Manipulating optical properties of MXene/TiN with strong nonmetallic plasmonic coupling for multifunctional imaging attenuation

Jing-Wen Zou , Yi-Hua Hu , Wei-Bing Sun , Yu-Hao Xia , Qing Ye , Hao Huang , Liang Ma , Ying Chen , Yu-Shuang Zhang

InfoMat ›› 2025, Vol. 7 ›› Issue (9) : e70024

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (9) : e70024 DOI: 10.1002/inf2.70024
RESEARCH ARTICLE

Manipulating optical properties of MXene/TiN with strong nonmetallic plasmonic coupling for multifunctional imaging attenuation

Author information +
History +
PDF

Abstract

Plasmonic materials enable flexible optical manipulation owing to their unique plasmon resonance, making them highly promising for photoelectronic imaging attenuation. However, designing plasmonic materials capable of multifaceted imaging attenuation remains challenging. This study theoretically designed and experimentally prepared a unique dual nonmetallic plasmonic Ti3C2Tx/TiN hybrid. The composite material exhibited excellent performance in multifrequency, active/passive, and polarized multifunctional imaging attenuation. TiN nanoclusters were chemically bonded to Ti3C2Tx nanosheets through an ultrasonic-assisted method to form a Ti3C2Tx/TiN hybrid. The strong nonmetallic plasmonic coupling within these hybrids enables superior absorption and excellent photothermal conversion. Consequently, MXene/TiN aerosols demonstrated an improvement of approximately 14% in imaging attenuation compared with traditional oil–water aerosols in visible-light imaging. In addition, the hybrid exhibited strong electromagnetic wave absorption, covering nearly the entire 8.96–18 GHz range. Moreover, polarization imaging attenuation improved by 8.3% compared with that of oil–water aerosols, as evidenced by algorithmically dehazed images. Furthermore, the material effectively provided “high-temperature thermal concealment” for far-infrared active imaging attenuation. This study paves the way for developing multifunctional imaging attenuation materials, with significant potential for future imaging attenuation technologies.

Keywords

dual nonmetallic plasmon / multifrequency/polarized absorption / photothermal conversion / multifunctional imaging attenuation

Cite this article

Download citation ▾
Jing-Wen Zou, Yi-Hua Hu, Wei-Bing Sun, Yu-Hao Xia, Qing Ye, Hao Huang, Liang Ma, Ying Chen, Yu-Shuang Zhang. Manipulating optical properties of MXene/TiN with strong nonmetallic plasmonic coupling for multifunctional imaging attenuation. InfoMat, 2025, 7(9): e70024 DOI:10.1002/inf2.70024

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hong S, Shin S, Chen R. An adaptive and wearable thermal camouflage device. Adv Funct Mater. 2020; 30(11): 1909788.

[2]

Morin SA, Shepherd RF, Kwok SW, Stokes AA, Nemiroski A, Whitesides GM. Camouflage and display for soft machines. Science. 1979; 2012(337): 828-832.

[3]

Li C, Liang L, Yang Y, Zhang B, Ji G. Interfacial engineering of core-shell structured FeCoNi@ SnO2 magnetic composites for tunable radar-infrared compatible stealth. Chem Eng J. 2024; 481: 148354.

[4]

Sun H, Yang B, Zhang M. Functional-structural integrated aramid nanofiber-based honeycomb materials with ultrahigh strength and multi-functionalities. Adv Fiber Mater. 2024; 6(4): 1122-1137.

[5]

Li BX, Luo Z, Sun H, et al. Spectral-selective and adjustable patterned polydimethylsiloxane/MXene/Nanoporous polytetrafluoroethylene Metafabric for dynamic infrared camouflage and thermal regulation. Adv Funct Mater. 2024; 34(45): 2407644.

[6]

Zhang Z, Wang Q, Li Z, et al. A skin-beyond multifrequency camouflage system with self-adaptive discoloration and radar-infrared stealth. Chem Eng J. 2024; 494: 152867.

[7]

Li SS, Zhu MY, Li W, et al. Hierarchical polyimide-based composite foam for compatible multi-band stealth. J Mater Sci Technol. 2024; 215: 315.

[8]

Zhang X, Yang Y, Xue P, et al. Three-dimensional electrochromic soft photonic crystals based on MXene-integrated blue phase liquid crystals for bioinspired visible and infrared camouflage. Angew Chem Int Ed. 2022; 61(42): e202211030.

[9]

Yang J, Zhang X, Zhang X, Wang L, Feng W, Li Q. Beyond the Visible: Bioinspired Infrared Adaptive Materials. Adv Mater. 2021; 33: 2004754.

[10]

Chen X, Li Y, Cheng S, et al. Liquid metal-MXene-based hierarchical aerogel with radar-infrared compatible camouflage. Adv Funct Mater. 2024; 34(10): 2308274.

