High quality large-scale nickel-rich layered oxides precursor co-precipitation via domain adaptation-based machine learning
Junyoung Seo , Taekyeong Kim , Kisung You , Youngmin Moon , Jina Bang , Waunsoo Kim , Il Jeon , Im Doo Jung
InfoMat ›› 2025, Vol. 7 ›› Issue (7) : e70031
High quality large-scale nickel-rich layered oxides precursor co-precipitation via domain adaptation-based machine learning
Nickel-rich layered oxides (LiNixCoyMnzO2, NCM) are among the most promising cathode materials for high-energy lithium-ion batteries, offering high specific capacity and output voltage at a relatively low cost. However, industrial-scale co-precipitation presents significant challenges, particularly in maintaining particle sphericity, ensuring a stable concentration gradient, and preserving production yield when transitioning from lab-scale compositions. This study addresses a critical issue in the large-scale synthesis of nickel-rich NCM (x = 0.8381): nickel leaching, which compromises particle uniformity and battery performance. To mitigate this, we optimize the reaction process and develop an artificial intelligence-driven defect prediction system that enhances precursor stability. Our domain adaptation based machine learning model, which accounts for equipment wear and environmental variations, achieves a defect detection accuracy of 97.8% based on machine data and process conditions. By implementing this approach, we successfully scale up NCM precursor production to over 2 tons, achieving 83% capacity retention after 500 cycles at a 1C rate. In addition, the proposed approach demonstrates the formation of a concentration gradient in the composition and a high sphericity of 0.951 (±0.0796). This work provides new insights into the stable mass production of NCM precursors, ensuring both high yield and performance reliability.
domain adaptation / machine learning / mass production / nickel-rich layered oxides cathode / process monitoring / schedule optimization
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |