Self-assembled monolayers accelerating perovskite/silicon tandem solar cells

Shenghan Wu , Zilong Wu , Yuliang Xu , Juncheng Wang , Jingwei Zhu , Wenbo Jiao , Zhiyu Gao , Hao Zhang , Shengqiang Ren , Cong chen , Zhongke Yuan , Dewei Zhao

InfoMat ›› 2025, Vol. 7 ›› Issue (9) : e70050

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (9) : e70050 DOI: 10.1002/inf2.70050
PERSPECTIVE

Self-assembled monolayers accelerating perovskite/silicon tandem solar cells

Author information +
History +
PDF

Abstract

The simple solution processing of perovskite materials, combined with the high efficiency potential of tandem structures and the mature silicon infrastructure, makes perovskite/silicon tandems highly attractive for advancing cost-effective and high-performance photovoltaic technologies. In recent years, lots of work has been reported in improving device efficiency and enhancing long-term stability by optimizing the hole transport layer (HTL). In this perspective, we outline the limitations of conventional hole transport materials used for wide-bandgap (WBG) perovskite subcells in tandem devices. We then briefly summarize the development of perovskite/silicon tandem solar cells (PS-TSCs) and highlight the landmark breakthroughs. Finally, we emphatically discuss and comment on the application and challenge of self-assembled monolayers (SAMs) in perovskite/silicon tandems. We hope this perspective will enable researchers to have a clearer understanding of recent research based on perovskite/silicon tandem and inspire more meaningful work in the future.

Keywords

hole transport layers / perovskite/silicon tandem solar cells / self-assembled monolayers

Cite this article

Download citation ▾
Shenghan Wu, Zilong Wu, Yuliang Xu, Juncheng Wang, Jingwei Zhu, Wenbo Jiao, Zhiyu Gao, Hao Zhang, Shengqiang Ren, Cong chen, Zhongke Yuan, Dewei Zhao. Self-assembled monolayers accelerating perovskite/silicon tandem solar cells. InfoMat, 2025, 7(9): e70050 DOI:10.1002/inf2.70050

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shockley W, Queisser HJ. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys. 1961; 32(3): 510-519.

[2]

Chen P, Xiao Y, Li S, et al. The promise and challenges of inverted perovskite solar cells. Chem Rev. 2024; 124(19): 10623-10700.

[3]

Zhu J, Luo Y, He R, et al. A donor-acceptor-type hole-selective contact reducing non-radiative recombination losses in both subcells towards efficient all-perovskite tandems. Nat Energy. 2023; 8(7): 714-724.

[4]

Cheng Y, Ding L. Perovskite/Si tandem solar cells: fundamentals, advances, challenges, and novel applications. SusMat. 2021; 1(3): 324-344.

[5]

Fang Z, Zeng Q, Zuo C, et al. Perovskite-based tandem solar cells. Sci Bull. 2020; 66(6): 621-636.

[6]

Xi Y, Liming D. Organic semiconductors: commercialization and market. J Semicond. 2021; 42: 090201.

[7]

Wu S, Ren S, Chen C, Zhao D. Stronger together: perovskite/silicon tandem solar cells. J Semicond. 2025; 46(5): 050201.

[8]

Zhu J, Huang X, Luo Y, et al. Self-assembled hole-selective contact for efficient Sn-Pb perovskite solar cells and all-perovskite tandems. Nat Commun. 2025; 16(1): 240.

[9]

Zhu J, Xu Y, Luo Y, et al. Custom-tailored hole transport layer using oxalic acid for high-quality tin-lead perovskites and efficient all-perovskite tandems. Sci Adv. 2024; 10(16): eadl2063.

[10]

Wu S, Hu M, Wang J, et al. Customized multifunctional additive regulates 1.67 eV-wide-bandgap perovskite crystallization for four-terminal perovskite/silicon tandem solar cells. Adv Mater. 2025;2503269.

[11]

Li M, Liu M, Qi F, Lin FR, Jen AKY. Self-assembled monolayers for interfacial engineering in solution-processed thin-film electronic devices: design, fabrication, and applications. Chem Rev. 2024; 124(5): 2138-2204.

[12]

He R, Wang W, Yi Z, et al. All-perovskite tandem 1 cm2 cells with improved interface quality. Nature. 2023; 618(7963): 80-86.

[13]

Jiang Q, Zhu K. Rapid advances enabling high-performance inverted perovskite solar cells. Nat Rev Mater. 2024; 9(6): 399-419.

[14]

Best Research Cell Efficiency Chart 2025. Accessed June 16, 2025. https://www.nrel.gov/pv/cell-efficiency.html

[15]

Bush KA, Palmstrom AF, Yu ZJ, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy. 2017; 2(4): 17009.

[16]

Chen B, Yu ZJ, Manzoor S, et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule. 2020; 4(4): 850-864.

[17]

Al-Ashouri A, Köhnen E, Li B, et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science. 2020; 370(6522): 1300-1309.

[18]

Chin X, Turkay D, Steele JA, et al. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science. 2023; 381(6653): 59-63.

[19]

Ugur E, Said AA, Dally P, et al. Enhanced cation interaction in perovskites for efficient tandem solar cells with silicon. Science. 2024; 385(6708): 533-538.

[20]

Liu J, He Y, Ding L, et al. Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature. 2024; 635(8039): 596-603.

[21]

Zhang C, Son Y, Kim H, et al. Work function tuning of a weak adhesion homojunction for stable perovskite solar cells. Joule. 2024; 8(5): 1394-1411.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/