[11]

Hu J, Hu Y, Ye Y, Shen R. Unique applications of carbon materials in infrared stealth: a review. Chem Eng J. 2023; 452: 139147.

[12]

Pacheco-Peña V, Hallam T, Healy N. MXene supported surface plasmons on telecommunications optical fibers. Light Sci Appl. 2022; 11(1): 22.

[13]

Murali G, Reddy Modigunta JK, Park YH, et al. A review on MXene synthesis, stability, and photocatalytic applications. ACS Nano. 2022; 16(9): 13370-13429.

[14]

Lim KRG, Shekhirev M, Wyatt BC, Anasori B, Gogotsi Y, Seh ZW. Fundamentals of MXene synthesis. Nat Synth. 2022; 1(8): 601-614.

[15]

Wang M, Cheng Y, Zhang H, et al. Nature-inspired interconnected macro/Meso/micro-porous MXene electrode. Adv Funct Mater. 2023; 33(12): 2211199.

[16]

Ma R, Zhang X, Zhuo J, et al. Self-supporting, binder-free, and flexible Ti3C2Tx MXene-based supercapacitor electrode with improved electrochemical performance. ACS Nano. 2022; 16(6): 9713-9727.

[17]

Yang M, Xu Y, Zhang X, et al. Bioinspired phototropic MXene-reinforced soft tubular actuators for omnidirectional light-tracking and adaptive photovoltaics. Adv Funct Mater. 2022; 32(26): 2201884.

[18]

Zhang B, Wang Y, Wang Z, et al. Surface plasmon resonance effects of Ti3C2 MXene for degradation of antibiotics under full spectrum. Appl Catal B. 2023; 339: 123132.

[19]

Zeng X, Zhao C, Jiang X, Yu R, Che R. Functional Tailoring of Multi-Dimensional Pure MXene Nanostructures for Significantly Accelerated Electromagnetic Wave Absorption. Small. 2023; 19: 2303393.

[20]

Chae A, Murali G, Lee SY, et al. Highly oxidation-resistant and self-healable MXene-based hydrogels for wearable strain sensor. Adv Funct Mater. 2023; 33(24): 2370144.

[21]

Zhang Q, Li J, Wen J, et al. Simultaneous capturing phonon and electron dynamics in MXenes. Nat Commun. 2022; 13(1): 7900.

[22]

El-Demellawi JK, Lopatin S, Yin J, Mohammed OF, Alshareef HN. Tunable multipolar surface plasmons in 2D Ti3C2Tx MXene flakes. ACS Nano. 2018; 12(8): 8485-8493.

[23]

Dillon AD, Ghidiu MJ, Krick AL, et al. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv Funct Mater. 2016; 26(23): 4162-4168.

[24]

Zhao X, Chen Y, Niu R, et al. NIR Plasmonic Nanozymes: Synergistic Enhancement Mechanism and Multi-Modal Anti-Infection Applications of MXene/MOFs. Adv Mater. 2024; 36: 2307839.

[25]

Guo X, Li N, Wu C, et al. Studying Plasmon Dispersion of MXene for Enhanced Electromagnetic Absorption. Adv Mater. 2022; 34: 2201120.

[26]

Iqbal A, Kwon J, Hassan T, et al. Environmentally stable and highly crystalline MXenes for multispectral electromagnetic shielding up to millimeter waves. Adv Funct Mater. 2024;2409346.

[27]

Wu L, Yuan X, Tang Y, et al. MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices. Photonix. 2023; 4(1): 15.

[28]

Li Y, Zhang X. Electrically conductive, optically responsive, and highly orientated Ti3C2Tx MXene aerogel fibers. Adv Funct Mater. 2022; 32(4): 2107767.

[29]

Zhang Y, Guo Z. Dual-drive energy conversion plasmonic Ag@MXene thermal management textiles inspired by bearing structure. Chem Eng J. 2024; 493: 152587.

[30]

Fan X, Ding Y, Liu Y, Liang J, Chen Y. Plasmonic Ti3C2Tx MXene enables highly efficient Photothermal conversion for healable and transparent wearable device. ACS Nano. 2019; 13(7): 8124-8134.

[31]

Xie H, Li P, Shao J, et al. Electrostatic self-assembly of Ti3C2Tx MXene and gold Nanorods as an efficient surface-enhanced Raman scattering platform for reliable and high-sensitivity determination of organic pollutants. ACS Sens. 2019; 4(9): 2303-2310.

[32]

Wang Y, Liu X, Zhang Q, et al. Stable, cost-effective TiN-based plasmonic nanocomposites with over 99% solar steam generation efficiency. Adv Funct Mater. 2023; 33(15): 2212301.

