Donor-redox covalent organic framework-based memristors for visual neuromorphic system

Qiongshan Zhang , Qiang Che , Fuzhen Xuan , Bin Zhang

InfoMat ›› 2025, Vol. 7 ›› Issue (9) : e70035

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (9) : e70035 DOI: 10.1002/inf2.70035
RESEARCH ARTICLE

Donor-redox covalent organic framework-based memristors for visual neuromorphic system

Author information +
History +
PDF

Abstract

Artificial visual neural systems have emerged as promising candidates for overcoming the von Neumann bottleneck via integrating image perception, storage, and computation. Existing photoelectric memristors are limited by the need for specific wavelengths or long input times to maintain stable behavior. Here, we introduce a benzothiophene-modified covalent organic framework, enhancing the photoelectric response of methyl trinuclear copper for low-voltage (0.2 V) redox processes. The material enables the modulation of 50 conductive states via light and electrical signals, improving recognition accuracy in low light, dense fog, and high-frequency motion. The ITO/BTT-Cu3/ITO device's accuracy increases from 7.1% with 2 states to 87.1% after training. This construction strategy and the synergistic effect of photoelectric interactions offer a new pathway for the development of photoelectric neuromorphic computing elements capable of processing environmental information in situ.

Keywords

covalent organic framework / donor-redox / memristors / photoelectric synergistic effect / visual neuromorphic system

Cite this article

Download citation ▾
Qiongshan Zhang, Qiang Che, Fuzhen Xuan, Bin Zhang. Donor-redox covalent organic framework-based memristors for visual neuromorphic system. InfoMat, 2025, 7(9): e70035 DOI:10.1002/inf2.70035

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ding G, Zhao J, Zhou K, et al. Porous crystalline materials for memories and neuromorphic computing systems. Chem Soc Rev. 2023; 52(20): 7071-7136.

[2]

Dan H, Li H, Xu L, Guo C, Bowen CR, Yang Y. Light induced photovoltaic and pyroelectric effects in ferroelectric BaTiO3 film based Schottky interface for self-powered and flexible multi-modal logic gates. InfoMat. 2024; 6(4): e12531.

[3]

Wang J, He D, Chen R, et al. Low operating voltage memtransistors based on ion bombarded p-type GeSe nanosheets for artificial synapse applications. InfoMat. 2023; 5(12): e12476.

[4]

Liu Q, Gao S, Xu L, et al. Nanostructured perovskites for nonvolatile memory devices. Chem Soc Rev. 2022; 51(9): 3341-3379.

[5]

Guo L, Sun H, Min L, Wang M, Cao F, Li L. Two-terminal perovskite optoelectronic synapse for rapid trained neuromorphic computation with high accuracy. Adv Mater. 2024; 36(27): 2402253.

[6]

Ram MS, Persson K-M, Irish A, Jönsson A, Timm R, Wernersson L-E. High-density logic-in-memory devices using vertical indium arsenide nanowires on silicon. Nat Electron. 2021; 4(12): 914-920.

[7]

Ielmini D, Wong HSP. In-memory computing with resistive switching devices. Nat Electron. 2018; 1(6): 333-343.

[8]

Harikesh PC, Tu D, Fabiano S. Organic electrochemical neurons for neuromorphic perception. Nat Electron.2024; 7(7): 525-536.

[9]

Zhou P-K, Li Y, Zeng T, et al. One-dimensional covalent organic framework-based multilevel memristors for neuromorphic computing. Angew Chem Int Ed. 2024; 63(20): e202402911.

[10]

Zhang T, Fan C, Hu L, Zhuge F, Pan X, Ye Z. A reconfigurable all-optical-controlled synaptic device for neuromorphic computing applications. ACS Nano. 2024; 18(25): 16236-16247.

[11]

Zhang Z, Wang S, Liu C, Xie R, Hu W, Zhou P. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat Nanotechnol. 2022; 17(1): 27-32.

[12]

Jeon Y, Lee G, Kim YJ, Jang BC, Yoo H. Dual synapses and security devices from ternary C60-pentacene-TiO2-x nanorods heterostructures. Adv Funct Mater. 2024; 34(38): 2409578.

[13]

Zhang H, Liang F, Yang L, et al. Superior AlGaN/GaN-based phototransistors and arrays with reconfigurable triple-mode functionalities enabled by voltage-programmed two-dimensional electron gas for high-quality imaging. Adv Mater. 2024; 36(36): 2405874.

