Interfacial adhesion effects of liquid metal printed electronics on general substrates: Mechanisms and applications

Chunxue Wan , Yubing Liu , Xiaoqing Li , Hui Xu , Rui Guo , Jing Liu

InfoMat ›› 2025, Vol. 7 ›› Issue (8) : e70029

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (8) : e70029 DOI: 10.1002/inf2.70029
REVIEW ARTICLE

Interfacial adhesion effects of liquid metal printed electronics on general substrates: Mechanisms and applications

Author information +
History +
PDF

Abstract

Printed electronics technology, characterized by its low cost, large-area compatibility, operational simplicity, and high-speed processing, has been extensively utilized in the fabrication of flexible electronic devices. Liquid metals, with their exceptional electrical conductivity and room-temperature fluidity, are considered ideal materials for the development of flexible and stretchable electronics. However, the adhesion mechanisms at the interface between liquid metals and substrates, a fundamental aspect of liquid metal-based printed electronics, have not been comprehensively explored in the existing literature. This review first introduces the fundamental properties of liquid metals and their adhesion mechanisms to various substrates, followed by a summary of printing technologies designed to enhance or reduce substrate adhesion. Additionally, techniques for printing on non-adhesive substrates through material modification, as well as methods for achieving detachment on adhesive substrates by controlling interfacial properties, are demonstrated. Finally, future research challenges and developmental trends in materials, methods, equipment, and applications are discussed. This review provides a comprehensive understanding of the interfacial adhesion effects between liquid metals and substrates, offering valuable insights for printing on a wide range of substrates, including plastics, silicones, paper, and even biological surfaces.

Keywords

adhesion / flexible electronics / liquid metal / printing technologies

Cite this article

Download citation ▾
Chunxue Wan, Yubing Liu, Xiaoqing Li, Hui Xu, Rui Guo, Jing Liu. Interfacial adhesion effects of liquid metal printed electronics on general substrates: Mechanisms and applications. InfoMat, 2025, 7(8): e70029 DOI:10.1002/inf2.70029

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim HU, Kim HY, Seok H, et al. Flexible MoS2-polyimide electrode for electrochemical biosensors and their applications for the highly sensitive quantification of endocrine hormones: PTH, T3, and T4. Anal Chem. 2020; 92(9): 6327-6333.

[2]

Su D, Wu K, Srinivasan K, et al. Ultra-flexible giant magnetoresistance biosensors for lab-on-a-needle biosensing. Adv Mater Interfaces. 2023; 10(7): 2201417.

[3]

Ma S, Wan Z, Wang C, et al. Ultra-sensitive and stable multiplexed biosensors array in fully printed and integrated platforms for reliable perspiration analysis. Adv Mater. 2024; 36(24): e2311106.

[4]

Li Y, Liu X, Zhang Y, et al. A flexible wearable device coupled with injectable Fe3O4 nanoparticles for capturing circulating tumor cells and triggering their deaths. Biosens Bioelectron. 2023; 235: 115367.

[5]

Shin JH, Kwon J, Kim JU, et al. Wearable eeg electronics for a brain-AI closed-loop system to enhance autonomous machine decision-making. npj Flex Electron. 2022; 6(1): 32.

[6]

Zhang L, He J, Liao Y, et al. A self-protective, reproducible textile sensor with high performance towards human-machine interactions. J Mater Chem A. 2019; 7(46): 26631-26640.

[7]

Justus KB, Hellebrekers T, Lewis DD, et al. A biosensing soft robot: autonomous parsing of chemical signals through integrated organic and inorganic interfaces. Sci Robot. 2019; 4(31): eaax0765.

[8]

Ying B, Chen RZ, Zuo R, Li J, Liu X. An anti-freezing, ambient-stable and highly stretchable ionic skin with strong surface adhesion for wearable sensing and soft robotics. Adv Funct Mater. 2021; 31(42): 2104665.

[9]

Chen G, Matsuhisa N, Liu Z, et al. Plasticizing silk protein for on-skin stretchable electrodes. Adv Mater. 2018; 30(21): e1800129.

[10]

Xu B, Akhtar A, Liu Y, et al. An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation. Adv Mater. 2016; 28(22): 4462-4471.

[11]

Zhao Y, Zhang S, Yu T, et al. Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nat Commun. 2021; 12(1): 4880.

[12]

Biswas S, Jang HW, Lee Y, et al. Recent advancements in implantable neural links based on organic synaptic transistors. Exp Dermatol. 2024; 4(2): 20220150.

