung Kim , WooChul Jung

InfoScience ›› 2025, Vol. 2 ›› Issue (1) : e12026

PDF
InfoScience ›› 2025, Vol. 2 ›› Issue (1) : e12026 DOI: 10.1002/inc2.12026
REVIEW

Surface functionalizing for high-temperature ceramic fuel cells using electrochemical deposition technique

Author information +
History +
PDF

Abstract

Electrochemical deposition technique, a method widely recognized for its precision and versatility in the electronics industry, is gaining attraction in the energy field, particularly in developing solid oxide fuel cells (SOFCs). Its ability to deposit metal compounds with nanostructures under simple ambient conditions makes it invaluable for modifying conventional electrodes with refined morphologies and compositions. In this mini-review, we explore the principles of electrochemical deposition and highlight its recent applications in SOFC technology. Our focus lies on its pivotal role in fabricating coating layers or catalysts on electrodes with improved functionalities to build more efficient and durable fuel cells. Furthermore, we discuss emerging strategies for electrode surface modification and the potential of electrochemical deposition in advancing SOFC design and functionality. Our review also outlines future research directions aimed at harnessing and expanding the capabilities of electrochemical deposition in energy conversion applications.

Keywords

cathodic electrochemical deposition / chemically assisted electrodeposition / electrode coating / solid oxide fuel cells

Cite this article

Download citation ▾
Seongwoo Nam, Jinwook Kim, Hyunseung Kim, WooChul Jung. Surface functionalizing for high-temperature ceramic fuel cells using electrochemical deposition technique. InfoScience, 2025, 2(1): e12026 DOI:10.1002/inc2.12026

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tang C, Yao Y, Wang N, et al. Green hydrogen production by intermediate-temperature protonic solid oxide electrolysis cells: advances, challenges, and perspectives. InfoMat. 2024; 6(3):e12515.

[2]

Shao Z, Haile SM. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature. 2004; 431(7005): 170-173.

[3]

Choi Y, Cha SK, Ha H, et al. Unravelling inherent electrocatalysis of mixed-conducting oxide activated by metal nanoparticle for fuel cell electrodes. Nat Nanotechnol. 2019; 14(3): 245-251.

[4]

Mathur L, Namgung Y, Kim H, Song S-J. Recent progress in electrolyte-supported solid oxide fuel cells: a review. J Korean Ceram Soc. 2023; 60(4): 614-636.

[5]

Irvine JTS, Neagu D, Verbraeken MC, Chatzichristodoulou C, Graves C, Mogensen MB. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat Energy. 2016; 1:15014.

[6]

Kuai X, Yang G, Chen Y, et al. Boosting the activity of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ perovskite for oxygen reduction reactions at low-to-intermediate temperatures through tuning B-site cation deficiency. Adv Energy Mater. 2019; 9(38): 1.

[7]

Wachsman ED, Lee KT. Lowering the temperature of solid oxide fuel cells. Science. 2011; 334(6058): 935-939.

[8]

Ding D, Li X, Lai SY, Gerdes K, Liu M. Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ Sci. 2014; 7(2): 552.

[9]

Vohs JM, Gorte RJ. High-performance SOFC cathodes prepared by infiltration. Adv Mater. 2009; 21(9): 943-956.

[10]

Jiang SP. Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges. Int J Hydrogen Energy. 2012; 37(1): 449-470.

[11]

Jiang Z, Xia C, Chen F. Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique. Electrochim Acta. 2010; 55(11): 3595-3605.

[12]

Seo J, Kim S, Jeon S, Kim S, Kim JH, Jung W. Nanoscale interface engineering for solid oxide fuel cells using atomic layer deposition. Nanoscale Adv. 2022; 4: 1060-1073.

[13]

Jeon S, Seo J, Shin JW, et al. Metal-oxide nanocomposite catalyst simultaneously boosts the oxygen reduction reactivity and chemical stability of solid oxide fuel cell cathode. Chem Eng J. 2023; 455:140611.

[14]

Seo J, Jeon S, Lee S, et al. Oxidative strong metal-support interaction induced by an amorphous TiOx seed layer boosts the electrochemical performance and high-temperature durability of Pt nanocatalysts. ACS Catal. 2022; 12(14): 8593-8600.

[15]

Choi HJ, Bae K, Grieshammer S, et al. Surface tuning of solid oxide fuel cell cathode by atomic layer deposition. Adv Energy Mater. 2018; 8(33): 1.