[14]

Jiang J, Shan X, Xu J, et al. Retina-like chlorophyll heterojunction-based optoelectronic Memristor with all-optically modulated synaptic plasticity enabling neuromorphic edge detection. Adv Funct Mater. 2024; 34(51): 2409677.

[15]

Su W, Zhang S, Liu C, et al. Interlayer transition induced infrared response in ReS2/2D perovskite van der Waals heterostructure photodetector. Nano Lett. 2022; 22(24): 10192-10199.

[16]

Wang J, Ilyas N, Ren Y, et al. Technology and integration roadmap for optoelectronic memristor. Adv Mater. 2024; 36(9): 2307393.

[17]

Liu K, Zhang T, Dang B, et al. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat Electron. 2022; 5(11): 761-773.

[18]

Guo P, Jia M, Guo D, Wang ZL, Zhai J. Retina-inspired in-sensor broadband image preprocessing for accurate recognition via the flexophototronic effect. Matter. 2023; 6(2): 537-553.

[19]

Li Y, Lu J, Shang D, et al. Oxide-based electrolyte-gated transistors for spatiotemporal information processing. Adv Mater. 2020; 32(47): 2003018.

[20]

Ouyang W, Teng F, He J-H, Fang X. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering. Adv Funct Mater. 2019; 29(9): 1807672.

[21]

Zhao K, Liu J, Wang X, et al. 90% yield production of Spiropyran covalently grafted MXene-based RRAM devices for optoelectronic dual-response switching. Adv Opt Mater. 2024; 12(5): 2301761.

[22]

Zhao L, Gao Y, Fu X, Chen Y, Zhang B, Xuan F. Photodual-responsive anthracene-based 2D covalent organic framework for optoelectronic synaptic devices. Small Methods. 2024; 9(4): 2401341.

[23]

Sun JL, Chen Q, Fan F, et al. A dual-mode organic memristor for coordinated visual perceptive computing. Fundam Res. 2024; 4(6): 1666-1673.

[24]

Lee K, Jeong BH, Kamaraj E, et al. Light-enhanced molecular polarity enabling multispectral color-cognitive memristor for neuromorphic visual system. Nat Commun. 2023; 14(1): 5775.

[25]

Fei L, Yu W, Wu Z, Yin Y, Moth-Poulsen K, Wang C. Optically controlled thermochromic switching for multi-input molecular logic. Angew Chem Int Ed. 2022; 61(44): e202212483.

[26]

Park H-L, Kim H, Lim D, et al. Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light. Adv Mater. 2020; 32(11): 1906899.

[27]

Zhao T, Zhao C, Xu W, et al. Bio-inspired photoelectric artificial synapse based on two-dimensional Ti3C2T MXenes floating gate. Adv Funct Mater. 2021; 31(45): 2106000.

[28]

Jia M, Guo P, Wang W, et al. Tactile tribotronic reconfigurable p-n junctions for artificial synapses. Sci Bull. 2022; 67(8): 803-812.

[29]

Liu S, He Z, Zhang B, et al. Approaching the zero-power operating limit in a self-coordinated organic protonic synapse. Adv Sci. 2023; 10(34): 2305075.

[30]

Zhang Q, Che Q, Wu D, et al. Dual redox-active covalent organic framework-based memristors for highly-efficient neuromorphic computing. Angew Chem Int Ed Engl. 2024; 63(46): e202413311.

[31]

Zhou K, Jia Z, Zhou Y, et al. Covalent organic frameworks for neuromorphic devices. J Phys Chem Lett. 2023; 14(32): 7173-7192.

[32]

Zhao Z, El-Khouly ME, Che Q, et al. Redox-active azulene-based 2D conjugated covalent organic framework for organic memristors. Angew Chem Int Ed Engl. 2023; 62(7): e202217249.

[33]

Zhou P-K, Yu H, Huang W, et al. Photoelectric multilevel memory device based on covalent organic polymer film with keto-enol tautomerism for harsh environments applications. Adv Funct Mater. 2024; 34: 2306593.

[34]

Li C, Li D, Zhang W, Li H, Yu G. Towards high-performance resistive switching behavior through embedding a D-A system into 2D imine-linked covalent organic frameworks. Angew Chem Int Ed. 2021; 60(52): 27135-27143.