[13]

Brown MS, Somma L, Mendoza M, Noh Y, Mahler GJ, Koh A. Upcycling compact discs for flexible and stretchable bioelectronic applications. Nat Commun. 2022; 13(1): 3727.

[14]

Wang J, Liu Y, Liu H, et al. A flexible electrode with tetra-chiral structure connected in serpentine shape. Sens Actuators A. 2024; 365: 114853.

[15]

Pan T, Pharr M, Ma Y, et al. Experimental and theoretical studies of serpentine interconnects on ultrathin elastomers for stretchable electronics. Adv Funct Mater. 2017; 27(37): 1702589.

[16]

Cheng X, Fan Z, Yao S, et al. Programming 3D curved mesosurfaces using microlattice designs. Science. 2023; 379(6638): 1225-1232.

[17]

Liu Z, Hu X, Bo R, et al. A three-dimensionally architected electronic skin mimicking human mechanosensation. Science. 2024; 384(6699): 987-994.

[18]

Jin T, Cheng X, Xu S, Lai Y, Zhang Y. Deep learning aided inverse design of the buckling-guided assembly for 3D frame structures. J Mech Phys Solids. 2023; 179: 105398.

[19]

Chen X, Li Y, Wang X, Yu H. Origami paper-based stretchable humidity sensor for textile-attachable wearable electronics. ACS Appl Mater Interfaces. 2022; 14(31): 36227-36237.

[20]

Lin CH, Tsai DS, Wei TC, et al. Highly deformable origami paper photodetector arrays. ACS Nano. 2017; 11(10): 10230-10235.

[21]

Kim T-H, Bao C, Chen Z, Kim WS. 3D printed leech-inspired origami dry electrodes for electrophysiology sensing robots. npj Flex Electron. 2022; 6(1): 5.

[22]

Xia T, Yu R, Yuan J, et al. Ultrahigh sensitivity flexible pressure sensors based on 3D-printed hollow microstructures for electronic skins. Adv Mater Technol. 2021; 6(3): 2000984.

[23]

Zhao XF, Wen XH, Zhong SL, et al. Hollow mxene sphere-based flexible E-skin for multiplex tactile detection. ACS Appl Mater Interfaces. 2021; 13(38): 45924-45934.

[24]

Wan Y, Qiu Z, Huang J, et al. Natural plant materials as dielectric layer for highly sensitive flexible electronic skin. Small. 2018; 14(35): e1801657.

[25]

Song P, Wang G, Zhang Y. Preparation and performance of graphene/carbon black silicone rubber composites used for highly sensitive and flexible strain sensors. Sens Actuators A. 2021; 323: 112659.

[26]

Han L, Liu K, Wang M, et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv Funct Mater. 2017; 28(3): 1704195.

[27]

Lee SM, Byeon HJ, Lee JH, et al. Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Sci Rep. 2014; 4(1): 6074.

[28]

Sun Z, Ou Q, Dong C, et al. Conducting polymer hydrogels based on supramolecular strategies for wearable sensors. Exp Dermatol. 2024; 4(5): 20220167.

[29]

Yang H, Ji S, Chaturvedi I, et al. Adhesive biocomposite electrodes on sweaty skin for long-term continuous electrophysiological monitoring. ACS Mater Lett. 2020; 2(5): 478-484.

[30]

Zhang L, Kumar KS, He H, et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat Commun. 2020; 11(1): 4683.

[31]

Chen S, Wang H-Z, Zhao R-Q, Rao W, Liu J. Liquid Metal Composites. Matter. 2020; 2(6): 1446-1480.

[32]

Guo X, Li J, Wang F, et al. Application of conductive polymer hydrogels in flexible electronics. J Polym Sci. 2022; 60(18): 2635-2662.

[33]

Zhao J, Feng J, Jiang Y, et al. Skin-integrated electrodes based on room-temperature curable, highly conductive silver/polydimethylsiloxane composites. Small. 2024; 20(23): e2309470.

[34]

Cheng S, Wu Z. Microfluidic electronics. Lab Chip. 2012; 12(16): 2782-2791.

[35]

Zheng Y, He Z-Z, Yang J, et al. Liquid metal printing for manufacturing large-scale flexible electronic circuits. In: Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, 2014. V014T11A034.

[36]

Wang L, Liu J. Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen. Proc Math Phys Eng Sci. 2014; 470: 20140609.

[37]

Guo C, Yu Y, Liu J. Rapidly patterning conductive components on skin substrates as physiological testing devices via liquid metal spraying and pre-designed mask. J Mater Chem B. 2014; 2(35): 5739-5745.