[16]

Jo SE, Jeon S, Kim HJ, et al. Simultaneous performance and stability enhancement in intermediate temperature solid oxide fuel cells by powder-atomic layer deposited LSCF@ZrO2 cathodes (small methods 1/2024). Small Methods. 2024; 8: 1.

[17]

Schlupp MVF, Evans A, Martynczuk J, Prestat M. Micro-solid oxide fuel cell membranes prepared by aerosol-assisted chemical vapor deposition. Adv Energy Mater. 2014; 4(5): 1.

[18]

Xiong C, Xu S, Li X, et al. Surface regulating and hetero-interface engineering of an LSCF cathode by CVD for solid oxide fuel cells: integration of improved electrochemical performance and Cr-tolerance. J Mater Chem A. 2023; 11(29): 15760-15768.

[19]

Meng G, Song H, Xia C, Liu X, Peng D. Novel CVD techniques for micro- and IT-SOFC fabrication. Fuel Cell. 2004; 4(1-2): 48-55.

[20]

Jang DY, Han GD, Choi HR, Kim MS, Choi HJ, Shim JH. La0.6Sr0.4Co0.2Fe0.8O3-δ cathode surface-treated with La2NiO4+δ by aerosol-assisted chemical vapor deposition for high performance solid oxide fuel cells. Ceram Int. 2019; 45(9): 12366-12371.

[21]

Kim JK, Kim S, Kim S, et al. Dynamic surface evolution of metal oxides for autonomous adaptation to catalytic reaction environments. Adv Mater. 2023; 35(4): 1.

[22]

Kim JH, Hong J, Lim D-K, et al. Water as a hole-predatory instrument to create metal nanoparticles on triple-conducting oxides. Energy Environ Sci. 2022; 15(3): 1097-1105.

[23]

Kim JH, Kim JK, Seo HG, et al. Ex-Solved Ag nanocatalysts: ex-solved Ag nanocatalysts on a Sr-free parent scaffold authorize a highly efficient route of oxygen reduction. Adv Funct Mater. 2020; 30(27): 1.

[24]

Xu M, Cao R, Qin H, et al. Exsolved materials for CO2 reduction in high-temperature electrolysis cells. Mater Reports Energy. 2023; 3(2):100198.

[25]

Kim J, Choi Y, Lim D, et al. Electrochemically plated nickel-decorated ceria nanostructures for direct hydrocarbon solid oxide fuel cell electrodes. J Mater Chem A. 2022; 10(39): 20886-20895.

[26]

Jung S-W, Vohs JM, Gorte RJ. Preparation of SOFC anodes by electrodeposition. J Electrochem Soc. 2007; 154(12):B1270.

[27]

Park S, Oh D, Ahn J, et al. Promoting ex-solution from metal-organic-framework-mediated oxide scaffolds for highly active and robust catalysts. Adv Mater. 2022; 34(27): 1.

[28]

Besra L, Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci. 2007; 52: 1-61.

[29]

Schlesinger M, Paunovic M, eds. Modern Electroplating. Wiley; 2010.

[30]

Giurlani W, Zangari G, Gambinossi F, et al. Electroplating for decorative applications: recent trends in research and development. Coatings. 2018; 8: 260.

[31]

Abbott AP, Frisch G, Ryder KS. Electroplating using ionic liquids. Annu Rev Mater Res. 2013; 43(1): 335-358.

[32]

Boccaccini AR, Zhitomirsky I. Application of electrophoretic and electrolytic deposition techniques in ceramics processing. Part 1. ChemInform. 2005; 36(46): 242.

[33]

Sarkar P, Nicholson PS. Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. J Am Ceram Soc. 1996; 79(8): 1987-2002.

[34]

Fukada Y, Nagarajan N, Mekky W, Bao Y, Kim H-S, Nicholson PS. Electrophoretic deposition—mechanisms, myths and materials. J Mater Sci. 2004; 39(3): 787-801.

[35]

Koza JA, He Z, Miller AS, Switzer JA. Electrodeposition of crystalline Co3O4—a catalyst for the oxygen evolution reaction. Chem Mater. 2012; 24(18): 3567-3573.

[36]

Liu W, Kamiko M, Yamada I, Yagi S. Electrochemical deposition of amorphous cobalt oxides for oxygen evolution catalysis. RSC Adv. 2022; 12(14): 8731-8736.