[33]

Guler U, Ndukaife JC, Naik GV, et al. Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles. Nano Lett. 2013; 13(12): 6078-6083.

[34]

Li Y, Wang JG, Fan Y, et al. Plasmonic TiN boosting nitrogen-doped TiO2 for ultrahigh efficient photoelectrochemical oxygen evolution. Appl Catal B. 2019; 246: 21-29.

[35]

He X, Liu Q, Xu D, Wang L, Tang H. Plasmonic TiN nanobelts assisted broad spectrum photocatalytic H2 generation. J Mater Sci Technol. 2022; 116: 1.

[36]

Zuo X, Wang L, Zhen M, You T, Liu D, Zhang Y. Multifunctional TiN-MXene-Co@CNTs networks as sulfur/lithium host for high-areal-capacity lithium-sulfur batteries. Angew Chem. 2024; 63(35): e202408026.

[37]

Wang H, Cui Z, He SA, et al. High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano Micro Lett. 2022; 14(1): 189.

[38]

Peng T, Zhang N, Yang Y, et al. Crystal facet engineering of MXene-derived TiN nanoflakes as efficient bidirectional electrocatalyst for advanced lithium-sulfur batteries. Small. 2022; 18(38): 2202917.

[39]

Huang X, Tang J, Qiu T, et al. Nanoconfined topochemical conversion from MXene to ultrathin non-layered TiN nanomesh toward superior electrocatalysts for lithium-sulfur batteries. Small. 2021; 17(32): 2101360.

[40]

Kang HS, Zou JW, Liu Y, et al. Synergistic effect of photothermal conversion in MXene/Au@Cu 2−xS hybrids for efficient solar water evaporation. Adv Funct Mater. 2023; 33(44): 2303911.

[41]

Dong Y, Wu K, Yin Y, Du X, Zhou Q. TiN/TiO2/MXene ternary composite with photocathodic protection for 304 stainless steel. Chem Eng J. 2022; 442: 136390.

[42]

Gao Y, Zhou X, Fu N, et al. Superior solar water purification achieved by the excellent photothermal conversion and thermal management of porous plasmonic TiN nanoparticles. Chem Eng J. 2023; 475: 146078.

[43]

Ma L, Yu LJ, Liu J, et al. Construction of Ti4O7/TiN/carbon microdisk sulfur host with strong polar N-Ti-O bond for ultralong life lithium-sulfur battery. Energy Storage Mater. 2022; 44: 180.

[44]

Zhao J, Urrego-Ortiz R, Liao N, Calle-Vallejo F, Luo J. Rationally designed Ru catalysts supported on TiN for highly efficient and stable hydrogen evolution in alkaline conditions. Nat Commun. 2024; 15(1): 6391.

[45]

Du Y, Liu P, Zhang H, et al. Nature-inspired structure-engineered TiN/TiO2Nanotubes Array toward solar desalination synergy with photothermal-enhanced degradation and thermoelectric generation. Adv Funct Mater. 2024; 34(10): 2309830.

[46]

Pan H, Huang Y, Cen X, et al. Hollow carbon and MXene dual-reinforced MoS2 with enlarged interlayers for high-rate and high-capacity sodium storage systems. Adv Sci. 2024; 11(37): 2400364.

[47]

Xu T, Tan SJ, Li SX, et al. Synergistic densification in hybrid organic-inorganic MXenes for optimized photothermal conversion. Adv Funct Mater. 2024; 34(29): 2400424.

[48]

Yang Y, Guo Z, Liu W. Robust mussel-inspired superhydrophobic sponge with eco-friendly photothermal effect for crude oil/seawater separation. J Hazard Mater. 2024; 461: 132592.

[49]

Wang HY, Du ZG, Cheng ZJ, et al. Ultralow-Dielectric-Constant Atomic Layers of Amorphous Carbon Nitride Topologically Derived from MXene. Adv Mater. 2023; 35: 2301399.

[50]

Guo HD, Xiang WC, Fang YY, Li JR, Lin Y. Molecular bridge on buried interface for efficient and stable perovskite solar cells. Angew Chem Int Ed. 2023; 62(34): e202304568.

[51]

Shi MJ, Wang RY, Li LY, et al. Redox-active polymer integrated with MXene for ultra-stable and fast aqueous proton storage. Adv Funct Mater. 2023; 33(1): 2209777.

[52]

Xue X, Li Z, Ma L, Jia Q, Liu R, Fan X. Investigating intrinsic degradation factors by multi-branch aggregation for real-world underwater image enhancement. Pattern Recognit. 2023; 133: 109041.

[53]

Zhu L, Wu W, Chen J, Hu Z, Yu J, Wang Y. High-performance electromagnetic wave absorption by two-dimensional mesoporous monolayer Ti3C2Tx MXene. Chem Eng J. 2024; 488: 150649.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

4

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/