[38]

Yang J, Liu J. Direct printing and assembly of fm radio at the user end via liquid metal printer. Circuit World. 2014; 40(4): 134-140.

[39]

Lee W, Kim H, Kang I, et al. Universal assembly of liquid metal particles in polymers enables elastic printed circuit board. Science. 2022; 378(6620): 637-641.

[40]

Li G, Wu X, Lee D-W. Selectively plated stretchable liquid metal wires for transparent electronics. Sens Actuators B Chem. 2015; 221: 1114-1119.

[41]

Tang J, Zhao X, Li J, Guo R, Zhou Y, Liu J. Gallium-based liquid metal amalgams: transitional-state metallic mixtures (TransM2ixes) with enhanced and tunable electrical, thermal, and mechanical properties. ACS Appl Mater Interfaces. 2017; 9(41): 35977-35987.

[42]

Tavakoli M, Malakooti MH, Paisana H, et al. EGaIn-assisted room-temperature sintering of silver nanoparticles for stretchable, inkjet-printed, thin-film electronics. Adv Mater. 2018; 30(29): e1801852.

[43]

Li Y, Feng S, Cao S, Zhang J, Kong D. Printable liquid metal microparticle ink for ultrastretchable electronics. ACS Appl Mater Interfaces. 2020; 12(45): 50852-50859.

[44]

Guo R, Yao S, Sun X, Liu J. Semi-liquid metal and adhesion-selection enabled rolling and transfer (SMART) printing: a general method towards fast fabrication of flexible electronics. Sci China Mater. 2019; 62(7): 982-994.

[45]

Chen S, Zhao R, Sun X, Wang H, Li L, Liu J. Toxicity and biocompatibility of liquid metals. Adv Healthc Mater. 2023; 12(3): e2201924.

[46]

Zhuang Q, Yao K, Wu M, et al. Wafer-patterned, permeable, and stretchable liquid metal microelectrodes for implantable bioelectronics with chronic biocompatibility. Sci Adv. 2023; 9(22): eadg8602.

[47]

Liu S, Shah DS, Kramer-Bottiglio R. Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat Mater. 2021; 20(6): 851-858.

[48]

Boley JW, White EL, Chiu GTC, Kramer RK. Direct writing of gallium-indium alloy for stretchable electronics. Adv Funct Mater. 2014; 24(23): 3501-3507.

[49]

Zhang Q, Gao Y, Liu J. Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics. Appl Phys A Mater Sci Process. 2013; 116(3): 1091-1097.

[50]

Wang L, Liu J. Ink spraying based liquid metal printed electronics for directly making smart home appliances. ECS J Solid State Sci Technol. 2015; 4(4): P3057-P3062.

[51]

Li G, Parmar M, Lee DW. An oxidized liquid metal-based microfluidic platform for tunable electronic device applications. Lab Chip. 2015; 15(3): 766-775.

[52]

Bharambe VT, Ma J, Dickey MD, Adams JJ. Planar, multifunctional 3D printed antennas using liquid metal parasitics. IEEE Access. 2019; 7: 134245-134255.

[53]

Tabatabai A, Fassler A, Usiak C, Majidi C. Liquid-phase gallium-indium alloy electronics with microcontact printing. Langmuir. 2013; 29(20): 6194-6200.

[54]

Wang M, Ma C, Uzabakiriho PC, et al. Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible electronics. ACS Nano. 2021; 15(12): 19364-19376.

[55]

Xu K, Fujita Y, Lu Y, et al. A wearable body condition sensor system with wireless feedback alarm functions. Adv Mater. 2021; 33(18): e2008701.

[56]

Guo R, Wang H, Sun X, et al. Semiliquid metal enabled highly conductive wearable electronics for smart fabrics. ACS Appl Mater Interfaces. 2019; 11(33): 30019-30027.

[57]

Tang L, Mou L, Zhang W, Jiang X. Large-scale fabrication of highly elastic conductors on a broad range of surfaces. ACS Appl Mater Interfaces. 2019; 11(7): 7138-7147.

[58]

Tang L, Yang S, Zhang K, Jiang X. Skin electronics from biocompatible in situ welding enabled by intrinsically sticky conductors. Adv Sci. 2022; 9(23): e2202043.

[59]

Bai Y, Zhang J, Lu C, Rao W. Liquid metals nanotransformer for healthcare biosensors. Soft Sci. 2023; 3(4): 3.