[37]

Wu L, Zhang C, Sun Y, et al. Cu-mediated optimization of PbO2 anodes for electrochemical treatment of electroless nickel plating wastewater. Chem Eng J. 2022; 450:138188.

[38]

Yang J, Cao J, Peng Y, et al. Unravelling the mechanism of rechargeable aqueous Zn-MnO2 batteries: implementation of charging process by electrodeposition of MnO2. ChemSusChem. 2020; 13(16): 4103-4110.

[39]

Prasad AK, Park J-Y, Kang S-H, Ahn K-S. Electrochemically co-deposited WO3-V2O5 composites for electrochromic energy storage applications. Electrochim Acta. 2022; 422:140340.

[40]

Ben Hassen S, Bousselmi L, Berçot P, El Rezrazi M, Triki E. XPS characterization and corrosion resistance of cerium-treated magnesium coatings. Rare Met. 2011; 30(4): 368-373.

[41]

Zhou Y, Switzer JA. Growth of cerium(IV) oxide films by the electrochemical generation of base method. J Alloys Compd. 1996; 237(1-2): 1-5.

[42]

Li F-B, Newman RC, Thompson GE. In situ atomic force microscopy studies of electrodeposition mechanism of cerium oxide films: nucleation and growth out of a gel mass precursor. Electrochim Acta. 1997; 42(16): 2455-2464.

[43]

Čerović L, Lair V, Lupan O, Cassir M, Ringuedé A. Electrochemical synthesis and characterization of nanorods, nanocolumnar ceria - based thin films on different glass substrates. Chem Phys Lett. 2010; 494(4-6): 237-242.

[44]

Choi Y, Kim J, Seo HG, Tuller HL, Jung W. Nucleation and growth kinetics of electrochemically deposited ceria nanostructures for high-temperature electrocatalysis. Electrochim Acta. 2019; 316: 273-282.

[45]

Yan Z, Liu H, Hao Z, Yu M, Chen X, Chen J. Electrodeposition of (hydro)oxides for an oxygen evolution electrode. Chem Sci. 2020; 11(39): 10614-10625.

[46]

Chueh WC, Hao Y, Jung W, Haile SM. High electrochemical activity of the oxide phase in model ceria-Pt and ceria-Ni composite anodes. Nat Mater. 2012; 11(2): 155-161.

[47]

Jung W, Gu KL, Choi Y, Haile SM. Robust nanostructures with exceptionally high electrochemical reaction activity for high temperature fuel cell electrodes. Energy Environ Sci. 2014; 7(5): 1685-1692.

[48]

Feng ZA, El Gabaly F, Ye X, Shen Z-X, Chueh WC. Fast vacancy-mediated oxygen ion incorporation across the ceria-gas electrochemical interface. Nat Commun. 2014; 5(1):4374.

[49]

Choi Y, Cho H-J, Kim J, et al. Nanofiber composites as highly active and robust anodes for direct-hydrocarbon solid oxide fuel cells. ACS Nano. 2022; 16(9): 14517-14526.

[50]

Skafte TL, Guan Z, Machala ML, et al. Selective high-temperature CO2 electrolysis enabled by oxidized carbon intermediates. Nat Energy. 2019; 4(10): 846-855.

[51]

Jeong SJ, Kwak NW, Byeon P, Chung S-Y, Jung W. Conductive nature of grain boundaries in nanocrystalline stabilized Bi2O3 thin-film electrolyte. ACS Appl Mater Interfaces. 2018; 10(7): 6269-6275.

[52]

Jeong I, Jeong SJ, Yun B-H, et al. Physically driven enhancement of the stability of Bi2O3-based ionic conductors via grain boundary engineering. NPG Asia Mater. 2022; 14(1): 53.

[53]

Wachsman E, Ball G, Jiang N, Stevenson D. Structural and defect studies in solid oxide electrolytes. Solid State Ionics. 1992; 52(1-3): 213-218.

[54]

Li R, Wang D, Ge L, He S, Chen H, Guo L. Effect of Bi2O3 on the electrochemical performance of LaBaCo2O5+δ cathode for intermediate-temperature solid oxide fuel cells. Ceram Int. 2014; 40(2): 2599-2603.

[55]

Fung K-Z, Tsai S-Y, Chang Y-J, Jung W, Haile SM. Stability of composite cathode consisting of doped bismuth oxide (Y0.25Bi0.75O1.5) and conducting perovskite La1-XSrxMeO3-δ(Me=Mn, Cu). ECS Trans. 2013; 57(1): 1917-1923.

