Water- and oxidation-resistant MXenes for advanced electromagnetic interference shielding applications

Young Ho Jin , Ju-Hyoung Han , Jaeeun Park , Mincheal Kim , Shi-Hyun Seok , Yujin Chae , Yeoseon Sim , Sangjin Seo , Hyeonwoo Lee , Jaewon Wang , Jihoon Yang , Sora Jang , Juwon Han , Haeng Un Yeo , Sung Hyun Park , EunMi Choi , Taesung Kim , Soon-Yong Kwon

InfoMat ›› 2025, Vol. 7 ›› Issue (9) : e70034

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (9) : e70034 DOI: 10.1002/inf2.70034
RESEARCH ARTICLE

Water- and oxidation-resistant MXenes for advanced electromagnetic interference shielding applications

Author information +
History +
PDF

Abstract

Two-dimensional transition metal carbides and nitrides (MXenes) show great promise for electromagnetic interference (EMI) shielding. However, their susceptibility to oxidation, particularly in humid environments or water, limits their industrial applications. This study introduces a straightforward method for developing functionalized MXenes (F-MXenes) with significantly enhanced oxidation resistance and environmental stability, which are critical factors for industrial scalability. The resulting F-MXenes disperse easily in non-polar solvents, adhere well to various substrates, and remain highly stable under harsh conditions in an accelerated oxidation test at 100°C and 80% relative humidity for 49 days; F-MXenes retained 93% of their initial electrical resistance. Additionally, these films withstand water exposure, maintain superior current retention in seawater and corrosive environments, and exhibit high flexibility (10 000 bending cycles) and tensile strength (35 MPa). Notably, the EMI shielding effectiveness of the hydrophobic F-MXene films, produced using scalable techniques such as spray and blade coating, far exceeds that of previously reported hydrophobic MXene films and MXene composites, achieving 52–77 dB at thicknesses of 5–40 μm. This study highlights the potential of F-MXene as high-performance, scalable EMI-shielding coatings, particularly in humid or water-exposed environments.

Keywords

electromagnetic interference (EMI) shielding / environmental stability / hydrophobic MXenes / oxidation resistance / scalable coating

Cite this article

Download citation ▾
Young Ho Jin, Ju-Hyoung Han, Jaeeun Park, Mincheal Kim, Shi-Hyun Seok, Yujin Chae, Yeoseon Sim, Sangjin Seo, Hyeonwoo Lee, Jaewon Wang, Jihoon Yang, Sora Jang, Juwon Han, Haeng Un Yeo, Sung Hyun Park, EunMi Choi, Taesung Kim, Soon-Yong Kwon. Water- and oxidation-resistant MXenes for advanced electromagnetic interference shielding applications. InfoMat, 2025, 7(9): e70034 DOI:10.1002/inf2.70034

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science. 2021; 372(6547): eabf1581.

[2]

Zhou H, Han SJ, Lee HD, et al. Overcoming the limitations of MXene electrodes for solution-processed optoelectronic devices. Adv Mater. 2022; 34(41): 2206377.

[3]

Seok S-H, Sim Y, Han J-H, et al. Synthesis and processing of two-dimensional nitride MXenes for electrocatalysis and energy storage. Cell Rep Phys Sci. 2023; 4(9): 101582.

[4]

Han J-H, Seok S-H, Jin YH, et al. Robust 2D layered MXene matrix-boron carbide hybrid films for neutron radiation shielding. Nat Commun. 2023; 14(1): 6957.

[5]

Liu C, Feng Z, Yin T, et al. Multi-interface engineering of MXenes for self-powered wearable devices. Adv Mater. 2024; 36(42): 2403791.

[6]

Iqbal A, Shahzad F, Hantanasirisakul K, et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science. 2020; 369(6502): 446-450.

[7]

Shahzad F, Alhabeb M, Hatter CB, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science. 2016; 353(6304): 1137-1140.

[8]

Downes M, Shuck CE, McBride B, Busa J, Gogotsi Y. Comprehensive synthesis of Ti3C2Tx from MAX phase to MXene. Nat Protoc. 2024; 19(6): 1807-1834.

[9]

Yun T, Kim H, Iqbal A, et al. Electromagnetic shielding of monolayer MXene assemblies. Adv Mater. 2020; 32(9): 1906769.

[10]

Du Y, Yan Z, You W, et al. Balancing MXene surface termination and interlayer spacing enables superior microwave absorption. Adv Funct Mater. 2023; 33(34): 2301449.

[11]

Wang X-Y, Liao S-Y, Wan Y-J, et al. Electromagnetic interference shielding materials: recent progress, structure design, and future perspective. J Mater Chem C. 2022; 10(1): 44-72.