[60]

Guo R, Tang J, Dong S, et al. One-step liquid metal transfer printing: toward fabrication of flexible electronics on wide range of substrates. Adv Mater Technol. 2018; 3(12): 1800265.

[61]

Zhao R, Guo R, Xu X, Liu J. A fast and cost-effective transfer printing of liquid metal inks for three-dimensional wiring in flexible electronics. ACS Appl Mater Interfaces. 2020; 12(32): 36723-36730.

[62]

Jiang C, Li T, Huang X, Guo R. Patterned liquid-metal-enabled universal soft electronics (PLUS-E) for deformation sensing on 3D curved surfaces. ACS Appl Mater Interfaces. 2023; 15(44): 51958-51970.

[63]

Park YG, An HS, Kim JY, Park JU. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures. Sci Adv. 2019; 5(6): eaaw2844.

[64]

Yu Y, Liu F, Zhang R, Liu J. Suspension 3D printing of liquid metal into self-healing hydrogel. Adv Mater Technol. 2017; 2(11): 1700173.

[65]

Abbasi R, Mayyas M, Ghasemian MB, et al. Photolithography-enabled direct patterning of liquid metals. J Mater Chem C. 2020; 8(23): 7805-7811.

[66]

Park CW, Moon YG, Seong H, et al. Photolithography-based patterning of liquid metal interconnects for monolithically integrated stretchable circuits. ACS Appl Mater Interfaces. 2016; 8(24): 15459-15465.

[67]

Ryu G, Park I, Kim H. Liquid metal micro- and nanodroplets: characteristics, fabrication techniques, and applications. ACS Omega. 2023; 8(18): 15819-15830.

[68]

Babatain W, Kim MS, Hussain MM. From droplets to devices: Recent advances in liquid metal droplet enabled electronics. Adv Funct Mater. 2023; 34(31): 202308116.

[69]

Ghasemian MB, Tang J, Rahim MA, Tang J, Kalantar-Zadeh K. Advances in liquid metal composites: properties, applications, and future prospects. Trends Chem. 2024; 6(2): 79-94.

[70]

Zhang X, Liu C, Tang R, et al. Liquid metal neuro-electrical interface. Soft Sci. 2024; 4(3): 23.

[71]

Bai Y, Zhou Y, Wu X, et al. Flexible strain sensors with ultra-high sensitivity and wide range enabled by crack-modulated electrical pathways. Nanomicro Lett. 2024; 17(1): 64.

[72]

Zhang C, Li Z, Li H, et al. Femtosecond laser-induced supermetalphobicity for design and fabrication of flexible tactile electronic skin sensor. ACS Appl Mater Interfaces. 2022; 14(33): 38328-38338.

[73]

Yoon Y, Kim D, Lee J-B. Hierarchical micro/nano structures for super-hydrophobic surfaces and super-lyophobic surface against liquid metal. Micro Nano Lett. 2014; 2(1): 3.

[74]

Khan MR, Trlica C, So JH, Valeri M, Dickey MD. Influence of water on the interfacial behavior of gallium liquid metal alloys. ACS Appl Mater Interfaces. 2014; 6(24): 22467-22473.

[75]

Chen Y, Zhou T, Li Y, et al. Robust fabrication of nonstick, noncorrosive, conductive graphene-coated liquid metal droplets for droplet-based, floating electrodes. Adv Funct Mater. 2018; 28(8): 201706277.

[76]

Kim D, Yoon Y, Kauh SK, Lee J. Towards sub-microscale liquid metal patterns: Cascade phase change mediated pick-n-place transfer of liquid metals printed and stretched over a flexible substrate. Adv Funct Mater. 2018; 28(28): 1800380.

[77]

Tang L, Shang J, Jiang X. Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci Adv. 2021; 7(3): eabe3778.

[78]

Jeong YR, Kim J, Xie Z, et al. A skin-attachable, stretchable integrated system based on liquid GaInSn for wireless human motion monitoring with multi-site sensing capabilities. NPG Asia Mater. 2017; 9(10): e443.

[79]

Rahim MA, Centurion F, Han J, et al. Polyphenol-induced adhesive liquid metal inks for substrate-independent direct pen writing. Adv Funct Mater. 2020; 31(10): 2007336.

[80]

Guo R, Li T, Jiang C, et al. Pressure regulated printing of semiliquid metal on electrospinning film enables breathable and waterproof wearable electronics. Adv Fiber Mater. 2023; 6(2): 354-366.