[56]

Jeong H, Sharma B, Jo S, Kim YH, Myung J. Electrochemical characteristics of La0.8Sr0.2MnO3 (LSM)-scandia-stabilized zirconia (ScSZ) composite cathode. J Korean Ceram Soc. 2022; 59(4): 473-479.

[57]

Shin H, Seo J, Jeon S, et al. Enhanced catalytic activity and stability of SOFC electrodes through plasma-driven surface modification. J Mater Chem A. 2024; 12(18): 10695-10703. https://doi.org/10.1039/D3TA06111F

[58]

Kim J, Lee J, Kim S, Jung W. Improved catalytic properties of fluorine-doped La0.6Sr0.4Co0.2Fe0.8O3-δ for air electrode with high-performance metal-air batteries. Electron Mater Lett. 2024; 20(4): 450-458. https://doi.org/10.1007/s13391-023-00483-8

[59]

Siebenhofer M, Nenning A, Wilson GE, et al. Electronic and ionic effects of sulphur and other acidic adsorbates on the surface of an SOFC cathode material. J Mater Chem A. 2023; 11(13): 7213-7226.

[60]

Ishigaki T, Yamauchi S, Kishio K, Mizusaki J, Fueki K. Diffusion of oxide ion vacancies in perovskite-type oxides. J Solid State Chem. 1988; 73(1): 179-187.

[61]

Ahmed S, Kazmi WW, Hussain A, et al. Facile and low-temperature synthesis approach to fabricate Sm0.5Sr0.5CoO3-δ cathode material for solid oxide fuel cell. J Korean Ceram Soc. 2023; 60(2): 272-282.

[62]

Fullarton IC, Jacobs JP, van Benthem HE, et al. Study of oxygen ion transport in acceptor doped samarium cobalt oxide. Ionics. 1995; 1: 51-58.

[63]

Kim G, Wang S, Jacobson AJ, Reimus L, Brodersen P, Mims CA. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. J Mater Chem. 2007; 17(24):2500.

[64]

Burriel M, Peña-Martínez J, Chater RJ, et al. Anisotropic oxygen ion diffusion in layered PrBaCo2O5+δ. Chem Mater. 2012; 24(3): 613-621.

[65]

Boehm E, Bassat J, Dordor P, Mauvy F, Grenier J, Stevens P. Oxygen diffusion and transport properties in non-stoichiometric LnNiO oxides. Solid State Ionics. 2005; 176(37-38): 2717-2725.

[66]

Sfeir J. LaCrO3-based anodes: stability considerations. J Power Sources. 2003; 118(1-2): 276-285.

[67]

Wan Y, Xing Y, Xu Z, Xue S, Zhang S, Xia C. A-site bismuth doping, a new strategy to improve the electrocatalytic performances of lanthanum chromate anodes for solid oxide fuel cells. Appl Catal B Environ. 2020; 269:118809.

[68]

Bin Mamtaz MR, Wang Z, Belotti A, et al. Enhancing Ni exsolution by nonmetal B-site substituents (Si and P) in SrTiO3-based solid oxide fuel cell anodes. Energy & Fuels. 2021; 35(18): 15084-15093.

[69]

Monterrubio-Badillo C, Ageorges H, Chartier T, Coudert JF, Fauchais P. Preparation of LaMnO3 perovskite thin films by suspension plasma spraying for SOFC cathodes. Surf Coating Technol. 2006; 200(12-13): 3743-3756.

[70]

Kwon O, Sengodan S, Kim K, et al. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites. Nat Commun. 2017; 8(1):15967.

[71]

Kwon O, Kim K, Joo S, et al. Self-assembled alloy nanoparticles in a layered double perovskite as a fuel oxidation catalyst for solid oxide fuel cells. J Mater Chem A. 2018; 6(33): 15947-15953.

[72]

Adijanto L, Sampath A, Yu AS, et al. Synthesis and stability of Pd@CeO2 core-shell catalyst films in solid oxide fuel cell anodes. ACS Catal. 2013; 3(8): 1801-1809.

[73]

Tomov RI, Mitchel-Williams TB, Maher R, et al. The synergistic effect of cobalt oxide and Gd-CeO2 dual infiltration in LSCF/CGO cathodes. J Mater Chem A. 2018; 6(12): 5071-5081.