[35]

Li T, Yu H, Xiong Z, Gao Z, Zhou Y, Han S-T. 2D oriented covalent organic frameworks for alcohol-sensory synapses. Mater Horiz. 2021; 8(7): 2041-2049.

[36]

Tian X, Zhao X, Wang Z, et al. Efficient capture and low energy release of NH3 by Azophenol decorated Photoresponsive covalent organic frameworks. Angew Chem Int Ed Engl. 2024; 63(34): e202406855.

[37]

Xu F, Feringa BL. Photoresponsive supramolecular polymers: from light-controlled small molecules to smart materials. Adv Mater. 2023; 35(10): 2204413.

[38]

Zhou X, Ikura R, Jin C, Yamaoka K, Park J, Takashima Y. Supramolecular photoresponsive polyurethane with movable crosslinks based on photoisomerization of azobenzene. Aggregate. 2024; 5(2): e457.

[39]

Chen X, Song J-Y, Zheng J, et al. Metal variance in multivariate metal-organic frameworks for boosting catalytic conversion of CO2. J Am Chem Soc. 2024; 146(28): 19271-19278.

[40]

Duan H, Chen X, Yang Y-N, et al. Tailoring stability, catalytic activity and selectivity of covalent metal-organic frameworks via steric modification of metal nodes. J Mater Chem A. 2023; 11(24): 12777-12783.

[41]

Lin XC, Wang YM, Chen X, et al. A photosensitizing metal-organic framework as a tandem reaction catalyst for primary alcohols from terminal alkenes and alkynes. Angew Chem Int Ed Engl. 2023; 62(35): e202306497.

[42]

Hou Y, Zhou P, Liu F, et al. Rigid covalent organic frameworks with thiazole linkage to boost oxygen activation for photocatalytic water purification. Nat Commun. 2024; 15(1): 7350.

[43]

Yang X, Pan Z-X, Yue J-Y, et al. Nitrogen-site engineering in covalent organic frameworks for H2O2 photogeneration via dual channels of indirect two-electron O2 reduction. Small. 2024; 20(47): 2405907.

[44]

Li X, Wang J, Xue F, et al. An imine-linked metal-organic framework as a reactive oxygen species generator. Angew Chem Int Ed. 2021; 60(5): 2534-2540.

[45]

Wei R-J, You P-Y, Duan H, et al. Ultrathin metal-organic framework nanosheets exhibiting exceptional catalytic activity. J Am Chem Soc. 2022; 144(38): 17487-17495.

[46]

Du Y, Yin S, Li Y, et al. Liquid-metal-assisted synthesis of patterned GaN thin films for high-performance UV photodetectors array. Small Methods. 2024; 8(2): 2300175.

[47]

Su L, Hu Z, Yan T, Zhang X, Zhang D, Fang X. Light-adapted optoelectronic-memristive device for the artificial visual system. ACS Appl Mater Interfaces. 2024; 16(33): 43742-43751.

[48]

Hu L, Yang J, Wang J, Cheng P, Chua LO, Zhuge F. Optoelectronic neuromorphic computing: all-optically controlled memristor for optoelectronic neuromorphic computing. Adv Funct Mater. 2021; 31(4): 2170027.

[49]

Huang H, Liang X, Wang Y, et al. Fully integrated multi-mode optoelectronic memristor array for diversified in-sensor computing. Nat Nanotechnol. 2025; 20(1): 93-103.

[50]

Jo C, Kim J, Kwak JY, et al. Retina-inspired color-cognitive learning via chromatically controllable mixed quantum dot synaptic transistor arrays. Adv Mater. 2022; 34(12): 2108979.

[51]

Dang B, Zhang T, Wu X, Liu K, Huang R, Yang Y. Reconfigurable in-sensor processing based on a multi-phototransistor-one-memristor array. Nat Electron. 2024; 7(11): 991-1003.

[52]

Shan X, Wang Z, Xie J, et al. Hemispherical retina emulated by Plasmonic optoelectronic Memristors with all-optical modulation for neuromorphic stereo vision. Adv Sci. 2024; 11(36): 2405160.

[53]

Kumar D, Li H, Kumbhar DD, et al. Highly efficient back-end-of-line compatible flexible Si-based optical memristive crossbar array for edge neuromorphic physiological signal processing and bionic machine vision. Nano-Micro Lett. 2024; 16(1): 238.

[54]

Wu X, Wang S, Huang W, Dong Y, Wang Z, Huang W. Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning. Nat Commun. 2023; 14(1): 468.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

4

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/