[81]

Ma B, Xu C, Chi J, Chen J, Zhao C, Liu H. A versatile approach for direct patterning of liquid metal using magnetic field. Adv Funct Mater. 2019; 29(28): 1901370.

[82]

Wang Q, Yu Y, Liu J. Preparations, characteristics and applications of the functional liquid metal materials. Adv Eng Mater. 2017; 20(5): 1700781.

[83]

Hu L, Wang H, Wang X, Liu X, Guo J, Liu J. Magnetic liquid metals manipulated in the three-dimensional free space. ACS Appl Mater Interfaces. 2019; 11(8): 8685-8692.

[84]

Chen G, Ma B, Chen Y, Chen Y, Zhang J, Liu H. Soft robots with plant-inspired gravitropism based on fluidic liquid metal. Adv Sci. 2024; 11(18): e2306129.

[85]

Wang H, Yuan B, Zhu X, et al. Multi-stimulus perception and visualization by an intelligent liquid metal-elastomer architecture. Sci Adv. 2024; 10(21): eadp5215.

[86]

Kim D, Thissen P, Viner G, et al. Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor. ACS Appl Mater Interfaces. 2013; 5(1): 179-185.

[87]

Zhu H, Wang S, Zhang M, Li T, Hu G, Kong D. Fully solution processed liquid metal features as highly conductive and ultrastretchable conductors. npj Flex Electron. 2021; 5(1): 25.

[88]

Guo R, Zhen Y, Huang X, Liu J. Spatially selective adhesion enabled transfer printing of liquid metal for 3D electronic circuits. Appl Mater Today. 2021; 25: 101236.

[89]

Ren L, Zhuang J, Casillas G, et al. Nanodroplets for stretchable superconducting circuits. Adv Funct Mater. 2016; 26(44): 8111-8118.

[90]

Bilodeau RA, Zemlyanov DY, Kramer RK. Liquid metal switches for environmentally responsive electronics. Adv Mater Interfaces. 2017; 4(5): 1600913.

[91]

Han S, Kim K, Lee SY, et al. Stretchable electrodes based on over-layered liquid metal networks. Adv Mater. 2023; 35(11): e2210112.

[92]

Liu T, Sen P, Kim C-J. Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. J Microelectromech Syst. 2012; 21(2): 443-450.

[93]

Kim JH, Kim S, Kim H, et al. Imbibition-induced selective wetting of liquid metal. Nat Commun. 2022; 13(1): 4763.

[94]

Sun X, Sun M, Liu M, et al. Shape tunable gallium nanorods mediated tumor enhanced ablation through near-infrared photothermal therapy. Nanoscale. 2019; 11(6): 2655-2667.

[95]

Fan L, Duan M, Xie Z, et al. Injectable and radiopaque liquid metal/calcium alginate hydrogels for endovascular embolization and tumor embolotherapy. Small. 2020; 16(2): e1903421.

[96]

Johnston L, Yang J, Han J, Kalantar-Zadeh K, Tang J. Intermetallic wetting enabled high resolution liquid metal patterning for 3D and flexible electronics. J Mater Chem C.2022; 10(3): 921-931.

[97]

Yong J, Zhang C, Bai X, et al. Designing “supermetalphobic” surfaces that greatly repel liquid metal by femtosecond laser processing: does the surface chemistry or microstructure play a crucial role? Adv Mater Interfaces. 2020; 7(6): 1901931.

[98]

Sivan V, Tang SY, O'Mullane AP, et al. Liquid metal marbles. Adv Funct Mater. 2012; 23(2): 144-152.

[99]

Kramer RK, Boley JW, Stone HA, Weaver JC, Wood RJ. Effect of microtextured surface topography on the wetting behavior of eutectic gallium-indium alloys. Langmuir. 2014; 30(2): 533-539.

[100]

Holcomb S, Brothers M, Diebold A, et al. Oxide-free actuation of gallium liquid metal alloys enabled by novel acidified siloxane oils. Langmuir. 2016; 32(48): 12656-12663.

[101]

Doudrick K, Liu S, Mutunga EM, et al. Different shades of oxide: from nanoscale wetting mechanisms to contact printing of gallium-based liquid metals. Langmuir. 2014; 30(23): 6867-6877.

[102]

Zhang J, Yong J, Zhang C, et al. Liquid metal-based reconfigurable and repairable electronics designed by a femtosecond laser. ACS Appl Electron Mater. 2020; 2(8): 2685-2691.