[74]

Price R, Weissen U, Grolig JG, Cassidy M, Mai A, Irvine JTS. Durability of La0.20Sr0.25Ca0.45TiO3-based SOFC anodes: identifying sources of degradation in Ni and Pt/ceria co-impregnated fuel electrode microstructures. J Mater Chem A. 2021; 9(16): 10404-10418.

[75]

Orera A, Betato A, Silva-Treviño J, Larrea Á, Laguna-Bercero . Advanced metal oxide infiltrated electrodes for boosting the performance of solid oxide cells. J Mater Chem A. 2022; 10(5): 2541-2549.

[76]

Chen Y, Chen Y, Ding D, et al. A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells. Energy Environ Sci. 2017; 10(4): 964-971.

[77]

Shri Prakash B, Senthil Kumar S, Aruna ST. Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review. Renew Sustain Energy Rev. 2014; 36: 149-179.

[78]

Lee J. Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni-YSZ cermet. Solid State Ionics. 2002; 148(1-2): 15-26.

[79]

Koide H. Properties of Ni/YSZ cermet as anode for SOFC. Solid State Ionics. 2000; 132(3-4): 253-260.

[80]

Yu JH, Park GW, Lee S, Woo SK. Microstructural effects on the electrical and mechanical properties of Ni-YSZ cermet for SOFC anode. J Power Sources. 2007; 163(2): 926-932.

[81]

Cheng Z, Wang J-H, Choi Y, Yang L, Lin MC, Liu M. From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: electrochemical behavior, in situ characterization, modeling, and future perspectives. Energy Environ Sci. 2011; 4(11):4380.

[82]

Koh J. Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel. Solid State Ionics. 2002; 149(3-4): 157-166.

[83]

He H, Hill JM. Carbon deposition on Ni/YSZ composites exposed to humidified methane. Appl Catal Gen. 2007; 317(2): 284-292.

[84]

Maček J, Novosel B, Marinšek M. Ni-YSZ SOFC anodes—minimization of carbon deposition. J Eur Ceram Soc. 2007; 27(2-3): 487-491.

[85]

Takeguchi T, Kani Y, Yano T, et al. Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets. J Power Sources. 2002; 112(2): 588-595.

[86]

Choi Y, Brown EC, Haile SM, Jung W. Electrochemically modified, robust solid oxide fuel cell anode for direct-hydrocarbon utilization. Nano Energy. 2016; 23: 161-171.

[87]

Kim YB, Kim S, Kim J, et al. Synthesis of highly tunable alloy nanocatalyst through heterogeneous doping method. Adv Sci. 2023; 10(5): 1.

[88]

Oh D, Colombo F, Nodari L, et al. Rocking chair-like movement of ex-solved nanoparticles on the Ni-Co doped La0.6Ca0.4FeO3-δ oxygen carrier during chemical looping reforming coupled with CO2 splitting. Appl Catal B Environ. 2023; 332:122745.

[89]

Lee S, Ha H, Bae KT, et al. A measure of active interfaces in supported catalysts for high-temperature reactions. Chem. 2022; 8(3): 815-835.

[90]

Lee S, Seo J, Jung W. Sintering-resistant Pt@CeO2 nanoparticles for high-temperature oxidation catalysis. Nanoscale. 2016; 8(19): 10219-10228.

[91]

McIntyre MD, Kirtley JD, Singh A, Islam S, Hill JM, Walker RA. Comparingin SituCarbon tolerances of Sn-infiltrated and BaO-infiltrated Ni-YSZ cermet anodes in solid oxide fuel cells exposed to methane. J Phys Chem C. 2015; 119(14): 7637-7647.

[92]

Zhang Y, Fan H, Han M. Stability of Ni-YSZ anode for SOFCs in methane fuel: the effects of infiltrating La0.8Sr0.2FeO3-δand Gd-doped CeO2Materials. J Electrochem Soc. 2018; 165(10): F756-F763.

[93]

Jin Y, Yasutake H, Yamahara K, Ihara M. Suppressed carbon deposition behavior in nickel/yittria-stablized zirconia anode with SrZr[sub 0.95]Y[sub 0.05]O[sub 3-α] in dry methane fuel. J Electrochem Soc. 2010; 157(1): B130.

[94]

Chen Y, Choi Y, Yoo S, et al. A highly efficient multi-phase catalyst dramatically enhances the rate of oxygen reduction. Joule. 2018; 2(5): 938-949.