[12]

Zhao MQ, Trainor N, Ren CE, Torelli M, Anasori B, Gogotsi Y. Scalable manufacturing of large and flexible sheets of MXene/graphene heterostructures. Adv Mater Technol. 2019; 4(5): 1800639.

[13]

Zhang J, Kong N, Uzun S, et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv Mater. 2020; 32(23): 2001093.

[14]

Zhou T, Cao C, Yuan S, et al. Interlocking-governed ultra-strong and highly conductive MXene fibers through fluidics-assisted thermal drawing. Adv Mater. 2023; 35(51): 2305807.

[15]

Seok S-H, Choo S, Kwak J, et al. Synthesis of high quality 2D carbide MXene flakes using a highly purified MAX precursor for ink applications. Nanoscale Adv. 2021; 3(2): 517-527.

[16]

Li W, Zhou T, Zhang Z, et al. Ultrastrong MXene film induced by sequential bridging with liquid metal. Science. 2024; 385(6704): 62-68.

[17]

Soomro RA, Zhang P, Fan B, Wei Y, Xu B. Progression in the oxidation stability of MXenes. Nano Micro Lett. 2023; 15(1): 108.

[18]

Huang S, Mochalin VN. Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions. Inorg Chem. 2019; 58(3): 1958-1966.

[19]

Chen H, Wen Y, Qi Y, Zhao Q, Qu L, Li C. Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Adv Funct Mater. 2020; 30(5): 1906996.

[20]

Cao F, Zhang Y, Wang H, et al. Recent advances in oxidation stable chemistry of 2D MXenes. Adv Mater. 2022; 34(13): 2107554.

[21]

Zhao L, Bi L, Hu J, et al. Universal salt-assisted assembly of MXene from suspension on polymer substrates. Nat Commun. 2024; 15(1): 10027.

[22]

Yan J, Zhou T, Yang X, et al. Strong and tough MXene bridging-induced conductive nacre. Angew Chem Int Ed. 2024; 63(30): e202405228.

[23]

Liu J, Zhang HB, Sun R, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv Mater. 2017; 29(38): 1702367.

[24]

Natu V, Hart JL, Sokol M, Chiang H, Taheri ML, Barsoum MW. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew Chem. 2019; 131(36): 12785-12790.

[25]

Zhao X, Vashisth A, Prehn E, et al. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter. 2019; 1(2): 513-526.

[26]

Liu Y, Li E, Yan Y, et al. A one-structure-layer PDMS/Mxenes based stretchable triboelectric nanogenerator for simultaneously harvesting mechanical and light energy. Nano Energy. 2021; 86: 106118.

[27]

Raagulan K, Braveenth R, Kim BM, et al. An effective utilization of MXene and its effect on electromagnetic interference shielding: flexible, free-standing and thermally conductive composite from MXene-PAT-poly (p-aminophenol)-polyaniline co-polymer. RSC Adv. 2020; 10(3): 1613-1633.

[28]

Yan J, Chen M, Tan R, et al. Flexible multifunctional MXene@ Ag nanowires/cotton fabric inspired by transport of nutrients by roots for electromagnetic shielding, infrared stealth, joule/solar heating and flame retardancy. J Mater Chem A. 2024; 12(47): 33162-33176.

[29]

Yan J, Lin C, Jiang S, et al. Fabrication of flexible Co3Fe7@Ti3C2T_/TiO2/C@ spacer fabrics for tunable radar-infrared compatible stealth inspired by layered structure of rock. Chem Eng J. 2024; 499: 156409.

[30]

Zhang Q, Lai H, Fan R, Ji P, Fu X, Li H. High concentration of Ti3C2Tx MXene in organic solvent. ACS Nano. 2021; 15(3): 5249-5262.

[31]

Doo S, Chae A, Kim D, et al. Mechanism and kinetics of oxidation reaction of aqueous Ti3C2Tx suspensions at different pHs and temperatures. ACS Appl Mater Interfaces. 2021; 13(19): 22855-22865.

[32]

Shin H, Lee H, Seo Y, Jeong W, Han TH. Grafting behavior of amine ligands for surface modification of MXene. Langmuir. 2023; 39(6): 2358-2367.

[33]

Lee JT, Wyatt BC, Davis GA, et al. Covalent surface modification of Ti3C2Tx MXene with chemically active polymeric ligands producing highly conductive and ordered microstructure films. ACS Nano. 2021; 15(12): 19600-19612.

[34]

Kim D, Ko TY, Kim H, Lee GH, Cho S, Koo CM. Nonpolar organic dispersion of 2D Ti3C2Tx MXene flakes via simultaneous interfacial chemical grafting and phase transfer method. ACS Nano. 2019; 13(12): 13818-13828.

[35]

Zhou C, Wang D, Lagunas F, et al. Hybrid organic-inorganic two-dimensional metal carbode MXenes with amido- and imido-terminated surfaces. Nat Chem. 2023; 15(12): 1722-1729.

[36]

Chen M, Li L, Deng Z, et al. Two-dimensional janus MXene inks for versatile functional coatings on arbitrary substrates. ACS Appl Mater Interfaces. 2023; 15(3): 4591-4600.

[37]

Liptrot DJ, Power PP. London dispersion forces in sterically crowded inorganic and organometallic molecules. Nat Rev Chem. 2017; 1(1): 0004.

[38]

Worthen AJ, Tran V, Cornell KA, Truskett TM, Johnston KP. Steric stabilization of nanoparticles with grafted low molecular weight ligands in highly concentrated brines including divalent ions. Soft Matter. 2016; 12(7): 2025-2039.

[39]

Sarycheva A, Gogotsi Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem Mater. 2020; 32(8): 3480-3488.

[40]

Jaeger D, Patscheider J. A complete and self-consistent evaluation of XPS spectra of TiN. J Electron Spectrosc Relat Phenom. 2012; 185(11): 523-534.

[41]

Natu V, Benchakar M, Canaff C, Habrioux A, Celerier S, Barsoum MW. A critical analysis of the x-ray photoelectron spectra of Ti3C2Tz MXenes. Matter. 2021; 4(4): 1224-1251.

[42]

Wood MH, Welbourn RJ, Charlton T, Zarbakhsh A, Casford M, Clarke SM. Hexadecylamine adsorption at the iron oxide-oil interface. Langmuir. 2013; 29(45): 13735-13742.

[43]

Yang K, Liang S, Zou L, et al. Intercalating oleylamines in graphite oxide. Langmuir. 2012; 28(5): 2904-2908.

[44]

Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. In: MXenes and Their Composites: Synthesis, Properties and Applications, edited by M. Alhabeb, CRC Press, 2023, pp. 309-328.

[45]

Gao Y, Duan L, Guan S, et al. The effect of hydrophobic alkyl chain length on the mechanical properties of latex particle hydrogels. RSC Adv. 2017; 7(71): 44673-44679.

[46]

Hart JL, Hantanasirisakul K, Lang AC, et al. Control of MXenes' electronic properties through termination and intercalation. Nat Commun. 2019; 10(1): 522.

[47]

Isari AA, Ghaffarkhah A, Hashemi SA, Wuttke S, Arjmand M. Structural design for EMI shielding: from underlying mechanisms to common pitfalls. Adv Mater. 2024; 36(24): 2310683.

[48]

Zhou B, Zhang Z, Li Y, et al. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl Mater Interfaces. 2020; 12(4): 4895-4905.

[49]

Liu Z, Wang W, Tan J, et al. Bioinspired ultra-thin polyurethane/MXene nacre-like nanocomposite films with synergistic mechanical properties for electromagnetic interference shielding. J Mater Chem C. 2020; 8(21): 7170-7180.

[50]

Gao Q, Pan Y, Zheng G, Liu C, Shen C, Liu X. Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv Compos Hybrid Mater. 2021; 4(2): 274-285.

[51]

Lu Z, Jia F, Zhuo L, Ning D, Gao K, Xie F. Micro-porous MXene/aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance. Composites Part B. 2021; 217: 108853.

[52]

Aakyiir M, Kingu MAS, Araby S, et al. Stretchable, mechanically resilient, and high electromagnetic shielding polymer/MXene nanocomposites. J Appl Polym Sci. 2021; 138(22): 50509.

[53]

Ahmed S, Li B, Luo S, Liao K. Heterogeneous Ti3C2Tx MXene-MWCNT@MoS2 film for enhanced long-term electromagnetic interference shielding in the moisture environment. ACS Appl Mater Interfaces. 2023; 15(42): 49458-49467.

[54]

Wu S, Chen D, Han W, et al. Ultralight and hydrophobic MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation. Chem Eng J. 2022; 446: 137093.

[55]

Cheng Y, Li X, Qin Y, et al. Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci Adv. 2021; 7(39): eabj1663.

[56]

Sha Z, He H, Ma H, et al. All-in-one integrated flexible PE@PET/MXene films for high-performance electromagnetic shields with self-reinforced conductivity and mechanical properties. Carbon. 2024; 216: 118595.

[57]

Tosuwan P, Leese HS, Chuck CJ. Developing hydrophobic alginate-amine derivatives as a coating for food packaging. ACS Appl Polym Mater. 2024; 6(17): 10669-10677.

[58]

Jothi Prakash C, Prasanth R. Approaches to design a surface with tunable wettability: a review on surface properties. J Mater Sci. 2021; 56(1): 108-135.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/