[103]

Guo R, Cui B, Zhao X, et al. Cu-EGaIn enabled stretchable e-skin for interactive electronics and CT assistant localization. Mater Horiz. 2020; 7(7): 1845-1853.

[104]

Guo R, Sun X, Yuan B, Wang H, Liu J. Magnetic liquid metal (Fe-EGaIn) based multifunctional electronics for remote self-healing materials, degradable electronics, and thermal transfer printing. Adv Sci. 2019; 6(20): 1901478.

[105]

Xie S-M, Zhao X, Peng L-M, et al. In situ interfacial engineering enabled mechanically adaptive and highly stretchable liquid metal conductor. Polymer. 2022; 240: 124482.

[106]

Hao XP, Li CY, Zhang CW, et al. Self-shaping soft electronics based on patterned hydrogel with stencil-printed liquid metal. Adv Funct Mater. 2021; 31(47): 2105481.

[107]

Guo R, Wang X, Chang H, et al. Ni-GaIn amalgams enabled rapid and customizable fabrication of wearable and wireless healthcare electronics. Adv Eng Mater. 2018; 20(10): 1800054.

[108]

Li G, Lee D-W. An advanced selective liquid-metal plating technique for stretchable biosensor applications. Lab Chip. 2017; 17(20): 3415-3421.

[109]

Gozen BA, Tabatabai A, Ozdoganlar OB, Majidi C. High-density soft-matter electronics with micron-scale line width. Adv Mater. 2014; 26(30): 5211-5216.

[110]

Kim M, Alrowais H, Pavlidis S, Brand O. Size-scalable and high-density liquid-metal-based soft electronic passive components and circuits using soft lithography. Adv Funct Mater. 2016; 27(3): 1604466.

[111]

Hao XP, Zhang CW, Zhang XN, et al. Healable, recyclable, and multifunctional soft electronics based on biopolymer hydrogel and patterned liquid metal. Small. 2022; 18(23): e2201643.

[112]

Guo R, Sun X, Yao S, et al. Semi-liquid-metal-(Ni-EGaIn)-based ultraconformable electronic tattoo. Adv Mater Technol.2019; 4(8): 1900183.

[113]

Ozutemiz KB, Majidi C, Ozdoganlar OB. Scalable manufacturing of liquid metal circuits. Adv Mater Technol. 2022; 7(11): 2200295.

[114]

Lopes PA, Paisana H, De Almeida AT, et al. Hydroprinted electronics: ultrathin stretchable Ag-in-Ga E-skin for bioelectronics and human-machine interaction. ACS Appl Mater Interfaces. 2018; 10(45): 38760-38768.

[115]

Silva AF, Paisana H, Fernandes T, et al. High resolution soft and stretchable circuits with PVA/liquid-metal mediated printing. Adv Mater Technol. 2020; 5(9): 2000343.

[116]

Kim M, Kim C, Alrowais H, et al. Multiscale and uniform liquid metal thin-film patterning based on soft lithography for 3D heterogeneous integrated soft microsystems: additive stamping and subtractive reverse stamping. Adv Mater Technol. 2018; 3(7): 1800061.

[117]

Ozutemiz KB, Wissman J, Ozdoganlar OB, Majidi C. EGaIn-metal interfacing for liquid metal circuitry and microelectronics integration. Adv Mater Interfaces. 2018; 5(10): 1701596.

[118]

Pan C, Kumar K, Li J, et al. Visually imperceptible liquid-metal circuits for transparent, stretchable electronics with direct laser writing. Adv Mater. 2018; 30: 1706937.

[119]

Wu P, Yiu CK, Huang X, et al. Liquid metal-based strain-sensing glove for human-machine interaction. Soft Sci. 2023; 3(4): 35.

[120]

Wang S, Nie Y, Zhu H, et al. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci Adv. 2022; 8(13): eabl5511.

[121]

Chen G, Wang H, Guo R, Duan M, Zhang Y, Liu J. Superelastic EGaIn composite fibers sustaining 500% tensile strain with superior electrical conductivity for wearable electronics. ACS Appl Mater Interfaces. 2020; 12(5): 6112-6118.

[122]

Guo R, Wang H, Chen G, Yuan B, Zhang Y, Liu J. Smart semiliquid metal fibers with designed mechanical properties for room temperature stimulus response and liquid welding. Appl Mater Today. 2020; 20: 100738.

[123]

Kim M-g, Brown DK, Brand O. Nanofabrication for all-soft and high-density electronic devices based on liquid metal. Nat Commun. 2020; 11(1): 1002.