[95]

Yang G, Su C, Shi H, et al. Toward reducing the operation temperature of solid oxide fuel cells: our past 15 Years of efforts in cathode development. Energy & Fuels. 2020; 34(12): 15169-15194.

[96]

Liang M, He F, Zhou C, et al. Nickel-doped BaCo0.4Fe0.4Zr0.1Y0.1O3-δ as a new high-performance cathode for both oxygen-ion and proton conducting fuel cells. Chem Eng J. 2021; 420:127717.

[97]

Park BK, Seo HG, Jung WC, Lee JW. Perovskite oxide-based nanohybrid for low-temperature thin-film solid oxide fuel cells fabricated via a facile and scalable electrochemical process. Ceram Int. 2018; 44(15): 18727-18735.

[98]

Jung W, Kim JJ, Tuller HL. Investigation of nanoporous platinum thin films fabricated by reactive sputtering: application as micro-SOFC electrode. J Power Sources. 2015; 275: 860-865.

[99]

Kerman K, Lai B-K, Ramanathan S. Pt/Y0.16Zr0.84O1.92/Pt thin film solid oxide fuel cells: electrode microstructure and stability considerations. J Power Sources. 2011; 196(5): 2608-2614.

[100]

Ji S, Tanveer WH. Thickness determination of porous Pt cathode thin film capped by atomic layer-deposited alumina for low-temperature solid oxide fuel cells. Appl Surf Sci. 2020; 514:145931.

[101]

Yu C-C, Kim S, Baek JD, Li Y, Su P-C, Kim T-S. Direct observation of nanoscale Pt electrode agglomeration at the triple phase boundary. ACS Appl Mater Interfaces. 2015; 7(11): 6036-6040.

[102]

Chang I, Ji S, Park J, Lee MH, Cha SW. Fuel cells: ultrathin YSZ coating on Pt cathode for high thermal stability and enhanced oxygen reduction reaction activity (adv. Energy mater. 10/2015). Adv Energy Mater. 2015; 5(10): 1.

[103]

Seo HG, Ji S, Seo J, et al. Sintering-resistant platinum electrode achieved through atomic layer deposition for thin-film solid oxide fuel cells. J Alloys Compd. 2020; 835:155347.

[104]

Seo HG, Choi Y, Koo B, Jang A, Jung W. Robust nano-architectured composite thin films for a low-temperature solid oxide fuel cell cathode. J Mater Chem A. 2016; 4(24): 9394-9402.

[105]

Seo HG, Choi Y, Jung W. Fuel cells: exceptionally enhanced electrode activity of (Pr,Ce)O2-δ-based cathodes for thin-film solid oxide fuel cells. Adv Energy Mater. 2018; 8(19):1703647.

[106]

Hwang J, Lee H, Yoon KJ, et al. Study on the electrode reaction mechanism of pulsed-laser deposited thin-film La1-xSrxCoO3-δ(x = 0.2. 0.4) cathodes. J Electrochem Soc. 2012; 159(10): F639-F643.

[107]

Beckel D, Muecke U, Gyger T, Florey G, Infortuna A, Gauckler L. Electrochemical performance of LSCF based thin film cathodes prepared by spray pyrolysis. Solid State Ionics. 2007; 178(5-6): 407-415.

[108]

de Larramendi IR, Ortiz N, López-Antón R, de Larramendi JIR, Rojo T. Structure and impedance spectroscopy of La0.6Ca0.4Fe0.8Ni0.2O3-δ thin films grown by pulsed laser deposition. J Power Sources. 2007; 171(2): 747-753.

[109]

Kim H, Seo HG, Choi Y, Lim D-K, Jung W. Cathodic electrochemical deposition: a new strategy to enhance the activity and stability of silver cathodes for thin-film solid oxide fuel cells. J Mater Chem A. 2020; 8(29): 14491-14497.

[110]

Kim JH, Kim JK, Seo HG, et al. Ex-Solved Ag nanocatalysts: ex-solved Ag nanocatalysts on a Sr-free parent scaffold authorize a highly efficient route of oxygen reductiona. Adv Funct Mater. 2020; 30(27):2001326.

[111]

Choi HJ, Kim M, Neoh KC, et al. High-performance silver cathode surface treated with scandia-stabilized zirconia nanoparticles for intermediate temperature solid oxide fuel cells. Adv Energy Mater. 2017; 7(4). https://doi.org/10.1002/aenm.201601956

[112]

Wang J, Liu M, Lin M. Oxygen reduction reactions in the SOFC cathode of Ag/CeO2. Solid State Ionics. 2006; 177(9-10): 939-947.