[124]

Li G, Sun F, Chen H, Jin Y, Zhang A, du J. High-efficiency large-area printed multilayer liquid metal wires for stretchable biomedical sensors with recyclability. ACS Appl Mater Interfaces. 2021; 13(48): 56961-56971.

[125]

Park JE, Kang HS, Koo M, et al. Autonomous surface reconciliation of a liquid-metal conductor micropatterned on a deformable hydrogel. Adv Mater. 2020; 32(37): 2002178.

[126]

Gui H, Tan S, Wang Q, et al. Spraying printing of liquid metal electronics on various clothes to compose wearable functional device. Sci China Technol Sci. 2016; 60(2): 306-316.

[127]

Ma Z, Huang Q, Xu Q, et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat Mater. 2021; 20(6): 859-868.

[128]

Chong TC, Hong MH, Shi LP. Laser precision engineering: from microfabrication to nanoprocessing. Laser Photonics Rev. 2010; 4(1): 123-143.

[129]

Yao YY, Ding YJ, Li HP, Chen S, Guo R, Liu J. Multi-substrate liquid metal circuits printing via superhydrophobic coating and adhesive patterning. Adv Eng Mater. 2019; 21(7): 1801363.

[130]

Babu S, Dousti B, Lee GS, Lee JB. Conversion of polymer surfaces into nonwetting substrates for liquid metal applications. Langmuir. 2021; 37(27): 8139-8147.

[131]

Vorobyev AY, Guo C. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 2012; 7(3): 385-407.

[132]

Zhang S, Wang B, Jiang J, Wu K, Guo CF, Wu Z. High-fidelity conformal printing of 3D liquid alloy circuits for soft electronics. ACS Appl Mater Interfaces. 2019; 11(7): 7148-7156.

[133]

Wu H, Zhang L, Jiang S, et al. Ultrathin and high-stress-resolution liquid-metal-based pressure sensors with simple device structures. ACS Appl Mater Interfaces. 2020; 12(49): 55390-55398.

[134]

Wu H, Luo R, Li Z, et al. Additively manufactured flexible liquid metal-coated self-powered magnetoelectric sensors with high design freedom. Adv Mater. 2024; 36(34): e2307546.

[135]

Zhou Z, Yao Y, Zhang C, et al. Liquid metal printed optoelectronics toward fast fabrication of customized and erasable patterned displays. Adv Mater Technol. 2021; 7(5): 2101010.

[136]

Chang H, Zhang P, Guo R, et al. Recoverable liquid metal paste with reversible rheological characteristic for electronics printing. ACS Appl Mater Interfaces. 2020; 12(12): 14125-14135.

[137]

Yang S-Y, Shih J-F, Chang C-C, et al. Development of high-flexible triboelectric generators using plastic metal as electrodes. Appl Phys A Mater Sci Process. 2017; 123(2): 128.

[138]

Lee GH, Lee YR, Kim H, et al. Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics. Nat Commun. 2022; 13(1): 2643.

[139]

Lin W, Ai L, Wang Y, et al. Imperceptible liquid metal based tattoo for human-machine interface on hairy skin. Chem Eng J. 2024; 490: 151595.

[140]

Wu D, Wu S, Narongdej P, et al. Fast and facile liquid metal printing via projection lithography for highly stretchable electronic circuits. Adv Mater. 2023; 36(34): e2307632.

[141]

Cheng J, Shang J, Yang S, Dou J, Shi X, Jiang X. Wet-adhesive elastomer for liquid metal-based conformal epidermal electronics. Adv Funct Mater. 2022; 32(25): 2200444.

[142]

Kwon DA, Lee S, Kim CY, Kang I, Park S, Jeong JW. Body-temperature softening electronic ink for additive manufacturing of transformative bioelectronics via direct writing. Sci Adv. 2024; 10(9): eadn1186.

[143]

Wu Y, Cheng J, Qi J, et al. Three-dimensional liquid metal-based neuro-interfaces for human hippocampal organoids. Nat Commun. 2024; 15(1): 4047.

[144]

Chen Y, Lu Y, Fan D, et al. Revolutionizing flexible electronics: integrating liquid metal diw 3D printing by bimolecular interpenetrating network. Chem Eng J. 2024; 488: 151013.

[145]

Zhou X, Liu Y, Gao Z, et al. Biphasic GaIn alloy constructed stable percolation network in polymer composites over ultrabroad temperature region. Adv Mater. 2024; 36(14): e2310849.