[113]

Lee T-H, Fan L, Yu C-C, Wiria FE, Su P-C. A high-performance SDC-infiltrated nanoporous silver cathode with superior thermal stability for low temperature solid oxide fuel cells. J Mater Chem A. 2018; 6(17): 7357-7363.

[114]

Rehman SU, Song R-H, Lim T-H, Hong J-E, Lee S-B. Parametric study on electrodeposition of a nanofibrous LaCoO3 SOFC cathode. Ceram Int. 2021; 47(4): 5570-5579.

[115]

Rehman SU, Shaur A, Song RH, et al. Nano-fabrication of a high-performance LaNiO3 cathode for solid oxide fuel cells using an electrochemical route. J Power Sources. 2019; 429: 97-104.

[116]

Park B-K, Song R-H, Lee S-B, et al. Facile synthesis of Ca-doped LaCoO3Perovskite via chemically assisted electrodeposition as a protective film on solid oxide fuel cell interconnects. J Electrochem Soc. 2016; 163(9): F1066-F1071.

[117]

Park B-K, Song R-H, Lee S-B, et al. A perovskite-type lanthanum cobaltite thin film synthesized via an electrochemical route and its application in SOFC interconnects. J Electrochem Soc. 2015; 162(14): F1549-F1554.

[118]

Rehman SU, Song RH, Lim TH, et al. High-performance nanofibrous LaCoO3 perovskite cathode for solid oxide fuel cells fabricated via chemically assisted electrodeposition. J Mater Chem A. 2018; 6(16): 6987-6996.

[119]

Shaur A, Rehman SU, Kim H-S, et al. Hybrid electrochemical deposition route for the facile nanofabrication of a Cr-Poisoning-Tolerant La(Ni,Fe)O3-δ cathode for solid oxide fuel cells. ACS Appl Mater Interfaces. 2020; 12(5): 5730-5738.

[120]

Park B, Lee S, Lim T, Song R, Lee J. High-performance solid oxide fuel cell with an electrochemically surface-tailored oxygen electrode. ChemSusChem. 2018; 11(15): 2620-2627.

[121]

Nam S, Kim J, Kim H, et al. Adv Mater. 2024; 2307286: 1.

[122]

Park B-K, Song R-H, Lee S-B, et al. Conformal bi-layered perovskite/spinel coating on a metallic wire network for solid oxide fuel cells via an electrodeposition-based route. J Power Sources. 2017; 348: 40-47.

[123]

He S, Jiang SP. Prog Nat Sci Mater Int. 2021; 31: 341.

[124]

Wang X, Yu B, Zhang W, Chen J, Luo X, Stephan K. Microstructural modification of the anode/electrolyte interface of SOEC for hydrogen production. Int J Hydrogen Energy. 2012; 37(17): 12833-12838.

[125]

Türk H, Schmidt F, Götsch T, et al. Complexions at the electrolyte/electrode interface in solid oxide cells. Adv Mater Interfac. 2021; 8(18): 1.

[126]

Mogensen MB, Chen M, Frandsen HL, et al. Ni migration in solid oxide cell electrodes: review and revised hypothesis. Fuel Cell. 2021; 21(5): 415-429.

[127]

Wang Y, Wu C, Zu B, et al. Ni migration of Ni-YSZ electrode in solid oxide electrolysis cell: an integrated model study. J Power Sources. 2021; 516:230660.

[128]

Mogensen MB, Hauch A, Sun X, et al. Relation between Ni particle shape change and Ni migration in Ni-YSZ electrodes—a hypothesis. Fuel Cell. 2017; 17(4): 434-441.

[129]

Cheng T-L, Lei Y, Chen Y, et al. Oxidation of nickel in solid oxide cells during electrochemical operation: experimental evidence, theoretical analysis, and an alternative hypothesis on the nickel migration. J Power Sources. 2023; 569:232991.

[130]

Pan Z, Liu Q, Yan Z, et al. On the delamination of air electrodes of solid oxide electrolysis cells: a mini-review. Electrochem Commun. 2022; 137:107267.

[131]

Keane M, Mahapatra MK, Verma A, Singh P. LSM-YSZ interactions and anode delamination in solid oxide electrolysis cells. Int J Hydrogen Energy. 2012; 37(22): 16776-16785.

[132]

Khan MS, Xu X, Knibbe R, Zhu Z. Air electrodes and related degradation mechanisms in solid oxide electrolysis and reversible solid oxide cells. Renew Sustain Energy Rev. 2021; 143:110918.

[133]

Khan MS, Xu X, Knibbe R, et al. New insights into the degradation behavior of air electrodes during solid oxide electrolysis and reversible solid oxide cell operation. Energy Technol. 2020; 8(9): 1.

[134]

Jiang SP, Chen X. Chromium deposition and poisoning of cathodes of solid oxide fuel cells - a review. Int J Hydrogen Energy. 2014; 39(1): 505-531.

[135]

Yang Z, Guo M, Wang N, Ma C, Wang J, Han M. A short review of cathode poisoning and corrosion in solid oxide fuel cell. Int J Hydrogen Energy. 2017; 42(39): 24948-24959.

[136]

Fergus J. Effect of cathode and electrolyte transport properties on chromium poisoning in solid oxide fuel cells. Int J Hydrogen Energy. 2007; 32(16): 3664-3671.

[137]

Balland A, Gannon P, Deibert M, Chevalier S, Caboche G, Fontana S. Investigation of La2O3 and/or (Co,Mn)3O4 deposits on Crofer22APU for the SOFC interconnect application. Surf Coating Technol. 2009; 203(20-21): 3291-3296.

[138]

Yang Z, Xia G, Li X, Stevenson J. (Mn,Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. Int J Hydrogen Energy. 2007; 32(16): 3648-3654.

[139]

Chu C, Wang J, Lee S. Effects of La0.67Sr0.33MnO3 protective coating on SOFC interconnect by plasma-sputtering. Int J Hydrogen Energy. 2008; 33(10): 2536-2546.

[140]

Duan C, Tong J, Shang M, et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science. 2015; 349(6254): 1321-1326.

[141]

Duan C, Kee RJ, Zhu H, et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature. 2018; 557(7704): 217-222.

[142]

Duan C, Kee R, Zhu H, et al. Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat Energy. 2019; 4(3): 230-240.

[143]

Yang L, Wang S, Blinn K, et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr 0.1 Ce 0.7 Y 0.2-xYb x O 3-δ. Science (80-). 2009; 326(5949): 126-129.

[144]

Kim D, Jeong I, Ahn S, Oh S, Im H, Bae H, Song S, Lee C, Jung W, Lee KT. On the role of bimetal-doped BaCoO3-d perovskites as highly active oxygen electrodes of protonic ceramic electrochemical cells. Adv Energy Mater. 2024; 14: 1.

[145]

Tsvetkov N, Kim D, Jeong I, et al. Advances in materials and interface understanding in protonic ceramic fuel cells. Adv Mater Technol. 2023; 8(20): 1.

[146]

Liu Z, Bai Y, Sun H, et al. Synergistic dual-phase air electrode enables high and durable performance of reversible proton ceramic electrochemical cells. Nat Commun. 2024; 15(1): 472.

[147]

Kasyanova AV, Zvonareva IA, Tarasova NA, Bi L, Medvedev DA, Shao Z. Electrolyte materials for protonic ceramic electrochemical cells: main limitations and potential solutions. Mater Reports Energy. 2022; 2(4):100158. s.

[148]

Wang Z, Wang Y, Wang J, et al. Rational design of perovskite ferrites as high-performance proton-conducting fuel cell cathodes. Nat Catal. 2022; 5(9): 777-787.

[149]

Liu J, Kim JK, Wang Y, et al. Understanding and mitigating A-site surface enrichment in Ba-containing perovskites: a combined computational and experimental study of BaFeO3. Energy Environ Sci. 2022; 15(10): 4069-4082.

[150]

Kim JH, Kim D, Ahn S, et al. An universal oxygen electrode for reversible solid oxide electrochemical cells at reduced temperatures. Energy Environ Sci. 2023; 16(9): 3803-3814.

[151]

Pei K, Luo S, He F, et al. Constructing an active and stable oxygen electrode surface for reversible protonic ceramic electrochemical cells. Appl Catal B Environ. 2023; 330:122601.

[152]

Xia J, Zhou M, Gao H, He F, Du Z, Chen Y. Adv Funct Mater. 2024; 2403493: 1.

[153]

Xia J, Zhu F, He F, Xu K, Choi Y, Chen Y. Adv Energy Mater. 2023; 2302964: 1.

RIGHTS & PERMISSIONS

2024 The Author(s). InfoScience published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/