[146]

Zhang L, Huang X, Cole T, et al. 3D-printed liquid metal polymer composites as nir-responsive 4d printing soft robot. Nat Commun. 2023; 14(1): 7815.

[147]

Wang L, Liu J. Pressured liquid metal screen printing for rapid manufacture of high resolution electronic patterns. RSC Adv. 2015; 5(71): 57686-57691.

[148]

Yunusa M, Amador GJ, Drotlef DM, Sitti M. Wrinkling instability and adhesion of a highly bendable gallium oxide nanofilm encapsulating a liquid-gallium droplet. Nano Lett. 2018; 18(4): 2498-2504.

[149]

Zheng Y, He ZZ, Yang J, Liu J. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Sci Rep. 2014; 4(1): 4588.

[150]

Xu C, Ma B, Yuan S, et al. High-resolution patterning of liquid metal on hydrogel for flexible, stretchable, and self-healing electronics. Adv Electron Mater. 2019; 6(1): 1900721.

[151]

Chen Y, Liu Z, Zhu D, et al. Liquid metal droplets with high elasticity, mobility and mechanical robustness. Mater Horiz. 2017; 4(4): 591-597.

[152]

Xiao C, Feng J, Xu H, Xu R, Zhou T. Scalable strategy to directly prepare 2D and 3D liquid metal circuits based on laser-induced selective metallization. ACS Appl Mater Interfaces. 2022; 14(17): 20000-20013.

[153]

Wang Q, Yu Y, Yang J, Liu J. Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing. Adv Mater. 2015; 27(44): 7109-7116.

[154]

Varga M, Ladd C, Ma S, Holbery J, Tröster G. On-skin liquid metal inertial sensor. Lab Chip. 2017; 17(19): 3272-3278.

[155]

Mao Y, Wu Y, Zhang P, Yu Y, He Z, Wang Q. Nanocellulose-based reusable liquid metal printed electronics fabricated by evaporation-induced transfer printing. J Mater Sci Technol. 2021; 61: 132-137.

[156]

Sanati AL, Alhais Lopes P, Chambel A, et al. Recyclable liquid metal-graphene supercapacitor. Chem Eng J. 2024; 479: 147894.

[157]

Qu J, Wang J, Zhang H, et al. Toxicokinetics and systematic responses of differently sized indium tin oxide (ITO) particles in mice via oropharyngeal aspiration exposure. Environ Pollut. 2021; 290: 117993.

[158]

Lin Y, Yin Q, Jia H, Ji Q, Wang J. Ultrasensitive and highly stretchable bilayer strain sensor based on bandage-assisted woven fabric with reduced graphene oxide and liquid metal. Chem Eng J. 2024; 487: 150777.

[159]

Tutika R, Haque ABMT, Bartlett MD. Self-healing liquid metal composite for reconfigurable and recyclable soft electronics. Commun Mater. 2021; 2(1): 64.

[160]

Yan S, Li H, Chen W, et al. Full-lifetime recycling and reutilization of key materials of low-cost and sustainable liquid metal batteries. ACS Sustainable Chem Eng. 2023; 11(48): 17038-17045.

[161]

Ghosh A, Das G. Facile synthesis of Sn(II)-MOF using waste pet bottles as an organic precursor and its derivative SnO2 NPs: role of surface charge reversal in adsorption of toxic ions. J Environ Chem Eng. 2021; 9(4): 105288.

[162]

Kim J-H, Kim S, So J-H, Kim K, Koo HJ. Cytotoxicity of gallium-indium liquid metal in an aqueous environment. ACS Appl Mater Interfaces. 2018; 10(20): 17448-17454.

[163]

Liu C, Ma J, Fu Z, et al. Gallium-based materials for electrocatalytic and photocatalytic hydrogen evolution reaction. Int J Hydrogen Energy. 2024; 73: 490-509.

[164]

Ma Y, Gao J, Guan T, Tao Y, Guo M, Liu J. Chemotaxic biomimetic liquid metallic leukocytes. Matter. 2025; 8(3): 101991.

[165]

Allioux F-M, Merhebi S, Tang J, et al. Carbonization of low thermal stability polymers at the interface of liquid metals. Carbon. 2021; 171: 938-945.

[166]

Chen S, Liu J. Pervasive liquid metal printed electronics: from concept incubation to industry. iScience. 2021; 24(1): 102026.

[167]

Wu X, Fang H, Ma X, et al. Gallium-based liquid metals: optical properties, applications, and challenges. Adv Opt Mater. 2023; 11(22): 2301180.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

4

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/